- Fields and quadratic form schemes
Object's details: Fields and quadratic form schemes
PDF
Structure
Annales Mathematicae Silesianae.
Description
- Title:
- Group title:
- Creator:
- Subject and Keywords:
- Subject Headings:
- Description:
- Publisher:
- Place of publishing:
- Date:
- Resource Type:
- Format:
- Resource Identifier: oai:www.sbc.org.pl:79380
- Relation: ;
- Language:
- Oryginal in:
- Digitization:
- Published by:
- Rights:
Object is located in the collections:
Additional information
- Creation date: 2013-10-04
- Last modification date: 2023-03-09
- Content object's number of views: 272
- You could also download the object's description in these formats: ;
- Historical Text Recognition:
See also
Fields and quadratic form schemes with the index of radical not exceeding
Creator:Szczepanik, Lucyna
Date:1985
Type:artykuł
Communication complexity and linearly ordered sets
Creator:Kula, Mieczysław
Date:2015
Type:artykuł
Contributor:Serwecińska, Małgorzata
Witt rings of infinite algebraic extensions of global fields
Creator:Kozioł, Krzysztof; Kula, Mieczysław
Date:1998
Type:artykuł
Rechenbüchlin auff der Federn. Gantz leicht, auch rechtem Grund, In Gantzen vnd gebrochen, Neben angehefftem vnlangst ausgelassnem Büchlin Avff Den Linien. Dem eineltigen gemeinem Man vnd anhebenden der Arithmetica zu gut. Durch Johann. Albert. Rechenmeister zu Wittembergk zusamen bracht. %a Auffs new mit allem vleis vbersehen, gemehret vnd gebessert, zum dritten mal.
Creator:Albert, Johann (około 1500-1565)
Date:1559
Type:starodruk
Results in strongly minihedral cone and scalar weighted cone metric spaces and applications
Creator:Tomar, Anita; Joshi, Meena
Date:2021
Type:czasopismo
Differential inclusions – the theory initiated by Cracow mathematical school
Creator:Górniewicz, Lech
Date:2011
Type:artykuł
On analytic solutions of the equation φ(f(x)) = g(x, φ(x)) (III)
Creator:Ger, Joanna
Date:1985
Type:artykuł
On the existence of solutions of the differential equation with advanced argument
Creator:Muzyczka, Zofia
Date:1985
Type:artykuł