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Wstęp

Niech R  będzie pierścieniem przemiennym z jedynką. Wśród wszystkich odwzo­

rowań pomiędzy il-modułami można wyróżnić takie, które są scharakteryzowane 

przez pewne warunki typu równości. Na przykład odwzorowania liniowe spełniają 

następujące dwa warunki:

(1) f ( rx)  = r f ( x ) , r  € R,

(2) f ( x  + y) = f ( x )  + f(y),

gdzie x , y  są dowolnymi elementami dziedziny /.

Odwzorowania kwadratowe można scharakteryzować przy pomocy następujących 

warunków:

(1) f ( rx)  — r2f(x),  t  G R,

(2) funkcja dwóch zmiennych A2/  określona wzorem 

(A2/)(:r, y) = f ( x  + y) -  f (x)  -  f{y)

jest dwuliniowa.

Uogólnieniem obu powyższych typów odwzorowań są tak zwane m —odwzorowania 

zdefiniowane w [1]. Zostaną one omówione w dalszej części pracy. W [4] udowod­

niono, że wszystkie odwzorowania pochodzące z wielomianów jednorodnych stopnia 

m  są m — odwzorowaniami, jednak, w przeciwieństwie do przypadków m  = 1 oraz 

m = 2, na ogół nie na odwrót. Oznacza to, że przy m  > 2 potrzebne są dodat­

kowe warunki typu równości. Przez w arunek  ty p u  równości będziemy rozumieli 

związek • r j f (^2k SjkXk) — 0, gdzie j,  k przebiegają skończone zbiory indeksów,



Tj,Sjk € R  oraz Xk są dowolnymi elementami dziedziny odwzorowania / .  Przy tym 

wygodnie jest zakładać, że rj,Sjk są ustalone dla każdej równości. Jeśli natomiast 

są one traktowane jako dodatkowe zmienne, to tak rozumianą równość nazywamy 

ścisłą. Dokładniej mówiąc, rj oraz sjk rozumiemy wówczas jako ustalone funkcje 

wielomianowe skończonej ilości zmiennych o współczynnikach z Z, do których mo­

żemy podstawić dowolne elementy pierścienia (dla przykładu w warunku (1) powyżej 

występuje wyrażenie r2, w którym zmienną niezależną jest r). Kiedy więc mówimy

o ścisłych równościach, dotyczą one odwzorowań pomiędzy modułami nad dowolnym 

pierścieniem przemiennym R.

Klasę A  odwzorowań pomiędzy i?-modułami nazywamy równościowo definiowalną, 

jeśli składa się ona ze wszystkich odwzorowań /  : X  —> Y  (X , Y  G R — Mod)  speł­

niających ustalony zestaw warunków typu równości, tzn. takich odwzorowań, dla 

których

^  ^ijk-Ek) — 0, i G G X
} k

przy pewnych ustalonych Tij,Sijk £ R.  Jeśli R  nie jest ustalonym, lecz dowolnym 

pierścieniem i równości te są ścisłe, to klasę także nazywamy ścisłą.

Klasa Horrid odwzorowań pochodzących od wielomianów jednorodnych stopnia 

m nad ustalonym pierścieniem R  na ogół nie jest równościowo definiowalna. Winę 

za to ponosi fakt, że z reguły wielomiany i odwzorowania wielomianowe nie są tym 

samym. Istnieje jednak najmniejsza klasa równościowo definiowalna ED( Hom Jj) 

zawierająca H o r n przy czym wiadomo z [7], że klasy te są równe nad dowolnym 

ciałem. Inną sprawą jest kwestia, czy ta  klasa jest ścisła, czy też nie. Odpowiedź 

na to pytanie daje [3], Theorem 6.2. Okazuje się, że jest tak dokładnie wtedy, 

gdy Tri < 5. Równości definiujące klasę ED( Hom^ )  będziemy nazywali pełnym 

zestawem równośći dla klasy H o r n Jeśli równości te są ścisłe, będziemy mówili



o pełnym zestawie równości dla klasy Homm. Jedną z równości, którą spełniają od­

wzorowania klasy H o r n jest tak zwany w arunek regularności. W przypadku 

m =  3 pokazuje się ([7]), że klasa ED(Hom?R) jest identyczna z klasą regularnych 

3-odwzorowań. W przypadku m  = 4 potrzebne są jeszcze trzy dodatkowe ścisłe rów­

ności. Dokładny wynik dla m =  3 i m =  4 przedstawimy w następnym rozdziale. 

Przypadek m = 5, jako ostatni niezbadany, jest przedmiotem niniejszej pracy. Dla 

m  =  5 rozwiązanie składa się z dwóch części. Jedna z wersji pierwszej części została 

opublikowana w pracy [2]. W niniejszej pracy przypadek m  =  5 zostanie zbadany 

niezależnie z wykorzystaniem innej metody, niż było to zrobione w [2]. Warunkiem 

zastosowania tej metody jest znajomość relacji spełnianych przez elementy r 2 — r, 

r 3 — t  oraz r4 — r pierścienia R.

W pierwszym rozdziale podajemy definicje i twierdzenia znane z prac [4], [5], [7]. 

W rozdziale drugim znajdujemy relacje generujące pomiędzy elementami rn — r, 

gdzie n =  2l, l = 1 ,2 ,. . .  (Twierdzenie 2.6) oraz relacje generujące pomiędzy ele­

mentami r 3 — r  pierścienia przemiennego (Twierdzenie 2.10).

W rozdziale trzecim znajdujemy relacje tworzące pełny zestaw tzw. 3-równości dla 

klasy Horn5 (Twierdzenie 3.3 oraz Twierdzenie 3.4).

W rozdziale czwartym znajdujemy relacje tworzące pełny zestaw tzw. 2-równości 

dla klasy Hom5 (Twierdzenie 4.2 oraz Twierdzenie 4.3).

W rozdziale piątym podsumowujemy badania nad relacjami spełnianymi przez od­

wzorowania stopnia 5, zawarte w Podrozdziale 3.2 oraz Rozdziale 4.

W całej pracy stosujemy podwójną numerację, osobno dla twierdzeń, lematów, wnio­

sków i definicji.



ROZDZIAł 1 

Preliminaria

Niech R  będzie pierścieniem przemiennym z jedynką. Przypomnijmy definicje 

znane na przykład z [1], [4] lub [7],

1.1. D efekty odw zorow ań i m —odw zorow ania

D e f i n i c j a  1.1.

Jeśli X , Y  są R —modułami, to dowolnemu odwzorowaniu f  : X  —> Y  można 

przyporządkować jego n —ty defekt Anf  : X n —» Y, (n =  0 ,1,2, . . . ) ,  określony 

wzorem

(Anf ) ( Xi , . . . , X n) =  ( - l ) n- |W|/ ( 5 > ) ,  (1-1)
Hc\l,n] iSH

gdzie [1, n] = {1,2, . . . ,n } .

Defekty odwzorowania /  pozwalają wyrazić wartości tego odwzorowania na su­

mach elementów za pomocą wzoru:

n
f { x  i +  X2 +  ... +  Xn ) =  E £  ( A ' / X * * , (1. 2)

t= 0 l< ji< ...< je< n

Zauważmy, że A0/  =  /(0), A1/  =  /  — /(0 ) oraz Anf  =  A" ( /  — /(0 )) dla n > 0. 

Ponieważ interesują nas formy stopnia dodatniego, będziemy dalej zakładać, że 

/(0 ) =  0 oraz n > 0. Przy tych założeniach defekty można określić indukcyjnie 

w następujący sposób:



(1) A 7  =  /,

(2) (An+1/)(x o ,. . . ,  xn) = ( Anf ) ( x 0 + x i , x 2, . . .  , xn)~

- ( A n/)(x 0,x 2,.. . ,a :n) -  (An/)(x i, x 2, . . . ,  xn).

Ponadto (An/ ) ( x i , , . . .  , xn) = 0, jeśli Xi = 0 dla pewnego i. Oczywiście A " /  jest 

symetryczne.

D e f i n i c j a  1.2 (Ferrero, Micali, [1]).

m-odwzorowaniem nazywamy odwzorowanie f  : X  -» Y  spełniające następu­

jące warunki:

(Al) f ( r x ) = rmf(x)  dla r G R, x  G X,

(A2) Amf  : X m —> Y  jest odwzorowaniem m-liniowym.

D e f i n i c j a  1.3.

m —odwzorowanie f  : X  —» Y  nazywamy regularnym, jeśłi jego (m  — 1 )—szy 

defekt () =  Am -7  spełnia następujący warunek:

(A) (rx , sy, - )  -  r(x, sy, - )  -  s{rx, y , - )  + rs(x, y , - )  = 0 

dla r,s  G R, x , y  G X,  

gdzie — oznacza pozostałe k -  1 zmiennych.

Pewne własności regularnych m-odwzorowań podaje następujące

T w i e r d z e n i e  1.1 ([5], Proposition 2.5).

Dowolne regularne m-odwzorowanie f  na R -m odule X  spełnia następujące 

równości:

(1) (r l ^ l t  ■ • ■ t r m —l X m —l)  =  
m—1

1̂ • • • • • • Tm—i (Xi, . . . , X|_ j , r^Xi, Xi_(_i, . . . , Xm—\ )
i= l



m—1
(2) (x j, . . . , Xj_i, TXi, X{-\.i , . . . ,  Xm—\) 

i=l
-  (7-2 + (771- 2 )r)(x i,. . . ,  xm_i) =  0,

(3) (rsx , - )  =  r(sx, —) + s2(rx, —) -  rs2(x, - ) ,

(4) (r2x, - )  = (/■ + r2)(rx, - )  -  t-3(x, - ) ,

(5) (r — r2)(sx, —) =  (s -  s2)(rx, - )  +  (rs2 — 7'2s)(x, —),

gdzie () =  Am_1/  oraz n,  r,s £ R, Xj, x £ X.

Pokazuje się, że wszystkie odwzorowania pochodzące od wielomianów jednorod­

nych stopnia m  są regularnymi m —odwzorowaniami ([5]). Dotyczy to także ich 

uogólnień, tzn. odwzorowań wielomianowych wyznaczonych przez formy stopnia m 

w sensie N. Roby [9], tzw. "prawa wielomianowe". Te odwzorowania są określone 

pomiędzy i i—modułami X,  Y, w odróżnieniu od zwykłych odwzorowań wielomia­

nowych, które są określone na R n i tworzą klasę Horń^, o której była mowa we 

Wstępie. Wiadomo jednak ([7]), że zarówno szersza, jak i węższa klasa spełniają 

te same równości, dlatego prawami wielomianowymi nie będziemy się w tej pracy 

zajmowali. W przypadku 771 =  3 pokazuje się, że klasa ED(Hom?R) jest identyczna z 

klasą regularnych 3—odwzorowań, a zatem składa się dokładnie z tych odwzorowań, 

które spełniają warunki (Al), (A2) i (A). W przypadku 771 =  4 potrzebne są jeszcze 

trzy dodatkowe ścisłe równości, a mianowicie klasa ED(//om ^) składa się dokładnie 

z tych odwzorowań, które spełniają warunki (Al), (A2) i (A) oraz

(BI) (rx , sy ) -  r(x,sy)  -  s(rx,y) + rs(x,y) -  (s -  s2)[r] =  0,

(B2) (r sx , y ) -  r(x,sy) -  s3{rx,y) + rs3(x,y) + (s2 -  s3)[/•] =  0,

(B3) 3(rx,y) -  3r(x,y) + (1 -  r)(rx,x,y)  + [r] =  0,

gdzie [r] =  (r x , x , y ) + (x,ry,r)  -  r2((x,x,y) + (x,y,y))  -  3(r -  r2)(x,y).

W tym przypadku po raz pierwszy pojawiają się elementy [r] o skomplikowanej



postaci, ale o bardzo dobrych własnościach, analogicznych do własności elementów 

t 2 — r pierścienia R. Podaje je następujące

T w i e r d z e n i e  1.2 ([7], Wniosek 5.1.4).

Dla dowolnych r,s  6 R  mamy

(1) [r + s] =  [r] + [s] + rs[2],

(2) [rs] =  r[s] +  s2[r],

(3) ( r 2 -  r)[a] =  ( s2 -  fl)[r],

(4) 2 [r] =  ( r 2 -  r )[2], [2r] =  (2 r2 -  r ) [2],

(5) [r] =  [1 — r], [0] =  [1] =  0, [2] =  [ -1 ] .

1.2. Podzielone potęgi

Niech E  będzie pierścieniem przemiennym z 1. Jeśli X jest R-modułem, to 

algebrą z podzielonymi potęgami na module X (zobacz [9]) nazywamy R-algebrę 

przemienną generowaną przez elementy x<m), x G X,  m  =  0,1,2... z relacjami

(1) =  1,

(2) (rx)(m) =  rmx^m\

(3) x(m)y(n) =  (m, n)x^m+n\

(4) (x  +  y ) M  =  Z i + j = m X {i¥ j)

dla x ,y  £ X ,r  £ R, gdzie (m,n) =  (m+n) =  (m+n) .

Algebrę tę oznaczamy r/ t (X)  lub po prostu T(Jf).

Przyjmując degx(m) =  m otrzymujemy naturalną gradację r(X ). Składową stopnia 

m  oznaczamy r m(X) i nazywamy m-tą podzieloną potęgą modułu X.  Jest ona gene­

rowana jako i l—moduł przez elementy x^l)...xnn) d la x i , . . .  xn G X,  i i + . . .+in = m, 

z relacjami pochodzącymi z wypisanych powyżej. W  szczególności r ° ( X )  =  R, 

r 1^ )  =  X  oraz rm(R) = R ■ l(m) «  R.



Zarówno T, jak i Tm są funktorami. Jeśli /  : X  — > Y  jest homomorfizmem 

R —modułów, to T(f)  : T(A') — > T(F), T ( f ) ( x ^ )  =  /(x )(m) jest homomorfi- 

zmem algebr, a dla każdego m  =  0 ,1 ,2 ,. . .  mamy homomorfizm R —modułów 

r m(/)  : r m(X) — ¥ r m(y) określony na generatorach wzorem

r  m(/)(* ii,)®^a). ..  x£n)) = • • • /(*„)<*»>.

Formy stopnia m na X  w sensie N. Roby ([9]) są reprezentowane przez Tm(X). Ozna­

cza to, że moduł form stopnia m  z X  do Y  jest izomorficzny z HomR(Tm(X) ,Y) ,  

a w szczególności moduł form stopnia m  z pierścienia ii[X i,. . . ,  X n] do R  jest izo­

morficzny z HomR(Tm(Rn), R). Warto zauważyć, że przyporządkowanie X  — > Tm(X),  

x  i-> x(m) jest regularnym m —odwzorowaniem, którego A:—ty defekt () jest określony

wzorem (x i , . . . ,  Xk) = ^  • ■ ■ x ^ k\  gdzie (i) oznacza ciąg takich liczb całkowi­
to

tych dodatnich i i , . . . ,  ifc, że i\ +...-Hk =  ra. Na tych faktach opiera się wykorzystanie 

funktora Tm do znajdowania równości spełnianych przez odwzorowania stopnia m.

1.3. P ro ced u ra  poszukiw ania relacji

m —odwzorowania (odpowiednio regularne m —odwzorowania) tworzą klasę rów­

nościowo definiowalną Applm (odpowiednio Appl™), która jest oczywiście ścisła. 

Klasę m —odwzorowań (odpowiednio regularnych m —odwzorowań) nad R  będziemy 

oznaczali przez Appl^  (odpowiednio Appl^). Niech A m(X) = A ^ ( X )  (odpowiednio 

A m(X) = A ^ ( X ) )  będzie il-modułem generowanym przez elementy óm(x),x G X  

(odpowiednio 6m(x),x £ X)  z relacjami oznaczającymi, że Sm : X  — > A m(X)  (od­

powiednio 6™ : X  — > A™(X)) jest m-odwzorowaniem (odpowiednio regularnym 

m —odwzorowaniem). W przypadku ó™ chodzi o relacje

(Al) ó™ (rx ) = rTnSm(x) dla r G R, x  G X ,

(A2) A771? "  : X m — >—> A™(X) jest odwzorowaniem m-liniowym,



(A) (rx, sy , - ) -  r(x, s y , - ) -  s(rx, y, - )  +  rs(x,  y, - )  =  0, 

gdzie () =  A™-1^™.

Z definicji tej wynika, że regularne m-odwzorowanie /  na X  przedstawia się jed­

noznacznie w postaci f  = f  o <T”, gdzie /  jest fl-homomorfizmem. Oznacza to, że 

diagram

■/

F

jest przemienny, a więc /  jest określony na generatorach wzorem /  ^(f™(x)^ =  /(x ). 

Z własności uniwersalności otrzymujemy, że A ^  jest funktorem, przy czym jeśli 

/  : X  — > Y  jest homomorfizmem modułów, to A™(/) : A m(X)  — ► A ^ V ),

s m( / ) ( T ( x ) ) = r  (/(*)).

Stosując własność uniwersalności do regularnego m —odwzorowania X  — > Tm(X),  

x  i-> x(m), opisanego na końcu paragrafu 1.2, otrzymujemy

T w i e r d z e n ie  1.3 ([5], Corollary 2.2).

Określony jest następujący homomorńzm:

TT =  JT iX )  : Am(X) — >• r m(X), / T ^ x ) )  =  x(m\

Ponadto TTl((AkSm)(x i , . . .  , ik))  = ■ ■ - x k̂k\  gdzie (i) oznacza ciąg takich
(0

liczb całkowitych dodatnich i \ , . . . ,  z*., że i \  + ... + i* =  m.

Z podanych wzorów, że /i™ wyznacza przekształcenie funktorów, tzn. jeśli 

/  : X  — > Y  jest homomorfizmem modułów, to przemienny jest diagram



Niech { x i,. . .  ,xjt} będzie bazą standardową modułu R k, k = 1 ,2 ,. . .  Określamy

r m,fc =  =  = m i . > c  r

A m'h = A m'k(R) = R{(r1x 1, . . . ,rkx ky,r1, . . . r k G R}  C  A ^i?* ), 

gdzie () =  A kSm oraz (i) oznacza ciąg takich liczb całkowitych dodatnich i i , . . . , i k, 

że ii + ... + ik — m. Ponadto określamy

JT 'k = TT\^n,k{R) : ^ ( R )  - +  r ™’k(R),

J^^i r iXi^ . ^rkXk)  =  £ ( n z i ) (il). . .  (rfcxfc)(<fc) =  £ > 1* . . .  r^ x [n ) . . .  x£fc).
(i) (i)

W dalszej części pracy będziemy często pisali ( ( ń , . . . ,  ik)) zamiast x ^ . . .  x ^ k\

Pokazuje się, że Tm,k(R) jest modułem wolnym o bazie ((ii, . . . ,  ik)) =  Xj*1̂ . . .  x ^ k\

> 1 , *1 + . . .  + i* =  m.

Ponieważ Am jest funktorem, możemy podstawić dowolne elementy za elementy bazy 

x i ,..., xjt, otrzymując ii-homomorfizm na A771 (Rk). W szczególności dowolna permu- 

tacja elementów x\, ...,xk daje nam automorfizm modułu Arn(Rk), a po ogranicze­

niu automorfizm A m’k(R). Innym przykładem jest np. podstawienie xi za x k, które 

daje homomorfizm na A m'k(R) — > ~Am'k 1(R), (r\X\ , . . .  ,rkXk) >-» ( n x i , . . .  ,rkX\). 

Rzeczywiście, obrazem elementu ( r ix i , . . .  , T’fcXfc) jest element 

((n+nfc)xi,r2x2 . . .  , 7̂ - ^ - 1) - ( 7-1 1 1 ,^ 1 2  .. ■ , r fc_iXfc_i)-(7-fcxi,7-2X2 .. ■ , rk- iXfc_i), 

który należy do A™’* 1(R).

Pokazuje się ([3]), że równości dla klasy Horrid składają się z tzw. fc-równości (dla 

fc > 1), które możemy wyrazić przy pomocy wartości defektu Akf .  Otrzymujemy je 

znajdując generatory jądra Ker . W celu otrzymania równości z generatorów

wystarczy ([3]) następująco zmienić znaczenie symboli {r\X\, ...,TkXk)'. () oznacza 

Akf  zamiast A k'6m oraz xi, ...,Xk są dowolnymi elementami z dziedziny / .  Mówimy 

wtedy, że są to A;—równości dla klasy H o m Jeśli są one ścisłe, to mówimy, że są 

to k —równości dla klasy Homm.



Jak wynika z [3], homomorfizm h™’1* jest izomorfizmem dla k = l i k > m  — 1. 

To znaczy, że (Al), (A2) i (A) tworzą ścisły system /c-równości klasy Horri^ dla 

tych k. System fc-równości klasy Horn^  jest więc ścisły dla k =  1 oraz k > m  — 1. 

Poza tym przypadkiem system ten jest ścisły jedynie dla (m, k) = (4,2), (5,3) i (5,2) 

(patrz [3], Theorem 6.2). System taki został znaleziony dla (4,2) w pracy [6] oraz 

(5,3) w pracy [2]. Wypracowane w przypadku (4,2) i (5,3) metody nie nadają się do 

zastosowania w ostatnim niezbadanym przypadku (5,2). W związku z tym w niniej­

szej pracy za pomocą innej metody znajdziemy takie systemy zarówno dla (5,2), jak 

i (5,3). Osiągniemy to poprzez zbadanie K er oraz K er ^  ■ Generatory

jądra K er  zostały znalezione w rozdziale trzecim, natomiast generatory jądra

K er (h5’ j zostały znalezione w rozdziale czwartym.



ROZDZIAł 2

Ideały I n ( R )

Mówimy, że ideał I  pieścienia przemiennego z jedynką R  ma indeks n  < oo, o ile 

| R / 1 1 = n. A zatem w pierścieniu R  wyróżniamy klasę ideałów skończonego indeksu 

id(R)  =  {/ c  R; \R/I\ < oo}. Niech max(R)  oznacza zbiór ideałów maksymalnych 

skończonego indeksu.

Podstawową rolę w dalszych rozważaniach będą odgrywały zdefiniowane w [4] ideały

In(R) =  (rn -  7 r  G R) = (rns -  rsn; r ,s  G R).

Równość obu postaci wynika z tego, że rns — rsn = s(rn — r) — r(sn — s). Przy­

pomnijmy podstawowe własności tych ideałów udowodnione w [4]. Ideał In(R) jest 

zachowany przy przejściu do pierścienia ułamków i pierścienia ilorazowego. Inaczej 

mówiąc, mamy następujący

L e m a t  2.1 ([4], Lem m a 5.1).

In(Rs)  = In(R)S, In(R/J)  = (/„(«) + J)/J.

Poza tym mamy następującą charakteryzację:

T w i e r d z e n i e  2.1 ([4], Proposition 5.5).

In(R) =  D{M G max(R); \R/M\ — l |n  -  1}.

W dalszej części pracy szczególne znaczenie będą miały ideały I (R)  = h{R),  

h( R) ,  Ia{R). Z powyższego twierdzenia mamy

14



W n i o s e k  2.1.

Zachodzą następujące równości:

I 2 ( R )  = f | {M € max(R)-, \R/M\ = 2} ,

I 3 ( R )  =  f | { M  G m ax{R ); \R/M\ =  2 lub 3},

I 4 ( R ) =  f | { M  e  m ax(i? ) ;  | i ? /M | =  2 iub 4} .

W n i o s e k  2.2.

Jeżeli R jest pierścieniem lokalnym o ideale maksymalnym M , to zachodzi jeden 

z dwóch warunków:

(1) In(R) = M, gdy \R/M\ -  l |n  -  1 

lub

(2) In(R) =  R, gdy \R/M\ -  1 /n  -  1.

W  szczególności

(a) / 2 (f l)  =  M<*> | i ? /M |  =  2,

(b) / 2( i i )  =  M  | i ? /M |  =  2 Jub 3,

(c) I2(R) = M  \R/M\  =  2 lub 4.

2.1. Relacje pom iędzy elem entam i r2 — r

G łów n ym  w ynikiem  pracy [8] jes t  następujące

T w i e r d z e n i e  2.2.

Niech C(R) będzie R-modulem generowanym przez elementy 

[r],r € R, z relacjami

(1) [r + s] =  [r] +  [s] +  rs[2], r,s  £ R,

(2) [rs] =  r2[s] + s[r], r,s  G R.



Wtedy istnieje R-izomorfizm P : C(R)  — > I(R),  ta.ki że 

P([t-]) =  r2 — r dla r G R.

Inaczej mówiąc, ideał I(R)  =  /2(R) jest generowany przez elementy [r] =  r2 — r 

z relacjami (1) i (2). W dalszych rozważaniach będzimy potrzebować analogicz­

nych twierdzeń dla elementów r3 — r oraz r4 — r. W tym celu uogólnimy powyższe 

twierdzenie dla wykładników będących potęgami dwójki, a następnie udowodnimy 

analogiczne twierdzenie dla elementów r3 — r.

2.2. Relacje pom iędzy elem entam i rn — r, 

gdzie n =  2l, l =  1 ,2 ,3 ,. ..

Niech n będzie ustaloną liczbą postaci n — 2l, l = 1 ,2 ,. . .  Udowodnimy, że 

relacje generujące pomiędzy elementami [r] =  rn — r pierścienia przemiennego R  są 

następujące:

(1) [r + s] = [r] + [s} + p(r, s ) [ - l ] ,  r,s £ R,

gdzie p(r, s) = £  \  ( l ) r n~ksk, 
fe=i

(2) [rs] =  r"[s] + s[r], r, s G R.

Należy zwrócić uwagę, że liczby ^ (£) w powyższej sumie są całkowite, gdyż n = 2l 

oraz 0 < k < n.

Niech ii,i2, ■ • ■ ,ik oznaczają nieujemne liczby całkowite i niech ( i i ,*2, ■ ■ ■ ,ik) ozna­

cza uogólniony symbol Newtona,

(ń + *2 +  • • • +  *fc)!
{i 1, *2, = ---- TTT1------Ti-----•*i!z2! • • •, Ik-

Wprost z definicji wynika następujący



W n i o s e k  2.3.

Dla dowolnych • ,ik>*fc+i 6 N mamy:

(1) (*11*2)•• ■ i *fei 0) — (^1> 2̂> • • ■ > *fc)i

(2) (*i,i2, • • • ,*jt,*fc+i) =  (*i +  *2 + • ■ • +  *fc,*fc+i)(*ii*2, ■ • - , h ) ,

(3) ( i u i 2 , . . . , i k) = ( ^ + - - -+ ¾ )  ’

(4) jeśli *i + *2 + .. .  + i* = 2l, oraz co najmniej dwa z indeksów ij są niezerowe, 

to 5 (»i, *2j • • • ,*fe) e Z.

Niech teraz p(ri , r2, . . . ,  rk) = \  ( ń , *2, • • • , *fc)r ilr22 • •■»**, gdzie oznacza
i i

sumę po zbiorze I  tych układów indeksów nieujemnych liczb całkowitych

®i j *2» - • • że i i + i 2 + . . .+śfc =  n oraz co najmniej dwa z indeksów ij są niezerowe.

W szczególności przy k = 2 otrzymujemy poprzednią wartość p(r, s) =
T l— 1

~  5Z 5 (źc) rTl~ksk- W dalszej części wykorzystamy uogólniony wzór Newtona 
k= 1

(n  + r 2 + . . .  r fe)ro =  ^ 2  ( ń , i 2 , --- , ik)r\1rt22 . . . r l k, (2.1)
ii+...+tfc=Tn

gdzie jak poprzednio zakładamy, że ii, »2, ■ ■ ■ . oznaczają nieujemne liczby całko­

wite. Z Wniosku 2.3 oraz wzoru (2.1) otrzymujemy następujący

L e m a t  2.2.

Dla dowolnych r\ , r2, . . . ,  rk, rk+\ G R mamy

p ( n , r 2, . .. ,rk,rk+1) = p(n  +  r2 +  . . .  + rk ,rk+i) +  p ( n , r 2, . •. , r fe).

D o w ó d .

Z definicji mamy

p ( n + r 2 +  . . . + r fc, 7-fc+i) =  £  5 (^11^2)(^1 +  r 2 +  . . .  + Tk)3lr^+V
ii +32=n 
h J 2 > °

Na mocy wzoru (2.1) wyrażenie to jest równe



ń+>2= "ii+ i2+...+i*=ji K K+i 11 .J2>°

M + - + i f c + l = n  K  AC+I

■ l + .- .+ i fc> 0 ,i fc+ , > 0

= £  S^l,---,**:,*^!)?'}1̂ 2 - . . . - ^ ! 1.
ń  + -+ ifc + l= n  “ K+1

* 1 +  ■ + * /t > ° .* fc + l> 0

Otrzymaliśmy więc sumę po wszystkich takich układach indeksów i i , . . . ,  ik+1, wśród 

których przynajmniej dwa są większe od zera, przy czym jednym z nich jest ik+i- 

Wobec tego ostatnie wyrażenie, dzięki Wnioskowi 2.3 (1), jest to różnicą 

p(r i , r 2, • • • ,^fc,rfc+i) — p(r\ , r2, . . .  , r*;), co dowodzi tezy.

2 .2 .1 . C-funkcje.

D e f in i c j a  2.1.

C-funkcją nad R  będziemy nazywać taką funkcję f  : R  — > M , gdzie M  jest 

R-modułem, która spełnia następujące warunki:

(1) f ( r  + s) = f (r)  + f ( s ) + p ( r , s ) f ( - 1), r , s e R ,

(2) f (rs)  =  rnf(s)  + af(r), r , s €  R,
Tl— 1

gdzie p(r,s) =  £  5 (fc)7-" - *5*- 
fc=i

L e m a t  2.3.

Jeśli f  jest C —funkcją, to dla dowolnych r ,s  £ R  mamy

(3) (rn -  r)f(s)  =  (s71 -  s)f(r),

(4) 2 / ( r )  =  (rn - r ) / ( —1),

(5) /(0) =  /(1) =  0,

(6) jeżeli sjest elementem odwacalnym, to / ( s -1) =  —s~n~1f(s).



D o w ó d .

Relację (3) otrzymujemy odejmując stronami dwie symetryczne wersje (2). 

Relację (4) otrzymujemy z (3), przyjmując s =  — 1 i korzystając z tego, że n jest 

parzyste. Równości /(0) =  /(1) =  0 otrzymujemy kładąc w (2) r = s = 0 lub 1. 

Niech s będzie odwracalne. Ponieważ dzięki (2) mamy 0 =  /(1) =  f ( s  • s -1 ) =

=  snf ( s ~ 1) + s~1f(s),  więc sn/ ( s -1 ) =  — s~1f(s).  Po pomnożeniu przez s~n otrzy­

mujemy / ( s -1) =  - s _n_1/(s). □

Uogólnieniem (1) jest następujący 

L e m a t  2.4.

Dla dowolnych T\, r2, ■ ■ ■, rk £ R, k > 2 zachodzi następujący wzór:

(
k \  k 
^ Z r i ) =  + P ( r i , r 2,. , rk) f { - l ) .

i = i  /  i= i

D o w ó d .

Stosujemy indukcję względem k.

Na mocy warunku (1) wzór zachodzi dla k = 2.

Jeśli wzór zachodzi dla pewnego k > 2, to

/  (  E  =  /  ( e  ri + rk+ij  = f  ^ E  + f {rk+1) + p n ,  r fc+i^  = 
k

= E  f ( ri) + p(n ,  7-2, . . . ,  r fc) / ( - 1) + / ( r fc+i) +  p ( r i , . . . ,  rk, r fc+i ) / ( - l )  =
1= 1
fc+1

=  E / ( n ) + p ( n , r 2, . . . , r fc+i ) / ( - l )
1 =  1

dzięki Lematowi 2.2. □



P r z y k ł a d  2.1.

Określamy f  : R  — > R wzorem f{r)  =  rn — r. Wówczas /  jest C —funkcją.

Pokażemy, że elementy rn — r spełniają relacje (1)-(2).

(1) Ponieważ (—1)" — (—1) =  2, więc ze wzoru dwumianowego Newtona mamy:

(r +  s)n — (r + s) — (rn — r) -  (sn — s) =  ^2 (£) rn~ksk — rn — sn =
k = o

= 2 E i ( I )  = 2P(r, 5) = p(r, -)/(-1),
k = \

(2) ( r s ) n — rs  — rn (s" — s) — s ( r n — r) =  0.

2.2.2. F unktor C.

D e f i n i c j a  2.2.

Niech C(/i) = C^n\R )  będzie R-modułem generowanym przez elementy 

[r], r G R, z relacjami:

(1) [r + s] = [r] + [s] + p(r, s )[- l] , r,s  € R,

(2) [rs] =  rn[s] -I- s[r], r,s £ R.

Dokładniej, C(R) = F(R) /K(R) ,  gdzie F(R)  jest i?—modułem wolnym o bazie 

{r; r  G R},  a K(R)  jest podmodułem generowanym przez elementy

(1) F + ś  — f  -  ś  — p(r, s ) - l ,  r,s £ R,

(2) rs — rns -  sr, r,s £ R

i przyjmujemy [r] =  t + K(R).  Odwzorowanie c : R  — > C(R)  określone wzo­

rem c(r) = [r] jest oczywiście C —funkcją, którą będziemy nazywać kanoniczną 

C —funkcją. Zauważmy, że C(R)  jest obiektem uniwersalnym ze względu na C —funkcje, 

co oznacza, że dowolna C-funkcja może być jednoznacznie przedstawiona jako zło­

żenie kanonicznej C-funkcji c : R  — > C(R),  c(r) = [r], oraz .R-homomorfizmu 

określonego na C(R).  Dokładniej, mamy następujące



T w i e r d z e n i e  2.3.

Niech f  : R  — > M, gdzie M  jest R —modułem, będzie C —funkcją. Wówczas 

istnieje dokładnie jeden homomorfizm R —modułów f  : C(R)  — > M,  taki że diagram

R  C(R)

1 \ \  v 
M

jest przemienny. Jest on określony na generatorach wzorem f  ([r]) =  f (r) .

D o w ó d .

Z przemienności wynika wzór, a więc także jedyność. Wykażemy istnienie / .  

Uzupełnimy diagram

R — ^  F(R) C{R)

w którym i : R  — > F(R)  jest określone wzorem i(r) = f , natomiast v : F{R)  — > C{R)  

jest homomorfizmem naturalnym. Oczywiście /  przedłuża się do homomorfizmu g na 

F(R),  określonego na elementach bazy wzorem g(r) = f{r),  a na dowolnym elemen­

cie wzorem g (13 a»*7) =  ai f ( ri)- Ponieważ /  jest C —funkcją, więc wszystkie ge­

neratory modułu K(R)  przechodzą poprzez g w zero. Istnieje więc homomorfizm in­

dukowany /  : C(R)  — > M  określony na generatorach wzorem /  ([r]) — gir) = f(r) ,  

czyli taki, że rozważany diagram jest przemienny. □

Niech i : R  — > R'  będzie homomorfizmem pierścieni przemiennych z jedynką. 

Rozważmy diagram

R C(R)

i 1 C(i)

R' C{R')



Ponieważ C(R') jest R'—modułem, więc jest również i i—modułem przez cofnięcie 

względem i, z działaniem mnożenia określonym wzorem rm  =  i(r)m.  Zauważmy, że 

złożenie d o i  jest C —funkcją nad R. Istotnie,

{d o i)(r + s) = d(i(r + s)) = d{i(r) + i(s)) =

=  C' ( * M )  +  c '( i (s ) )  +  p ( i ( r ) , i ( s ) ) d ( i ( - l ) )  =

= (d o i)(r) + (do i)(s) + p(i(r), i ( s ) )d( - l ) ,

(d o i)(rs) = d (i(rs)) = d (i(r)i(s)) =  i(r)nd (i(s)) + i (s)d(i(r)) =

=  rn(d o i)(s) + s(d o i)(r).

Zatem homomorfizm pierścieni z jedynką i : R  — > R'  indukuje homomorfizm 

i i —modułów C(i) : C(R)  — > C(R')  określony na generatorach wzorem 

C(*)([r ]) =  [*(̂ )]- Jest to homomorfizm modułów nad i, co oznacza, że 

C(i)(x + y) = C(i){x) + C(i)(y) oraz C{i){rx) =  i(r)C(i)(x).

Określamy kategorię par w następujący sposób: obiektami są pary (R , M ), gdzie 

R  jest pieścieniem przemiennym z jedynką, a M  jest i i—modułem, natomiast od­

wzorowaniami są pary gdzie i : R  — > R! jest homomorfizmem pierścieni 

z jedynką, natomiast j  : M  — > M'  jest homomorfizmem modułów nad i. Ponieważ 

oczywiście C(ji) = C(j)C{i) oraz C(idp) = idc(R), więc C  jest funktorem z ka­

tegorii pierścieni przemiennych z jedynką do kategorii par, przyporządkowującym 

pierścieniowi R  parę (R,C(R)),  a homomorfizmowi i : R  — > R'  parę (i,C(i)).

2.2.3. Przem ienność C z lokalizacjam i. Pokażemy, że funktor C komutuje 

z lokalizacjami. Niech S  będzie zbiorem multiplikatywnym w R  i niech i : R  — ► Rs  

oraz i : M  — > Ms  będą homomorfizmami kanonicznymi, określonymi wzorami 

i{r) = f , i(m) =  f .



T w i e r d z e n i e  2.4.

Dla dowolnej C-funkcji f  : R  — > M  istnieje jedyna C-funkcja 

f s  ■ R s  — * M s spełniająca warunek fs{i(r)) =  i(f (r)) dla r e R, 

tzn. uzupełniająca diagram

R — ^ > R S
I

/  ' fs
V  'i'

M  —-> Ms
do diagramu przemiennego. Jest ona dana wzorem 

lub równoważnie

,  r r \  s f ( r ) - r f ( s )  f n ^
h  W  ------ ------------ ■ (2'3)

Zachodzi również następująca równość:

D o w ó d .

Zauważmy najpierw, że prawe strony wzorów (2.2) i (2.3) są identyczne dla 

dowolnej C —funkcji / .  Ich równość wynika stąd, że

/(O  _  ( T \ n I M  =  ( a " -a ) /( r ) - ( rn -r) jf(a )+ s /(r)-r /(3 )  s f ( r ) -r f (s )  
a \ s )  s sn+l s^rn

dzięki Lematowi 2.3 (3).

Załóżmy, że istnieje uzupełnienie powyższego diagramu. Warunek przemienności 

oznacza, że f s  (y) =  dla r € R. Niech s € S. Jeżeli f s  jest C-funkcją, to 

^  =  h  (J ) =  f s  ( H ) =  (1 )" ! s ( { )  + { f s  ( i )  =

=  ( ; r ?  +  f / s 0 ,

skąd wynika wzór (2.2). To dowodzi jedyności fs-

Określamy teraz f s  wzorem (2.2). Żeby udowodnić, że f s  jest poprawnie określona,



zauważmy najpierw, że dzięki (2) mamy

f ( Tt) _  ( r t \ n f(st)  _  r nf( t )+ t f ( r )  _  / r \ «  3n f ( t ) + t f ( s )  _  / £ r )  _  / r \ n  / ( a )  
st \ s t J s t  st V a / st j  V s / s '

Oznacza to, że po prawej stronie wzoru (2.2) orzymujemy to samo, jeżeli zastąpimy 

r  przez rt i s przez st dla dowolnego t £ S.

Niech teraz  ̂ =  Wówczas istnieje taicie t G S, że rs't  =  r'st. Ale  ̂

oraz 7̂ =  • Ponieważ liczniki i mianowniki po prawych stronach są odpowiednio 

równe, więc z poprzedniego rachunku wynika, że prawe strony wzoru (2 .2) dla  ̂ i ^  

są identyczne.

Dla dowodu wzoru (2.4) zauważmy, że /(0) =  0, więc na mocy wzoru (2.3) mamy

( 4 ¾ )  ( { , } ) = f s  m  -  / s « )  -  f s  (f  > =
_  t f ( r + a ) - ( r + s ) f ( t )  _  t f ( r ) - r f ( t )  _  t f ( s ) - a f ( t )  _

( n + 1  ^n +1  fn + 1

=  « ( / ( r + « ) - / ( r ) - / W )  _  ( A 2f)(r,s)  
t"+ i — tn

Pozostaje udowodnić warunki (1) i (2) dla / 5 . Zauważmy, że dzięki przemienności 

diagramu mamy f s ( —1 ) =  f s ( ^ )  =  a z drugiej strony

p(f,f) = e  } (Dar-*®* = “p-
k = 1

Niech |  i  ̂ będą dowolnymi elementami R§.

(1) Korzystając ze wzoru (2.4) otrzymujemy

fs (! + $)-  fs (f) -  fs (5) = (A2fs)(l, !) =
= =  P f rW -1) = p ( f , | ) / s ( - l ) .

(2) Korzystając ze wzoru (2.3) otrzymujemy

_  s2(f(a b )-a ’'f (b )-8 n- 1b f(a ))-ab (/(a ‘2) - a n- 1s f ( a ) - a nf(s ))  _



_ a2(b-bsn l)/(a)-a6(s-san 1)f(s) _ bs((s-sn )f(a)—(o—on)/(a)) _ n— s2n+'2 — s'2n+2 — u

dzięki (2) i (3) dla / .  To kończy dowód. □

T w i e r d z e n ie  2.5.

Istnieje i?s-izomorfizm C(R)s  ~  C(Rs),  taki że ^  £ [y].

D o w ó d .

Stosując Twierdzenie 2.4 do kanonicznej C-funkcji c : R  — ► C(R),  c(r) =  [r], 

otrzymujemy C-funkcję nad Rs  określoną następująco: 

cs -.Rs ^ C ( R ) s , c s  ( ; )  =  “ - ( 5 )”

Z Twierdzenia 2.3 mamy i?s-homomorfizm g : C(Rs)  — > C(R)s,  

określony wzorem g ([^]) =  cs(^) =  ^  — (^)n Z drugiej strony mamy homo­

morfizm C{i) : C(R)  — > C(Rs)  nad i : R  — > Rs,  taki, że C(i)([r]) =  [y], który 

daje nam dzięki uniwersalności lokalizacji ife-homomorfizm h : C(R)s  — > C(Rs),  

taki że /1 (¾1) =  i[f].

Zauważmy, że h = g-1 . Istotnie,

J (ft (“ )) = Ofl) = i (¥  -  (f)“ ¥ )  = ¥
dzięki (5). Z drugiej strony, dzięki (7) i (2) obliczamy, że

Stąd h jest izomorfizmem. □

H omomorfizm P. Przypomnimy, że z Przykładu 2.1 mamy C —odwzorowanie 

R  określone wzorem f ( r )  — rn — r. Zatem dzięki uniwersalności C(R)  

homomorfizm P  =  P(R)  : C{R)  — > R  uzupełniający diagram

R  — % C(R)

2.2.4.

f  : R ^  

istnieje R-



Jest on określony na generatorach wzorem P([r]) =  rn — r i jego obrazem jest In{R). 

Homomorfizmy P(R)  wyznaczają przekształcenie funktorów, tzn. dla dowolnego 

homomorfizmu pierścieni i : R  — > R'  następujący diagram

C(R) R

C(i) i

C(R!) R!

jest przemienny. Rzeczywiście,

P{R')  (C(i)([r])) = P (# )([i(r)]) =  (i(r))" -  i(r) =  i(r"  -  r) =  *(P(«)[r]). 

Pokażemy, że P  jest monomorfizmem dla dowolnego pierścienia R.

L e m a t  2.5.

Dla dowolnego zbioru multiplikatywnego S  pierścienia przemiennego R  mamy 

następujący diagram przemienny:

C(R)S 

f

C(RS) P(Rs) Rs

gdzie f  jest izomor&zmem z Twierdzenia 2.5. Zatem P(R)s  jest monom or fi zm em 

wtedy i tylko wtedy, gdy P(Rs)  jest monomorńzmem.

D o w ó d .

p (R s ) ( /  ( ? ) )  =  P(Rs ) ( ł l f]) =  \  ( (f)n -  f ) =  ^  =  =  P(R)s  (¾1)

□

Zauważmy, że

[r2] =  [r ■ r] = rn\r\ + r[r] = (rn +  r)[r].

Podstawiając r2k za r otrzymujemy następujący wzór rekurencyjny: 

V2fc+1] = ( ( r 2fc) “ + r-2fc) [r2*].

W szczególności otrzymujemy



W n i o s e k  2.4.

Niech r £ R. Wtedy

r l  =  p ]  =  ( p - . ) "  + ( ( r * - f  + r * - ' ) . . .  (r« + r) M.

Rozważmy jądro i?-homomorfizmu P  : C(R)  — > R, P  ([r]) =  rn — r  dla r £ R.

L e m a t  2.6.

In(R)Ker(P) = 0.

D o w ó d .

Niech x  =  E i at[r»] £ Ker(P),  to jest E j  ai (rP ~ ri) = 0. Wtedy dzięki Lema­

towi 2.3 (3) otrzymujemy, że

(rn -  r )x = E j  < r n -  r)[rj = E j  Oi(r? -  rj)[r] =  0 [r] =  0 . □

Przypomnijmy, że na mocy Lematu 2.4 dla dowolnych n , r 2, . . .  , rk £ R, k > 2 

zachodzi następujący wzór:

k

Lt=l
E r< (2.5)

t=i

L e m a t  2.7.

Niech z  — E  £ Ker(P),  gdzie jeden z r* jest równy — 1. Jeżeli wszystkie 
1=1

k
Oj należą do In{R)m dla pewnego m  > 0, to x  =  E  bi[r*], gdzie wszystkie bi należą

i= i
do In(R)nm+ \

D o w ó d .
k k

Z założenia E  tur™ =  E  ajT{. Na mocy wzoru (2.5) otrzymujemy 
i=l i= 1

E airi =  + p [ - i ]  =  E a i [n]  +  E ri l ai] + p [ - i ] ,
.1=1 J i= 1 1=1 1=1

E airi = E kr?] + g[-i] = E <*!M  + E r?M + ¢[-1].
,t=i j  t= i i= i  i= i

gdzie



p  =  p ( a m , . . .  , a k r k ) =  E  § ( * 1 , ^ 2 , • • • ,  u ) ( a m ) n  ( a 2r 2 ) 12 . . .  (a k r k ) lk =
1

=  E  \  (*1 » *2 > • • • , i k ) a ll a 2 ■ ■ ■ a k r l  r 2 ■■■ Tk

q = p { a i r ^ , . . . , a k r l )  =  E  s ( * i , * 2 , • • • ,  *fc) ( a i r ? ) M ( a 2r %)12 . . .  { a k r % ) lk =

= .......W - o j  W  nr T  • ■ ■ )",
/

przy czym £  oznacza sumę po zbiorze /  tych układów indeksów nieujemnych liczb 
/

całkowitych i \ , . .. , ik, że ii + . . .  +  ik = n oraz co najmniej dwa z indeksów ij są

niezerowe. Ponieważ
k k k k

+ £ > ,"  h i  +  =  X > N  +  £ > ? [ * ]  + p M ]>  
i = l  i = l  i = 1 i = l

więc otrzymujemy

x =  E  Oifa] =  E a"K"] + (9 -  p )[-i]  =
1=1 i

= E  ai ( ( r i /_1) + Ti l l) ( ( ri ,_2)  +  rf  ~2)  ■ ■ ■ (ri +  r») M  +  (9 -  J>)[—!]»

na mocy Wniosku 2.4.

Ponieważ at G In(R)m, więc a ?  G In(R)nm oraz r "  + r* =  ( - r j ) n  -  ( - ^ )  G In(R), 

bo n jest parzyste. Stąd

°? ( O f 1) " + - f ' )  ( ( > f ) n + ’■ r -2)  • • • « • + r<>€ ^ ( « ) ”m+1'

Zauważmy również, że a^aJ,2 G In(R)nm, bo aj G In(R)m oraz ii +  . . ,+ ik = n,

a także ( r ^ r ^  .. .  t 1£  j  — r ^ r 1̂ . . .  r]f G /„(i?). Stąd

9 - P  =  E i ( » i .» 2 .......... . . . 4 * ( ( r j 1^ 2 . . . r * ) "  -  r j ' r f  . . . r * * )  G 7n ( i ? r m + 1 .

To kończy dowód. □

Z Lematu 2.7 otrzymujemy następujący 

W n io s e k  2.5.
k

Niech x  = a,i[ri] G Ker(P) i niech M  oznacza podmoduł modułu C (R )
i= 1

generowany przez [n] , . . . ,  [rfe] i [-1], Wtedy x G f l m = o  In(R)mM.



D o w ó d .

Teza wynika z tego, że nm  +  1 > m  dla m  > 0, a podmoduły In (R)mM  tworzą 

ciąg zstępujący. □

2.2.5. Zasadnicze tw ierdzenie. Głównym wynikiem tego paragrafu jest na­

stępujące

T w i e r d z e n i e  2.6.

Niech n =  2l, l = 1 ,2, . . .  oraz C (R ) =  C^n\R )  będzie R-modulem generowa­

nym przez elementy [r],r 6  R, z relacjami:

(1) [r + s] = [r] + [s] +  p(r, «)[—1], r , s €  R,

(2) [rs] =  /-"[s] + s[r], r,s  G R.

W tedy istnieje R-izomorńzm P  : C(R)  — > /„(/?), taki że P([r]) =  r"  — r  dla r £ R.

D o w ó d .

Rozważmy następujące przypadki:

P rzy p ad ek  lokalny noetherow ski.

Załóżmy, że R  jest pierścieniem lokalnym i noetherowskim. Z Wniosku 2.2 wynika, 

że mamy dwa przypadki:

p rzypadek  1 : In(R) =  R ■ Wtedy dzięki Lematowi 2.6 otrzymujemy, że Ker(P)  — 0. 

p rzy p ad ek  2: In(R) jest ideałem maksymalnym pierścienia R. Niech x  G Ker(P).  

Określamy podmoduł M  jak we Wniosku 2.5 i zauważamy, że jest on modułem 

skończenie generowanym nad lokalnym pierścieniem noetherowskim R.  Wtedy prze­

krój we wniosku jest zerowy dzięki twierdzeniu Krulla o przekroju i w konsekwencji 

x  =  0. To dowodzi, że Ker(P) = 0.



Przypadek  noetherowski.

Załóżmy, że pierścień R  jest noetherowski. Wtedy wszystkie jego lokalizacje wzglę­

dem ideałów pierwszych są lokalne i noetherowskie. Z poprzedniego przypadku i z 

Lematu 2.5 mamy, że P  jest takim homomorfizmem, który po lokalizacji względem 

dowolnego ideału pierwszego jest monomorfizmem, a zatem P  jest monomorfizmem. 

P rzypadek  ogólny.

Niech x — E i ai[r»] e Ker(P).  Określamy podpierścień S  pierścienia R  generowany 

przez wszystkie elementy a* i r*. Ponieważ S  jest skończenie generowany, więc jest 

noetherowski, a zatem na mocy poprzedniego przypadku P : C(S)  — > S  jest mono­

morfizmem. Niech i : S  — > R  będzie włożeniem. Ponieważ P  jest przekształceniem 

funktorów, więc mamy diagram przemienny

C(S) S
r

C(i) i
v  p  *

C{R) - ^ >  R

Zauważmy, że x = (C(i)) (y ), gdzie y =  E i a«[r i] e

Ponieważ 0 =  P{x) = P(C(i)(y)) = i(P(y)),  więc P(y) = 0, bo i jest włożeniem. 

Z poprzedniego przypadku wynika, że y = 0 i w konsekwencji x  =  0. To kończy 

dowód. □

W n i o s e k  2.6.

Jeżeli n = 2l, l = 1,2, . . . ,  to relacje generujące pomiędzy generatorani 

[r] =  rn — r ideału I„(R) są następujące:

(1) [r + s] = [r] + [s] +p(r , s )[—1], r ,s  G R,

gdzie p(r,s) = £  \  ( £ ) r n~fcsfc, 
fc=i

(2) [rs] = rn[s] +  s[r], r,s  € R.



2.3. Relacje pom iędzy elem entam i r 3 -  r

W tym paragrafie znajdziemy relacje generujące pomiędzy elementami 

{r} =  r 3 — r pierścienia przemiennego R. W tym celu przeprowadzimy analogiczne 

rozumowanie, jak w poprzednim paragrafie. W związku z tym będziemy używać 

podobnych oznaczeń i terminów.

2.3.1. C-funkcje i Funktor C.

D e f i n i c j a  2.3.

C —funkcją nad R  nazywamy taką funkcję f  : R  — > M , gdzie M  jest R- 

modułem, która spełnia następujące warunki dla dowolnych a, b, r, r ', s G R :

(1) f ( r s ) =  r 3/(s )  + s /(r) ,

(2) 3 sf{r) -  Srf(s) = (r -  s ) (A2 f){r, s),

(3) (A2/) ( a r3, bs3) — (A2f)(ar,bs) = 3a2bf(r2s) + 3ab2f ( r s 2),

(4) (A2f ) (r  + r', s) = (A2/ ) ( r ,  a) + (A2/) ( r ',  s) + rr ' s f (2).

Zauważmy, że warunek (4) można zastąpić warunkiem 

(4') (A3f)(r,  r', s) = rr'sf(2),  

gdyż z warunku (1) wynika, że / ( 0 ) =  0 (por. poniższy lemat).

L e m a t  2.8.

Jeśli f  : R  — > M  jest C —funkcją, to dla dowolnych r ,s  G R  mamy

(5) (r3 -  r)f(s)  =  (s3 -  s)f(r),

(6) 6f (r)  = (r3 -  /-)/(2),

(7) /(0) =  /(1) = 0,

(8) jeżeli s jest elementem odwracalnym, to / ( s -1 ) =  —s_4/(s ) ,

(9) ( A2f)(tr,  ts) = t3( A2f)(r,s) ,



(10) (t3 -  t ) (A2f)(r,s)  = (3r2s + 3rs2)f(t),

(11) A4/  =  0.

D o w ó d .

Relację (5) otrzymujemy odejmując stronami dwie symetryczne wersje (1). Re­

lację (6) otrzymujemy z (5), przyjmując s = 2. Równości /(0) =  /(1 ) =  0 otrzy­

mujemy kładąc w ( l ) r  =  s = 0 lub 1. Niech s będzie odwracalne. Ponieważ dzięki

(1) mamy 0 =  / ( 1) =  f ( s  ■ s-1) =  s3/ ( s _1) + s_ 1/(s ) , więc - s - 1/( s )  =  s3/ ( s -1 ). 

Stąd po pomnożeniu przez s -3 otrzymujemy / ( s -1 ) =  s~4f(s).  Relacja (9) wynika 

z definicji A2/  oraz (1). Istotnie,

(A2f)(tr,  ta) = f ( t r  + ta) -  f{tr) -  f(ta)  =

=  t3f ( r  + s) + (s + t ) f ( t)  -  t3f ( r ) -  r f ( t )  -  t3f(s)  -  sf{t) =

= t3{f(r + s ) ~  f (r)  -  f (s)) = t3{A2f)(r,  s).

Relację (10) otrzymujemy z definicji A2/  oraz (5). Istotnie,

(*3 -  t ) (A2f)(r,s)  =  (t3 -  t )( f (r  + s) -  f ( r )  -  f (s))  =

= ((r +  s) 3 -  (r + s))f(t) -  (r3 -  r) f ( t )  -  (a3 -  s)f(t)  = (3r2s + 3rs2)f(t).  

Ponieważ /(0) =  0, więc z (4) otrzymujemy (11). Relacja (12) wynika z trójliniowo- 

ści A3/ .  □

P r z y k ł a d  2.2.

Określamy f  : R  — > R  wzorem f (r)  = r3 — r. Pokażemy, że f  jest C —funkcją. 

Zauważmy najpierw, że /(0) =  0, skąd

(A 2/) ( r ,  s) — 3 r2s + 3 rs2,

(A 3f ) (r , s , t )  =  6 rst.

(2 .6 )

(2.7)



Istotnie,

(A2/) (r , s) =  f ( r  + s) -  f (r)  -  f (s)  =

=  (r +  s )3 -  (r + s) -  (r3 -  r) -  (s3 -  s) =  3r2s + 3rs2,

(A3f)(r , s , t )  =  (A2f) ( r  + s,t) -  (A2f)(r, t )  -  (A2f)(s , t )  =

=  3(r + s)2t + 3(r +  s)t2 -  (3r2t + 3rt2) -  (3s2t + 3sf2) =  6rst. 

Pokażemy, że funkcja /  spełnia relacje (1)-(4).

(1) f (rs)  -  r3f (s)  -  sf(r)  = (rs)3 -  rs -  r3(s3 -  s) -  s(r3 -  r) = 0 .

(2) 3sf(r)  -  3rf{s)  -  (r -  s)(A2/) (r , s) =

=  3s(r3 -  r) -  3r(s3 -  s) -  (r -  s)(3r2s + 3rs2) = 0 .

(3) (A2f) (ar3,bs3) -  (A2f)(ar,bs) -  Za2bf(r2s) -  3ab2f ( r s 2) =

= S(ar3)2bs3 + 3ar3(bs3)2 -  (3(ar)2bs +  3ar(bs)2) -

-  3a2b{(r2s)3 -  r2s) -  Sab2((rs2)3 -  rs2) =

= 3a2b(r6s3 -  r2s -  r6s3 + r2s) + 3ab2(r3s6 -  rs2 -  r 3s6 + rs2) = 0 .

(4) Wynika to bezpośrednio ze wzoru (2.7) i tego, że /(2 ) =  6 .

Podobnie jak poprzednio wprowadźmy następującą definicję.

D e f i n i c j a  2.4.

Niech C(R) = C ^ ( R )  będzie i?-modułem generowanym przez elementy 

{r}, r € R,  z relacjami:

(1) {rs} = r 3{s} + s{r},

(2) 3s{r} -  3r{s} =  (r -  s)[r, s],

(3) [ar3,bs3] — [ar, 6s] =  3a26{r2s} 4- 3a62{rs2},

(4) [r -(- r \  s] =  [r, s] + [r', s] +  rr's{2},

gdzie [r, s] =  {r + s} -  {r} -  {s} =  (A2{})(r, s) oraz a,b,r,r ' ,s  e  R.



Jak poprzednio mamy kanoniczną C —funkcję c : R  — > C(R)  określoną wzorem 

c(r) =  {r}. Moduł C(R)  jest obiektem uniwersalnym ze względu na C —funkcje, co 

oznacza, że dowolna C-funkcja może być jednoznacznie przedstawiona jako złożenie 

kanonicznej C-funkcji c : R  — > C(R)  oraz /i-homomorfizmu określonego na C(R).  

Dokładniej, mamy następujące

T w i e r d z e n ie  2.7.

Niech f  : R  — > M, gdzie M  jest R —modułem, będzie C —funkcją. Wówczas 

istnieje dokładnie jeden homomorńzm R —modułów f  : C(R)  — > M, taki że diagram

R  — C(R)  
i
'7

❖
M

jest przemienny. Jest on określony na generatorach wzorem /({ r}) =  f (r) .

Jeśli i : R  — > i?'jest homomorfizmem pierścieni, to jak poprzednio otrzymujemy 

indukowany homomorfizm modułów C(i) : C(R)  — > C(R')  nad i, który określony 

jest na generatorach wzorem C(i)({r}) =  {i(r)}. Podobnie pokazujemy, że C  jest 

funktorem z kategorii pierścieni przemiennych z jedynką do kategorii par pierścień- 

moduł określonej w poprzednim paragrafie.

Podobnie jak poprzednio pokażemy, że C  komutuje z lokalizacjami.

Niech S  będzie zbiorem multiplikatywnym w R  i niech i : R  — > R s oraz

i : M  — > M s będą homomorfizmami kanonicznymi.



T w i e r d z e n i e  2.8.

Dla dowolnej C-funkcji f  : R  — > M  istnieje jedyna C-funkcja 

f s  ■ R s  — > Ms spełniająca warunek fs{i{r)) = dla r £ R,

tzn. uzupełniająca diagram

r — U r s
I

/  ' fs

M  —U  M s
do diagramu przemiennego. Jest ona dana wzorem:

fr \  f ( r)  / r \ 3  f (s )

lub równoważnie

Przy tym

fs ( ¾  = (2.9)

(2.10)

(A*/.) ( f  f f )  = ^ 2̂ .  (,U)

D o w ó d .

Równoważność wzorów (2.8) oraz (2.9) wynika stąd, że dla dowolnej C —funkcji 

/  mamy
f ( r )  _  / r \ 3  f i s }  (s3- s ) f ( r ) - ( r 3- r ) f { s ) + s f ( r ) - r f ( s ) _  s f ( r ) - r f ( s )  

a \ s )  s ?  J3

na podstawie (5) dla /.

Załóżmy, że istnieje uzupełnienie powyższego diagramu. Warunek przemienności

oznacza, że f s  (y) =  dla r £ R. Niech s £ S. Jeżeli f s  jest C-funkcją, to

= fs  ( f ) = fs  ((;) (f)) = (ś)3/s  (}) + (f ) fs (§) =

= (i)3 ¥  + ( ! ) /* ( ; ) ,  
skąd wynika wzór (2.8). To dowodzi jedyności / 5 .



Zeby udowodnić, że f s  jest poprawnie określona, jak poprzednio, wystarczy spraw­

dzić, że z prawej strony wzoru (2 .8 ) orzymujemy to samo, jeżeli zastąpimy r  przez 

rt  i s przez st dla dowolnego t £ S. Dzięki (2) obliczamy, że

f (r t) _  ( r t \ 3 f (st )  _  r3f ( t )+t f ( r )  _  / r \3  s3f ( t )+t f (s )  _  / ( r )  _  / t \3  f ( s}  
st  \ st / st  st \ s /  st  s \ s )  s

Udowodnimy wzory (2.10) i (2.11), korzystając z tego, że f s ( 0) =  0. Tak samo jak 

w dowodzie Twierdzenia 2.4 ze wzoru (2.9) otrzymujemy 

(A2A ) (?, f)  =  f s  (5 + f)  -  f s  (?) -  f s  ( f ) =
_  t f ( r+s ) - ( r+s ) f ( t )  _  t f ( r ) - r f ( t )  _  t f ( s ) - s f ( t )  _

—  f ( T + s ) - f ( r ) - f ( s )  _  (A2/ j ( r , j )

Wzór (2.11) wynika ze wzoru (2.10). Istotnie,

(A Vs) ( f ,  f  f )  =  (A2/ s ) ( l  + T. f )  -  (A2f s )  ( b  I )  -  (A V s) ( f  f )  =
=  (A 2/ ) ( r + r ', s )  _  (A 2/^(r,a) _  (A 2/H r ',s )  =  (A 3/) ( r ,r ',a )

Pozostaje udowodnić, że / s  jest C —funkcją. Niech | ,  j ,  |  będą dowolnymi

elementami R s . Wówczas

( 1 ) / * ( H ) - ( f ) 3 / s ( f ) - ( | ) / s ( S )  =
_  t2 f ( r s )—rs f ( t 2) _  / r \3  t f (s) -af ( . t )  _  r  t f ( r ) - r f ( t )  _

t5 U J  t3 t t3
_  t2(r3/(a )+ s /(r))-ra ( t3/( t)+ t/( t))  _  r 3(t2/(a ) -a t/( t) )  _  s(t4/ ( r ) - r t 3/(t))  _

(8 (B —
_ st2f (T ) - r s t f ( t )+r3s t f ( t ) - s t 4f ( r )  _
— —
_  s t ( t - t 3) f ( r ) - ( r - r 3)stf( t)  _  n
— >  -  u 

dzięki (1) i (6 ) dla / .

(2) 3 ? f S ( rj ) -  3 j / s ( f )  =  3^ r> r ^ »  -  3 ® ^  =

=  3 , / ( r ) - 3 r / ( . )  =  ( r -* ) (A 2/ ) ( r ,S) =  ( ,  _  5) ( ^ ) ( ^  f )

dzięki (2 ) dla /  i wzorowi (2 .10)

(3) Korzystając ze wzoru (2.10) oraz (10) dla /  otrzymujemy

(A2/s ) (  j ( f ) 3, f (f )3) -  (A2/ s )(?7> i ?) “



_  (A 2/ ) ( n r 3,6»3) _ (A 2f)(ar,bs) _  (A 2f )(aT3,bs3) - ( A 2f )(ar ,bs) (t9- t 3) ( A 2f )(ar ,bs)
t13 — <15 ---------(T5—------ —

_  3a2bt3f ( r 2s)+3ab2t3f ( r s 2) _  (3(ar)2bs+3ar(bs2) ) f ( t 3) _

— o a2b t 3f ( r 2s ) - r 2s f ( t 3) , oa b2 t 3f ( r s 2) - r s 2f ( t 3)-  ->73 r  ^ ----------  =

= 3 # /* (£ ) + 3 f / s l f )  == 3(f )«/s((f)»{) + 3«(f)Vs(i (5)2).
(4') Zauważmy, że dzięki przemienności diagramu mamy / 5 (f) =  więc ze 

wzoru (2 .11) otrzymujemy, że

(A 3/ s ) ( j ,  j , j ) = = =  r_rL ,m  □

T w i e r d z e n i e  2.9.

Istnieje fl^-izomorfizm C(R)S «  C(RS), taki że ± {£}.

D o w ó d .

Przeprowadzimy analogiczne rozumowanie jak w poprzednim przypadku. Sto­

sując Lemat 2.8 do kanonicznej C-funkcji c : R  — > C(R), c(r) = {r}, otrzymujemy 

C —funkcję cs : Rs  — > C(R)s  nad Rs,  cs (§) =  ^  — ( ^ ) 3 Z Twierdzenia 2.7  

mamy J?s-homomorfizm g : C (R s ) — > C(R)S, g ({^}) - cs(^) =  ^ -  ( ^ ) 3 

Z drugiej strony mamy homomorfizm C(i) : C(R ) — > C(RS) nad i : R  — > R s  okre­

ślony na generatorach wzorem C(i)({r}) =  {y}, który daje nam Ąę-homomorfizm 

h : C(R)s  — > C(Rs),  taki że h =  H f}- Zauważmy, że h =  g~l . Istotnie,

9 ( h ( < ? ) ) = y « { » = K 1?  -  « ) 3 * ? ) = ¥

dzięki (7). Z drugiej strony, dzięki (8 ) i (1) obliczamy, że

^ ( ( 5 ) ) )  = ^ - ( 5 ) ^ )  =
= Hi) -  F(f) = Hi) + {f)3łi)  = (51) = (5)-

Stąd h jest izomorfizmem. □



2.3.2. Homomorfizm P. Przypomnijmy, że z Przykładu 2.2 mamy C —funkcję 

/  : R  — > R  określoną wzorem f ( r ) =  r 3 —r. Zatem na mocy Twierdzenia 2.7 istnieje 

/ i—homomorfizm P = P(R) : C(R)  — > R  uzupełniający diagram

R  — C(R)  
i
i p
❖
R

Jest on określony na generatorach wzorem P({r}) =  r 3 — r i jego obrazem jest / 3 (i?). 

Homomorfizmy P(R) wyznaczają przekształcenie funktorów, tzn. dla dowolnego 

homomorfizmu pierścieni i : R  — > R! następujący diagram

C(R)  - ^ >  R

C(t) i

C(R') R>

jest przemienny. Rzeczywiście,

P{R') (C(i)({r})) =  P(R!)({i(r)}) = (*(r) )3 -  t(r) = i(r3 -  r) = i (P (R ){r } ) . 

Pokażemy, że P  jest monomorfizmem dla dowolnego pierścienia R.

L e m a t  2.9.

Dla dowolnego zbioru multiplikatywnego S  pierścienia przemiennego R  mamy 

następujący diagram przemienny:

C(R)S 

f

C W  R s

gdzie f  jest izomorfizmem z Twierdzenia 2.9. Zatem P(R)s  jest monomorfizmem 

wtedy i tylko wtedy, gdy P{Rs) jest monomorfizmem.



D o w ó d .

p (Rs ) ( f { ^ ) )  = m s m rT}) =

= ; {(i)3 -  i) = ^  = = P(R)s (¾1) • □

Stosując relację (1) otrzymujemy następujący

L e m a t  2.10.

Dla dowolnego r £ R  zachodzą wzory:

(1) f7-2} = (r3 + r)M -

(2 ) { t -2s } =  rs{r} +  +  r 6{s},

(3) {r3} =  (r6 + r4 + r 2){r},

D o w ó d .

Zauważmy, że

(1) {r2} = {r • r} =  r3{r} + r{7-} =  (r3 +  ?’){r},

(2) {t^s} =  r 6{s} + s{r2} = r 6{s} +  s(r3 + r){r} = rs lr}  + r 3s{r} +  r 6{s}. 

Własność (3) otrzymujemy z (2) przy s = r. □

Przypomnijmy, że z własności (4’) mamy (A3{})(r, s,t)  =  rst2, 

a z Lematu 2.8 (11) wynika, że A4{} =  0. Stąd i na mocy wzoru (1.2) otrzymujemy

W n io s e k  2.7.

Dla dowolnego skończonego układu elementów ri G R  zachodzi następujący 

wzór:

= Ę f a )  + Z J [r i’r^  + Tiri rk{2)- 
\  i )  i i<j  i<j<k

Rozważmy jądro i?-homomorfizmu P  : C(R)  — > R, P  ({r}) — r3 — r.

L e m a t  2.11.

h(R)Ker (P)  = 0.



D o w ó d .

N iech  x  =  J2 i  a i { r i }  e  K e r ( P ) ,  to  je s t  ^  a, i{r f  -  r t ) =  0.

W te d y  dzięk i (5) o trzym ujem y , że

( r 3 -  r)x = Y,i ai(r3 -  r ){ r j}  =  ^  <n{rf -  ri){r} = 0{r}  = 0 .  □

L e m a t  2.12.
k

Niech x  =  O j{rj} €  Ker(P), gdzie jeden z ri jest równy 2. Jeżeli wszystkie 
1 = 1

a,i należą do Iz(R)m dla pewnego m  > 0 oraz jeżeli spełniony jest jeden z warunków:

(1) ru . . . , r k &I3(R) 

lub

(2) 3 G I3(R), 

k
to x = 22 M rt}, gdzie wszystkie bi należą do l 3(R)3m+1. 

i=i

D o w ó d .
k k

Z z a ło ż e n ia  a i r f  — E  a ir ii co b ęd z ie m y  zap isy w a li ja k o  E a t r ? ~  E a »r *- 
i= l i= l i i

N a  m o c y  W niosku  2.7, L e m a tu  2 .10  o raz  w aru n k u  (1) D efin ic ji 2 .4  o trz y m u je m y :

S E  a i r i \  =  E { a t r i} +  E [ a i r i. O-jTj] +  ^  ^ ^ ^ ^ ^ ^ { 2 }  =  
v i J i i<j i<j<k
=  E  a i{ r t} +  E  T i W i ]  +  E  [Qi r t» +  E  ^ 7 ^ ^ 0 ^ ( 2 }

i i <<J i<j<k
oraz

{ E  }  =  E { a i r f } +  E [ “ i» f  >a3r j ]  +  E  a ir i a j r j a k r U 2 } =
{ * ) » i<j i<j<k
=  E a ? K 3} +  E r t3{a »} +  E k r f . a3r j \  +  E  a i r i a j r j a k f k { 2 }  =  

i i i<j i<j<k
=  E a f ( r i +  t \  +  r i ) { n }  +  E r i i a i }  +  E h ^ 3. a i r j ]  +  E  a i r i a j r j a k r l { 2 } -

* i *<i i<j<k
P o n iew aż  lew e s tro n y  pow yższych  rów ności są  id e n ty cz n e , w ięc n a  m o c y  w a ru n k u

(3) D efin ic ji 2 .4 o trzy m u jem y

x  =  E a i { r i }  =  E fli ( ri +  r f  +  rf){r<} +  E k f . a / ] ]  -  Y . \ a iT^ a3 rj] +  
i i i<j  i<j

+ E  airiajrjakr l{2} -  £  0 ^ 0^ - 0 ^ ( 2 } =
i<j<k  i<j<k



=  E “ i (»i +  r i +  r i ) { ^ }  +  E  3 a i a j { r i r j }  +  E  ^ a i aj { r i r j }  +  
i i<j  i<j

+ E  alaj afc(rf rj r fc -  Tirjrk ){2 } = 
i<j<k

= T , aH(ri ) 3- ri + ri( 'r i-r i)+irf){ri} + '£3a^aj (rirj {ri}+rfr j {ri}+rf{rj }) + 
i i<j

+  E  S a i t f i r i r j i r j }  +  n r ^ r j }  +  r® {rt }) +  E  a i a] a k { ( r l T] r k f  -  r i r ] r k ) { 2 ) .  
i<j i<j<k

Zauważmy, że (r2)3 -  r 2, rf -  ru ( r ^ r *.)3 -  r^ r* . G J3 (.R).

Stąd ai<ijak((rirjrk)3 — TiTjTk) G Is (R )3Tn+1. Jeżeli 3 G h (R ) ,  to oczywiście 3a2ctj, 

3aja2 oraz a3((r2)3 - / f + r j ( r 3 - r i ) + 3 r 2) należą do / 3 (/¾)3771-1-1. W przeciwnym razie, 

jeżeli wszystkie n  należą do h{R),  to afajrt, a ^ r j ,  i a3 ((r2)3 -  r 2 +  n ( r f  -  r t) + 3r2) 

należą do / 3(/¾)3771-1-1. Stąd wszystkie współczynniki w powyższych sumach należą 

do / 3(i?)3m+1. □

W n i o s e k  2.8.

Niech x  =  E i= i a i { r i }  £ Ker(P) i niech M  oznacza podmoduł modułu C(R)  

generowany przez {/•*},.. . ,  {rk} i {2 }.

Niech spełniony będzie jeden z warunków:

(1) n , . . .  ,rk e / 3(H) oraz 2 G h{R)  

lub

(2) 3 G h(R).

Wtedy x e f)%L0 h ( R ) mM.

D o w ó d .

Jak poprzednio teza wynika stąd, że 3m + 1 > m  dla m  > 0 i z tego, że 

podmoduły l 3(R)mM  tworzą ciąg zstępujący. □



2.3.3. Zasadnicze Twierdzenie. Głównym wynikem tego paragrafu jest na­

stępujące

T w i e r d z e n i e  2.10.

Niech C(R) = C ^ ( R )  będzie R-modułem generowanym przez elementy 

{r}, r G R, z relacjami:

(1) {rs} = r3{s} + s{r},

(2) 3s{r} -  3r{s} =  (r -  s)[r, s],

(3) [ar3,6s3] — [ar, fes] = 3o26{r2s} + 3a62{rs2},

(4) [r + r', s] =  [r, s] +  [r;, s] + rr's{2}

dla dowolnych a,b,r,r ' ,s  6 R, gdzie [r, s] =  {r + s} — {r} -  {s} =  (A2{})(r, s). 

Wtedy istnieje R-izomorńzm P  : C(R)  — > h(R) ,  taki że P ({r}) =  r 3 — r dla 

r e R.

D o w ó d .

Rozważmy następujące przypadki:

Przypadek lokalny noetherowski.

Załóżmy, że R  jest pierścieniem lokalnym i noetherowskim. Wtedy mamy dwa przy­

padki:

przypadek 1: / 3 (/¾) = R. Wtedy dzięki Lematowi 2.11 mamy Ker(P)  = 0. 

przypadek 2 : / 3 (fi) jest ideałem maksymalnym, czyli ciało ilorazowe pierścienia 

R  ma dwa lub trzy elementy (por. Wniosek 2.1).

przypadek 2a: Jeśli ciało ilorazowe ma trzy elementy, to 3 G / 3 (R). Określamy 

podmoduł M  jak we Wniosku 2.8. W tym przypadku spełniony jest warunek (2), 

zatem spełniona jest teza. Ponieważ M  jest modułem skończenie generowanym nad 

lokalnym pierścieniem noetherowskim R, więc przekrój we Wniosku 2.8 jest zerowy



dzięki twierdzeniu Krulla o przekroju i w konsekwencji x = 0. 

przypadek 2b: Załóżmy teraz, że ciało ilorazowe ma dwa elementy; są nimi /3  (ii) 

oraz 1 + h (R )  = U(R), a ponadto 2 G / 3 (R). Dzięki relacji (2) Definicji 2.4 przy 

s =  1 otrzymujemy, że

3{r} -  3r{l} =  (r -  l)({r + 1} -  {r} -  {1}), 

skąd (r + 2){r} =  (r — l){r + 1}. W związku z tym jeśli r  G U(R), to również 

r  + 2 G U(R), skąd {r} = ^ { r  + 1}, przy czym r + 1 jest nieodwracalny. Niech 

x =  5Ziai( r i} e Ker(P).  Jeżeli jakieś ri jest odwracalne, to {r*} przedstawiamy 

w postaci {r  ̂+  1}, co oznacza, iż możemy założyć, że wszystkie r* w powyższej 

sumie są nieodwracalne, czyli należą do / 3 (./¾). Ponadto, jak zauważyliśmy powyżej

2 G h(R) .  Określamy podmoduł M  jak we Wniosku 2.8. W tym przypadku speł­

niony jest warunek (1), a więc jak poprzednio x =  0 .

To dowodzi, że Ker(P) = 0, czyli P  jest monomorfizmem.

Przypadek noetherowski.

Załóżmy, że pierścień R  jest noetherowski; wtedy wszystkie jego lokalizacje są no- 

etherowskie. Z poprzedniego przypadku i z Lematu 2.9 mamy, że P  jest takim 

homomorfizmem, który po lokalizacji względem dowolnego ideału pierwszego jest 

monomorfizmem, co oznacza, że P  jest monomorfizmem.

Przypadek ogólny.

Niech x =  a;[rj] G Ker(P).  Określamy podpierścień S  pierścienia R  generowany 

przez wszystkie elementy a* i r*. Ponieważ S  jest skończenie generowany, więc jest 

noetherowski, a zatem na mocy poprzedniego przypadku P  : C(S)  — > S  jest mono­

morfizmem. Niech i : S  — > R  będzie włożeniem. Wtedy podobnie jak poprzednio 

x =  (C(i)) (y ), gdzie y = E i ai[r»] G C(S).  Ponieważ P(y) = P(x)  = 0, więc y = 0 

i w konsekwencji x =  0. To kończy dowód. □



Otrzymujemy więc następujący 

W niosek 2.9.

Relacje generujące pomiędzy generatorami {r} =  r 3 — r ideału / 3 (R) 

są następujące:

(1) {rs} =  r 3{s} + s{r},

(2) 3s{r} — 3r{s} — (r — s)({r + s} — {r} — {s})

(3) {ar3 + 6s3} — {ar3} -  {bs3} -  {ar + bs} + {ar} + {6s} =

=  3a2b{r2s} + 3ab2{rs2},

(4) {r +  s + t] = {r +  s} +  {s + t} +  {r +  t} -  {r} -  {s} -  {f} +  rst{2} 

dla a,b ,r , s , t  G R.



ROZDZIAł 3

3-równości dla klasy H o m 5

Głównym celem tego rozdziału jest znalezienie relacji tworzących pełny zestaw 

3 —równości dla klasy Hom5. Jedna z wersji pełnego zestawu 3 —równości dla klasy 

Hom5 została znaleziona w pracy [2], Podamy ją  w pierwszej częśći rozdziału. Po­

nieważ metody zastosowane w pracy [2] nie pozwalają znaleźć 2-równości w drugiej 

części rozdziału przedstawimy inną metodę, która pozwala znaleźć pełny zestaw 

zarówno 3—równości, jak 2—równości.

3.1. Pełny zestaw 3 —równości -  pierwsza wersja

Zacytujmy główny wynik pracy [2].

T w i e r d z e n i e  3.1 ([2], Theorem  8).

Następujące relacje tworzą pełny zestaw 3-równości dla klasy Hom 5 :

{Al),  (A2 ), (.4) oraz

(B) B(r, s , t) := (r x , sy, tz) -  r(x, sy, tz) -  s(rx, y, tz) -  t(rx, sy, z) +

-I- rs(x, y, tz) + rt(x, sy, z) + st(x, sy, tz) -  rst(x, y, z) = 0,

(BI) B\(r, s) := (x,ry,sz) - r ( x , y , s z )  -  s(x,ry,z)  + rs (x , y , z )  -

-  (s -  s2)(C3(r) + [r]) =  0,

(B2) B 2(r, s) := (r sx , y, z) -  r(sx, y, z) -  s3(rx, y, z) + rs3{x, y, z) -

-  (s2 -  s3)C3(r) = 0,

(S) S(r ) := (Tx,y ,z ) + (x , r y , z ) +  (x , y , r z ) -  (r3 +  2r){x,y,z)  +

+  (1 -  r)[r] =  0,



gdzie r , s , t  e R, x, y, z są dowolnymi elementami z dzedziny odwzorowania,

C3(r) = 3(rx,y,z)  -  3r(x,y,z)  +  (1 -  r)(rx,x,y ,  z),

[r] =  (rx, x, y, z) + (x, ry, y, z) + (x, y, rz, z) -

-  r2((x, x, y, z) +  (x, y, y, z) +  (x, y, z, z)) -  3(r -  r2)(x, y, z), 

a {x )Viz ) oraz (x , y , z , t ) oznaczają wartość odpowiednio trzeciego i czwartego de­

fektu rozważanego odwzorowania.

3.2. Pełny zestaw 3 —równości - druga wersja

Znajdziemy inny pełny zestaw 3 —równości dla klasy Hom5 używając alterna­

tywnej metody, niezależnej od wyników pracy [2]. Przypomnijmy, że problem zna­

lezienia poszukiwanych relacji sprowadza się do wyznaczenia generatorów jądra ho-
___g  2  ____ 5  3

momorfizmu h : A (R) — > r 5,3(i?), określonego wzorem

h5'3(rx, sy, tz) = r3st((3 , 1 ,1 ))  + rs3t((l, 3 ,1 ))  + rs t3((l, 1 ,3 ) ) +

+r2s2t((2,2,1))  + r2st2((2 , 1 ,2))  +  rs2t2(( 1 ,2 ,2 ) ) ,  (3.1)

gdzie ((i , j , k )) =  x ^ y ^ z ^ k\  a (r x , s y , t z ) = (A363)(rx,sy, tz).

Wprowadźmy następujące oznaczenia:

a  =  ( ( 3 , 1,1)) +  ( ( 1 ,3 ,1)) +  ( ( 1 , 1 ,3 ))  +  ( ( 2 , 2 , 1)) +  ( (2 ,1 ,2 ) )  +  ( (1 ,2 ,2 ) ) ,

CT3 =  ( (3 ,1 ,1 ) )  +  ( (1 ,3 ,1 ) )  +  ( (1 ,1 ,3 ) ) ,

<72 =  ((2,2 ,1)) + ((2,1,2))+  ((1,2,2)).

Wówczas h ’ (x,y, z) = er = (72 + 0 3 .

Z pracy [4] znamy następujący opis modułu r 5,3(i?) =  Im (h5'3):



T w i e r d z e n ie  3.2 ([4], Theorem 5.9).

T5' \ r )  = R v ®  I2(R)((1 , 2 , 2)) © I2(R)((2,1,2)) © I2(R)((2,2,1))© 

® /3 (i? )((l,3 ,l))© /3(fl)((3 ,l,l)) .

_5  3

Jak łatwo zauważyć, przedstawienie elementu h ’ (rx, sy, tz) w tej sumie prostej 

jest następujące:

h5’3(rx, sy , tz) =  rst3cr +  rt(s2t — st2)((l, 2,2)) + st(r2t — rt2)((2 , 1,2)) +

+(r2s2t -  rst3)((2,2,1)) + s(r3t -  r t3)((3 ,1,1)) +  r(s3t -  s t3)((l, 3,1)), (3.2) 

gdzie, jak łatwo zauważyć, r2s2t — rst3 — rs(t + l)( t — t2) — ł(rs — (rs)2) € I2(R)-
_g 3  ____ g  .

Znajdziemy elementy modułu A ’ (R) = R{(rx,sy , tz) ,  r, s , t  G i?} C A (R  ),
___5  3

których obrazami poprzez h ’ są składniki powyższej sumy.
____ g  3

Rozważmy następujące elementy modułu A ’ (R) :

C3(r) = 3(rx,y,z) -  3r(x,y,z)  +  (1 -  r) (rx ,x,y ,z ) ,

[r] =  (rx, x, y, z) + (x, ry, y, z) +  (x, y, rz, z) -  r 2 ((x, x, y, z) +  (x, y, y, z) +

+  (x, y, z, z)) -  3(r -  r 2)(x, y, z) 

dla r , s , t £  R.

Wprowadzamy następujące oznaczenia:

Ui(r) = C3(r) + [r] =  3(rx,y,z)  -  3r(x,y,z)  +  (1 -  r)(rx, x, y, z) +  [r] 

oraz symetrycznie

U2(r) = 3(x, ry, z) -  3r(x,y ,z )  +  (1 -  r) (x,ry,y , z )  +  [r],

U3(r) = S(x,y,rz) -  3r(x,y,z)  +  (1 -  r)(x, y, rz, z) +  [r], 

a także

Fx(t-) =  2(rx,y,z) -  2r(x ,y ,z)  +  (1 -  r) (rx ,x ,y ,z )



oraz symetrycznie

v2(r) = 2 (x,ry,z) -  2r(x,y,z)  + (1 -  r) (x,ry,y ,z) ,

V3(r) =  2(x,y,rz) -  2r(x,y,z) + (1 -  r)(x,y ,rz ,  z).

L e m a t  3.1.

Dla każdego r € R mamy

h5’3(rx,x, y, z) = (3r2 + 3r)((3,1,1)) + 2r(((2 ,1 ,2)) + ((2 ,2,1))), 

h5’3(x, ry, y, z) =  (3r 2 + 3r)((l, 3,1)) + 2r(((l, 2 ,2)) + ((2 ,2,1))), 

h5'3(x, y , rz, z) =  (3r2 +  3r)((l, 1 ,3)) +  2r(((l, 2 ,2)) +  ( (2 ,1,2))), 

skąd

h ’ ((rx, x, y, z) + (x, ry, y, z) + (x, y, rz, z)) = (3r 2 +  3r)cr3 + 4ra2.

D o w ó d .

Wystarczy udowodnić pierwszą równość.

Ponieważ (r x , x, y, z) = ((r + l)x, y, z) -  (rx, y, z) -  (x, y, z), więc

h5'3((rx,x,y,  z)) = (r + 1)3( ( 3 ,1 ,1 ))  +  ( r  +  1 ) ( (1 ,3 ,1 ) )  +  ( r  +  1 ) ( ( 1 ,1 ,3 ) )  +

+  ( r  +  1)2( (2 ,2 ,1 ))  +  ( r  +  1)2( ( 2 ,1 ,2))  +  (r +  1 ) ( (1 ,2 ,2 ))  -

- ( r 3( ( 3 ,1, l ) ) + r ( ( l ,  3, l ) ) + r ( ( l ,  1 , 3 ) ) + r 2( ( 2 ,2, l ) ) + r a ( ( 2 ,1 , 2 ) ) + r ( ( l ,  2 , 2 ) ) ) -

-  ( ( (3 ,1 ,1 ) )  +  ( (1 ,3 ,1 ) )  +  ( ( 1 ,1 ,3)) +  ( ( 2 ,2 ,1 ))  +  ( (2 ,1 ,2 ) )  +  ( ( 1 ,2 ,2 ) ) )  =

-  (3 r2 +  3 r ) ( ( 3 ,1 ,1))  +  2 r ( ( ( 2 ,1 ,2 ))  +  ( ( 2 ,2 ,1 )) ) .  □

L e m a t  3.2.

Dla każdego r G R mamy

t ' 3([r]) =  (r -  r 2) ( ( ( l ,  2 , 2)) + ( ( 2 ,1 ,2)) + ( (2 ,2 ,1 ) ) ) .



D o w ó d .

Na mocy Lematu 3.1 otrzymujemy, że

/i5,3([r]) =  (3r2 +  3r)cr3 + 4 ^ 2  -  r2(6cr3 + 4ct2) -  3(r -  r 2)(«72 + <73) =

=  (r -  r 2) a 2 =  ( r  -  r 2) ( ( ( l ,  2 , 2)) +  ( ( 2 ,1 ,2 ))  +  ( (2 ,2 ,1 ) ) ) .  □

L e m a t  3.3.

Dla każdego r £ R  mamy

t ’3(C3(r)) = ( r 2 -  r ) ( ( ( 2 , 1 ,2))  +  ( ( 2 ,2 ,1 )) ) .

D o w ó d .

Na mocy Lematu 3.1 otrzymujemy, że

h5’3(C3(r)) = 3 ( r 3( ( 3 ,1,1)) +  r ( ( l ,  3 ,1 ))  +  r ( ( l ,  1 ,3))  +

+  r 2( ( 2 ,2 ,1))  +  r 2( ( 2 ,1 , 2 ) ) +  7-((1,2 ,2 ) ) )  -  3 r +

+  (1 -  r)((37-2 +  3 r ) ( ( 3 ,1 ,1)) +  27-(((2,1 ,2)) +  ( (2 ,2 ,1 ) ) ) )  =

=  3t-3((3, 1 ,1)) +  37-((1,3 ,1))  +  3 r ( ( l ,  1 ,3 ))  +

+  3 r 2( (2 ,2 ,1))  +  3t-2((2, 1 ,2))  +  3 r ( ( l ,  2 ,2 ) )  -  3 r a  +

+  (3r  -  3t-3)((3, 1 ,1))  +  (2r -  2 r 2) ( ( ( 2 ,1 ,2)) +  ( (2 ,2 ,1 ) ) )  =

=  (7-2 - 7 - ) ( ( ( 2 , 1 , 2 ) ) +  ( (2 ,2 ,1 ) ) ) .  □

W n io s e k  3.1.

Dla każdego r € R zachodzą następujące równości: 

h5’3(Ui(r)) — (r — r 2) ( ( l ,  2 ,2 )) ,

^ 5’3(f/2( r ) )  =  ( 7 - - r 2) ( ( 2 , l ,2 ) ) ,

^ 5-3(f/3(7-)) =  ( r - r 2) ( ( 2 ,2 , l ) ) .



L e m a t  3.4.

Dla każdego r e R  zachodzą następujące równości:

£ 5’3(V i(r))  =  (r  — r 3) ( ( 3 , l , l ) ) ,  

hb’3(V2(r)) = ( r - r* ) ( ( l ,Z , l ) ) ,

T?'3(V3(r)) = ( r - r 3)((l, l,3)) .

D o w ó d .

Na mocy Lematu 3.1 mamy

h5’3(Vi ( r ) )  =  2 ( r3( ( 3 ,1 ,1)) +  r ( ( l ,  3 ,1 ) )  +  7-((1,1 ,3 ))  +

+  r 2( ( 2 ,2, l ) )  +  7-2( ( 2 , l ,  2)) +  r ( ( l ,  2 ,2 ) ) )

-  2 r ( ( ( 3 , 1 ,1)) +  ( (1 ,3 ,1 ))  +  ( ( 1 , 1 ,3))  +  ( (2 ,2 ,1 ) )  +  ( (2 ,1 ,2 ) )  +  ( (1 ,2 ,2 ) ) )  +

+  (1 -  7-)((37-2 +  37-)((3,1,1)) +  27-(((2,1,2)) +  ((2 , 2 ,1 )) ) )  =

=  (2 r3 -  27- +  3 r2 +  3r  -  3 r 3 -  3 r 2) ( ( 3 ,1 ,1))  +

+  (2r 2 -  2 r  +  2 r  -  2 r2) ( ( ( 2 ,1 , 2)) +  ( (2 ,2 ,1 )) )  =  ( r  -  r 3) ( ( 3 ,1 ,1 )) .

Dzięki symetrii otrzymujemy pozostałe wersje. □

Niech

D(r, s, t) — (rx , sy, tz) — rst3(x, y, z) — rt(sU\{t) — tU\(s)) — st(rU2(t) — tU2{r)) —

-  (rs(t + l)J73(t) -  tU3(rs)) -  s(rVi(t) -  tVi(r)) -  r(sV2{t) -  iV^(s)).

W n i o s e k  3.2.

h5'3(D(r, s , t ) )=0.

D o w ó d .

Zauważmy, że

h5,3(st/i(ż) -  tUi(s)) = s(t - 12)(( 1,2,2)) -  t(s -  s2)(( 1,2,2)) =  (s2t -  st2)(( 1,2,2)), 

h5'3(rU2 ( t ) - t U 2(T)) = r ( t - 2) ) - t ( r - r 2)((2,1,2)) = (r2t - r t 2)((2,1,2)), 

h5,3(rs{t +  l) t/3 (ż) -  tU3(rs)) = rs(t  + 1 ) ( ^ - 12)((2 ,2 ,1)) -  t(rs -  (rs)2)((2,2,1)) =



=  (r2s2t - r s t 3){( 2,2,1)),

h5,3(rV! (t) -  iVi(r)) =  r{t - 13)((3 ,1,1)) -  t(r -  r3)({3,1,1)) =  (r3t -  r t3)((3,1,1)), 

h5,3(sV2(t) -  tV2(s)) = s(t -  t3)((l, 3,1)) -  t(s -  s3)((l, 3,1)) =  (s3t -  st3)(( 1,3,1)). 

Porównując ze wzorem (3.2) otrzymujemy tezę. □

Przedstawiając dowolny generator (r x , s y , t z ) przy pomocy D(r,s , t )  oraz ele­

mentów typu U\{t), U2(r), U3(r), V\(r), V2(r), otrzymujemy następujący rozkład:

W niosek 3.3.

A 5'3(R) = D{R) + R(x,y,z)  +

+ U\(R) + U2(R) + U3(R) +  Vi(i?) +  V2(R), 

gdzie D(R) = R{D(r,s,t); r ,s , t  € i?}, Ui{R) = R{Ui(r)\ r e i ? }  dla, i =  1,2,3 

oraz Vi(R) — R{Vi{r)\ r £ R} dla i = 1,2.

T wierdzenie 3.3.

Ker ^h5,3J = K, gdzie K  jest podmodułem generowanym przez następujące 

elementy:

(1) D(r,s, t),

(2) Ui(r + s) -  Ui(r) -  Ui(s) -  rsUi(2), * =  1.2,3,

(3) Ui(rs) -  r2Ui(s) -  sUi(r), i = 1,2,3,

(4) Vi(rs) -  r3Vi(s) -  «Vi(r), i =  1,2,

(5) 3sVi(r) -  3rVi(s) -  (r -  s)(Vi(r + s) -  V*(r) -  ^ (s )) , i = 1,2,

(6) Vi(ar3 + bs3) -  Vi(ar3) -  Vi(bs3) — Vi(ar 4- bs) + Vi(ar) + Vi(bs) —

-  3a2bVi(r2s) -  3ab2K (rs2), i =  1,2,

(7) Vi(r + s + t ) -  Vi(r + s) -  K(s + t) -  K (r + t) +

+ Vi(r) + Vi(s) + Vi(t) -  rstVi(2), i =  1,2,

gdzie r , s , t  € R.



D o w ó d .

_5 3
Zauważmy, że K  C  Ker(h ’ ). Istotnie, dzięki Wnioskowi 3.2 wiemy, że

_g 3\ _5 3
h ' J . Dzięki Przykładowi 2.1 wiemy, że wartości h ' na elemen-

_5 3
tach (2)-(3) są zerowe, natomiast dzięki Przykładowi 2.2 wiemy, że wartości h ’ na

_g 3
elementach (4)-(7) są zerowe. Zatem h ’ indukuje homomorfizm 

h' : A5,3(R) /K  — > T5,3(R) C T5'3(R). Oznaczmy przez Ui(R) (odpowiednio Vi(R)) 

obraz Ut(R) (odpowiednio Vi(R)) przez homomorfizm naturalny. Wówczas 

h'(Ui(R)) = I2(R)(( 1,2,2)) i analogicznie h'(Jh{R)) = I2(R)((2,1,2)), 

h'(U3(R)) = I2(R)((2,2,1)), h'(VjR))  = IS(R)((3,1,1)), h ' ^ R ) )  = I3(R)(( 1,3,1)) 

Pokażemy, że ograniczenia h! do tych podmodułów są monomorfizmami. Dla przy­

kładu pokażemy, że jest monomorfizmem. Ponieważ ((1,2,2)) jest elemen­

tem bazy modułu r5,3(/i), więc możemy rozważyć złożenie h" : Ui(R) — > h (R )  

homorfizmu h' z  izomorfizmem / 2 (/2)((1, 2 , 2 )) «  h{R),  przeciwnym do rzu­

towania na Ii(R),  określone na generatorach wzorem h"(U\(r)) — r2 — r. Roz­

ważmy odwzorowanie U\ : R  — > U\(R) określone wzorem U\(r) =  U\(r). Po­

nieważ elementy U\(r) spełniają odpowiednie relacje dzięki (2)-(3), więc U\ jest 

C —funkcją. Z własności uniwersalności (Twierdzenie 2.3) istnieje więc homomor­

fizm i : C(R)  — > Ui(R) określony wzorem i(c(r)) — U\(r). Ale dzięki Twierdzeniu 

2.2 istnieje izomorfizm P : C(R) — > h (R )  określony wzorem P([r]) =  r2 — r, a 

więc taki, że P = h" o i. Ponieważ P  jest izomorfizmem oraz i jest epimorfizmem, 

więc h" jest monomorfizmem, a w konsekwencji jest monomorfizmem. Ana­

logicznie pokazujemy, że pozostałe ograniczenia są monomorfizmami, korzystając z 

relacji pochodzących z pozostałych generatorów modułu K  ((2)-(7)).

Niech teraz x  € Ker  , a więc x  G Ker(h’). Korzystając z przdstawienia we

Wniosku 3.3 i tego, że D(R) c  K,  mamy x — r(x, y ,z)  + tf[ + U2 + U3 + W  + V2 ,



gdzie r & R , Uie Ui(R),i =  1,2,3 oraz v{ G ^ ) , 1  = 1,2. Stąd 

0 =  h'(x) = rt7 + h! (u\ ) + h'(v,2) +  h'(u^) + h!(v\) +  h'(v2).

Ponieważ każdy składnk sumy po prawej stronie należy do innego składnika prostego 

modułu r  ’ , więc h'(ui) = h'iui) = h'(uz) — h!(v\) = h'{v2) =  0. Mamy także

— 0, a w konsekwencji r — 0. Korzystając z tego, że odpowiednie ograniczenia 

homomorfizmu b! są monomorfizmami otrzymujemy, żeW[ = U2 = = v\ = V2 = 

a zatem 5  =  0, skąd x G K. □

Pomijając symetryczne wersje otrzymujemy następujące

T w i e r d z e n i e  3.4.

Następujące relacje tworzą pełny zestaw 3-równości dla klasy H om 5 :

(j41), (j42), (A ) oraz

(1) D(r,s , t)  = 0,

(2) U(r + s) = U(r) + 17(a) + rsU(2),

(3) U(rs) = r2U(s) + sU(r),

(4) V^(rs) =  r3V(s) +  sV(r),

(5) 3sV(r) -  3rV(s) =  (r -  s)(V(r + s) -  V(r) -  V(a)),

(6) V(ar3 + bs3) -  V(ar3) -  V(bs3) -  V(ar + bs) + V(ar) + V(bs) =

=  3a2bV(r2s) — 3ab2V{rs2),

(7) V ( r + s + t ) - V { r + a ) - V ( a + t ) - V ( r + ł )  + V(r) + V(s) + V ( t ) - r s t V ( 2) = 0 ,

gdzie r , s , t  G R, x , y , z  są dowolnymi elementami z dzedziny odwzorowania,

U(r) = 3(rx,y,z)  -  3r(x,y,z)  +  (1 -  r)(rx, x, y, z) +

+  (rx, x, y, z) + (x, ry, y, z) + (x, y, rz, z) -  r 2((x, x, y, z) + (x, y, y, z) +

+ (*, V, z, z)) -  3(r -  r2)(x, y, z),

V(r) = 2(rx,y,z)  -  2r(x,y,z)  + (1 -  r)(rx , x, y, z),



D(r, s, t) = (rx, sy, t z ) -  rst3(x, y, z) -  rt(sU\ (t ) -  tU\ (s)) -  st(rU2(t) — tU2(r)) -

-  (rs(t + l)U3(t) -  tU3(js)) -  s(rVi(t) -  tVi(r)) -  r{sV2{t) -  tV2(s)), 

przy czym Ui(R) = U(R), =  V(R), a U2(R), U3(R) (odpowiednio V2(R))

są symetrycznymi wersjami U(R) (odpowiednio V(R)), a (x , y , z ) oraz (x , y , z , t ) 

oznaczają wartość odpowiednio trzeciego i czwartego defektu rozważanego odwzo­

rowania.

3.3. Modyfikacja drugiej wersji

Pokażemy teraz, że w Twierdzeniu 3.4 relację (2) można opuścić, a (3) zmody-
_5 3

fikować. Zastosujemy tu pewne fakty pochodzące z [2]. Niech P  : A (R) — > R
_5 3

będzie różnicą złożeń homomorfizmu h ’ z odwzorowaniami współrzędnych przy 

elementach bazy ((3,1,1) i ((1,2,2)). Jest to więc homomorfizm określony wzorem 

P(rx,  sy, tz)  =  r3st — rs2t 2. Nietrudno sprawdzić (zob. [2], Lemma 1, Corollary 1), 

że wiemy, że P([r]) =  r2 — r dla każdego r  £ R.

T w i e r d z e n i e  3.5 ([2], T heorem  2).
^ 3

Ograniczenie homomorfizmu P  : A ’ (R) — > R  do podmodułu [i?] =  i?{[r]; r £ R} 

modułu A5,3(R) ustala izomorfizm [/?] z ideałem I(R) = (r2 — r;r  £ R).

D o w ó d .

Oczywiście ograniczenie P  do [/?] jest epimorfizmem. Pozostaje więc udowodnić, 

że jest monomorfizmem. Załóżmy, że E t 0*!7"*] e Ker(P)  dla pewnych a j,rj 6 R, 

a zatem Yli ai(ri ~ Ti)  =  0- Wobec tego airi =  E t  airi =  s• Rozważmy element 

u = T , i ai(riXi,x2, x 3,x i)  £ A5,4(ii), 

gdzie { x \ , i 2 , x3, xą} jest bazą standardową i?4. Ponieważ /i5,4 jest monomorfizmem 

(por. Rozdział 1) oraz

h,5'4( u )  =  ’̂ 2 i a i ( r 2x ^  X2X3 X i +  r i x i x ^ x 3x 4 +  r ^ x ^ x ^  x ą  +  r i x \ x 2x 3x =



= s ( x ^ x 2X3X4 + XiX22 X̂3X4 + XiX2X3̂ X4 +  X\X2X3X ^ )  =  /l5’4(s(x i, X2 , X3, X4)),
_5 3

więc u = s(x i, X2 , X3, X4). Przejdźmy teraz do modułu A ’ (R) przez podstawienie 

x i,x 4 x, X2 1—>• 2/, 1—> z- Dokładniej mówiąc, zastosujmy homomorfizm 

A 5(/)  : A5(R4) — > A5(R3), gdzie /  : R 1 — > R3 jest homomorfizmem określonym 

na bazie jak powyżej. Z równości

^ i x̂ 2. xą, X4) s(xi, X2 , X3 , X4).

otrzymujemy

E i  o,i(TiX, x, y, z) = s(x, x, y, 2 ).

Dzięki symetrii otrzymujemy również 

Y l iai(x ’riy,y, z) = s(x,y,y,  z),

E i a i ( x > 2/- r i z. 2) = s(x> 2/- -2- 2)‘

Stąd

E i°i[ri] = Y ^ i a i ( r i x ^ x , y , z )  + + 5 2 i O i { x , V , r i Z , z )  -

-  E i  * .2/, *) -  E i  y >y . *) -  E i  y, z, z) -  

- 3 T , i ai { n - r t ) { x , y , z ) =

=  s(x ,x ,j/,z) +  s(x,y,y ,z)  + s (x ,y , z , z )  -

-  s(x, x, y, z) -  s(x, y,y, z) -  s (x ,y ,z ,z ) =  0. □

Z powyższego twierdzenia wynika, że elementy typu [r] spełniają założenia 

Twierdzenia 2.2, otrzymujemy więc

W n io s e k  3.4 ([2], Corollary 2).

Dla dowolnych r,s  G R mamy

(1) [r +  s] = [r] +  [s] + rs[2],

(2) [rs] =  r[s] +  s2[r],

(3) ( r 2 — r)[s] =  (s2 — s)[r],



(4) 2 [r] = ( r 2 -  r)[2], [2r] =  (2 r2 -  r ) [2],

(5) [r] =  [1 — r], [0] =  [1] =  0, [2] =  [-1] ,

(6) jeżeli r2 — r — 2s, to [r] =  s[2],

(7) jeżeli s jest odwracalne, to [s- 1 ] =  —s _3[s].

Dzięki uniwersalności powyższe równości zachodzą również dla dowolnego regu­

larnego 5—odwzorowania / .  W dalszym ciągu również zakładamy, że /  jest dowol­

nym regularnym 5—odwzorowaniem, () = A3/  oraz x , y , z  są dowolnymi elementami 

z dziedziny /.

L e m a t  3.5 ([2], Lem m a 6).

Dla dowolnych r,s G R mamy

(1) 2 (rx, sx, y, z) = 2rs(x, x, y, z) + ( r s 2 +  r2s -  2rs)(x, x, x, y, z),

(2 ) C3 (2 ) =  (x,x,y,  z) -  (x , x , x , y , z ),

(3) ( t x , y, z) +  (rx, y, z) = r2C3(2),

(4) B 2(r, -1 )  =  (r2 -  r)C3{2) -  2C3{t).

D o w ó d .

(1) Zauwaimy, że na mocy Twierdzenia 1.1 (5), przy r =  2, mamy 

2 (sx ,  x, y, z) = (s2 -  s)(2x, x, y, z) + (4s -  2s2)(x, x , y, z).

Stąd i dzięki regularności (własność (A)) otrzymujemy

2 ( rx ,  sx, y, z) =  2(r(x ,  sx, y, z) +  s(rx, x, y, z) -  rs(x, x, y, z)) =

=  r((s2 -  s)(2x,x,y,z)  + (4s -  2s2) ( x ,x ,y , ^ ) )  +

+  s((r2 -  r)(2x ,x ,y , z )  + (4r -  2r2)(x,x,y,  z)) -  2rs{x ,x ,y , z )  =

=  (rs2 -I- r2s — 2 rs)(2x , x, y, z) + (6 rs  — 2rs2 — 2r2s)(x, x, y, z) =

= (rs2 + r2s — 2rs)(x, x, x, y, z) +  (2rs2 +  2 r2s — 4rs)(x, x, y, z) +

+ (6rs — 2rs2 -  2r2s)(x, x, y, z) =  (rs2 + r2s -  2rs)(x, x, x, y, z) +  2rs(x, x, y, z).



(2) C3( 2) = 3(2x, y,z) -  3- 2(x, y, z) -  (2®, x, y, z) =

=  3(x,x ,y ,z)  -  (2 (x ,x ,y ,z )  +  (1 , 1 , 2:,3/ ,2)) = (x ,x ,y ,z )  — (x ,x ,x ,y , z ) .

(3) Dzięki (A), (A2), (1) oraz (2) obliczamy, że

(—r x , y , z ) + (r x ,y , z ) =  - ( —rx ,rx , y , z )  = (r x , r x , y , z ) +  (—r x , r x , r x , y , z ) = 

=  2r(rx, x, y, 2 ) -  r 2(x, x, 3/, 2 ) -  r 3(x, x, x, y, z) =

= 2r 2(x, x, y, 2 ) + (r3 -  r 2)(x, x, x, y, z) -  r2(x, x, y, z) -  r 3(x, x, x, y, 2 ) =

=  r 2((x,x, j/,2 ) -  (x ,x ,x ,y ,2 )) =  r 2C3(2).

(4) Dzięki (3) otrzymujemy, że

(■- r x , y , z ) -  r(—x,y ,z )  + (rx,y,z)  -  r (x,y ,z)  = (r2 -  r)C3(2).

Zatem

B 2(r, -1 ) =  ( rx, y, 2 ) -  r ( - x ,  y, 2 ) +  (rx, y, 2 ) -  r(x, y, z) -  2C3(r) =

= (r2 -  r)C3(2) -  2C3(r). □

T w i e r d z e n i e  3.6 ([2], Proposition 1).

Dla dowolnych r,s £ R  mamy

(1) C3(r + s) — C3(r) +  C3(s) + rsC3(2),

(2) C3(rs) -  rC3(s) -  s2C3(r) =  3B2(r,s) -  (s2 -  s3)B2(r, -1 ) ,

gdzie B 2(t,s) zostało zdefiniowane w Twierdzeniu 3 .1.

D o w ó d .

(1) Zauważmy, że

C3(r + s ) ~  C3(r) -  C3(s) =

=  3((r + s)x, y, z) -  3(r +  *)(x, y, 2) + (1 -  (r +  s))((r + s)x, x, y, z) -

-  3(rx, y, 2 ) + 3r(x, y, 2 ) -  (1 -  r)(rx, x, y, 2 ) -

-  3(sx, y, 2 ) + 3s(x, y, 2 ) - ( 1 -  s)(sx, x, y, 2) =

=  3(rx ,sx ,y ,z)  +  (1 -  (r + s))((rx,x,y,  z) + (s x , x , y , z ) +  (rx, s x ,x ,y ,  z)) -



-  (1 -  r)(rx, x, y, z) -  (1 -  s)(sx ,x ,y ,z) =

= 3(rx,sx,y,  z) -  r(sx ,x ,y ,z)  -  s ( rx ,x ,y , z )  + (1 — r  — s)(rx, sx ,x ,y ,  z). 

Na mocy (A2), Lematu 3.5 i (A) ostatnie wyrażenie jest równe 

2 (rx, sx, y, z) + ((rx , sx, y, z) -  r(sx, x, y, z) -  s(rx, x, y, z)) +

+ (rs — r2s — rs2)(x, x, x, y, z) =

=  2rs(x,x,y ,  z) +  (rs2 + r2s — 2rs)(x, x, x, y, z) — rs(x, x, y, z) +

+ (rs -  r 2s — rs2)(x, x, x, y, z) —

= rs(x, x, y, z) -  rs(x , x, x, y, z) = rsC3(2).

(2) Zauważmy, że

C3(rs) -  rC3{s) -  s3C3(r) -  3(B2{r, s) + (s2 -  s3)C3(r)) =

= 3(rsx, y, z) -  3rs(x, y, z) + (1 -  rs)(rsx, x, y, z) -

-  r(3 (sx,y,z)  -  3s(x,y,z)  + (1 -  s){sx,x,y,  z)) +

-  s3(3(rx, y, z) -  3r(x, y, z) + (1 -  r)(rx , x, y, z)) -

-  3((rsx, y, z) -  r(sx, y, z) -  s3(rx, y, z) + r s 3(x, y, z)) =

=  (1 -  rs)(rsx,x,y,  z) -  r ( l  -  s) (sx ,x ,y , z )  -  (1 -  r)s3( rx ,x ,y , z ) .

Dzięki regularności (Twierdzenie 1.1) (3) i (5), ostatnie wyrażenie jest równe 

(1 -  rs)(r(sx,x,y,  z) + s2(rx,xy,z)  -  rs2(x ,x ,y ,z) )  +

+ (rs -  r)(sx, x, y, z) + (rs3 -  s3)(rx, x, y, z) =

=  s(r -  r 2)(sx, x, y, z) + (s2 -  s3)(rx, x, y, z) -  (1 -  rs)rs2(x, x, y, z) =

= s((s -  s2)(rx,x,y ,  z) + (r s2 -  r2s)(x,x ,y ,z ))  + (s2 -  s3)(rx ,x ,y , z) +

+  (r2s3 -  r s 2)(x, x, y, z) =

= 2 (s2 -  s3)(rx, x,y, z) -  (s2 -  s3)(r + r2){x,x,y,  z).

Stosując Lemat 3.5 (1) i (2) otrzymujemy, że ostatni element jest równy

(s2 -  s3)(2r (x ,x ,y , z )  +  (r2 -  r)(x ,x ,x ,j/,z )) -  (s2 -  s3)(r +  r2) ( x , x ,y , z )  =  

=  (s2 -  s3)(r -  r2)((x,x,y,  z) -  ( x ,x ,x ,y , z ) )  = (s2 -  s3)(r -  r2)C3(2).



Ostatecznie, dzięki Lematowi 3.5 (4) otrzymujemy, że 

C3(rs) -  rC3(s) -  s2C3(r) =

=  3(B2(r, s) + (s2 -  s3)C3(r)) -  (s2 -  s3)C3(r) -  (s2 -  s3)(r2 -  r)C3(2) =

=  3((fl2(r, a) + (s2 -  s3)C3 (r)) -  (s2 -  s3)C3(r)) -

-  (s2 -  s3)(B2(r, -1 ) + 2C3{r) -  2C3(r)) =

=  3B2(r, s) — (s2 -  s3)B2(r, —1). □

W n i o s e k  3.5.

Dla dowolnych r,s e R  mamy

(1) U(r + s) -  U(r) -  U(s) -  rsU(2) = 0,

(2) U(rs) -  r2U(s) -  sU(r) = 3B 2{r, s) -  (s2 — s3)B2(r, -1 ) ,

Oznacza to, że główny wynik możemy zapisać jako następujące

T w i e r d z e n i e  3.7.

Następujące relacje tworzą pełny zestaw 3-równości dla klasy Hom 5 :

(>11), (A2), (,4) oraz

(1) D(r,s ,t )  = 0 ,

(2) SB2(r,s) — (s2 — s3)B2(r, —1) =  0,

(3) V(rs) = r3V(s) + s V (r ) ,

(4) 3sV(r) — 3rV(s) = (r — s)(V(r + s) — V(r) — V(s)),

(5) V(ar3 +  bs3) — V(ar3) — V(bs3) — V(ar  +  bs) + V(ar)  +  V(bs) —

= 3 a2bV(r2s) + Sab2V(rs2) =  0,

(6) V ( r + s + t ) - V ( r + s ) - V ( s + t ) - V ( r + t )  + V(r) + V(s) + V ( t ) - r s tV (2 )  = 0, 

gdzie r , s , t  € R, x, y, z są dowolnymi elementami z dzedziny odwzorowania,



przy czym D(r, s, t) zostało zdefiniowane w Twierdzeniu 3.4, 

B 2(r,s) = (r sx ,y , z ) -  r(sx,y,z)  -  s3{rx,y,z)  + rs3(x,y ,z)  -

-  (s2 -  s3)(S(rx,y, z) -  3r(x,y ,z )  + (1 -  r){rx,x,y ,z)) ,

V (r ) =  2(rx,y,z) -  2r(x,y,z)  +  (1 -  r) (rx ,x ,y ,z ) .



ROZDZIAł 4

2-równości dla klasy Horn5

Głównym celem tego rozdziału jest znalezienie relacji tworzących pełny zestaw 

2—równości dla klasy Hom5. Użyjemy tych samych metod, co w poprzednim roz­

dziale. Tym razem problem znalezienia poszukiwanych relacji sprowadza się do wy­

znaczenia generatorów jądra homomorfizmu h5,2 : A 5,2 (R) — > T5,2(R), określonego 

wzorem

h5’2(rx, sy) = r 4s((4 ,1)) + r 3s2((3,2)) +  r2s3((2,3)) + rs4((l, 4)), (4.1)

gdzie ((i, j)) — a (rx ,sy ) =  (A263)(rx,sy).

Z pracy [4] znamy następujący opis modułu r5,2(i?) = Im (h5'2) :

T w i e r d z e n i e  4.1 ([4], Theorem 5.9).

f 5’2(i?) =  Rn  © h(R)((3 ,2)) ® I 3(R)((2,3)) © I4(R)(((4,1)) +  ((2,3))).

__g  2

Jak łatwo zauważyć przedstawienie elementu h ' (r x , s y ,) w tej sumie prostej 

jest następujące:

h5’2(rx, sy) = rs4cr + s(r3s -  r s 3)((3 ,2)) +  r(rs3 -  r 3s)((2 ,3)) +

+ (r4s -  rs4)(((2,3)) + ((4 ,1))), (4.2)

gdzie cr oznacza sumę wszystkich elementów bazowych modułu r 5,2(/i), to znaczy

a  =  ((4,l)) + ((3,2)) + ((2,3)) + ((l,4)).
61



Jak poprzednio potrzebujemy elementów, których obrazy są odpowiednimi wielo­

krotnościami elementów bazowych. Dokładniej, szukamy elementów, na których 

wartości h,5’2 wynoszą: (r3- r ) ( ( 3 ,2)), (r3 - r ) ( ( 2,3)) oraz (r4 —r)(((2 ,3)) + ((4 ,1))). 

Przypomnijmy, że dla każdego r £ R  mamy następujące elementy A ’ (R ) :

[r] =  (nr, x, y, z) + (z, ry, y, z) + (x , y, rz, z) -  r2((x, x, y, z) + (x, y, y, z) +

+ (x,y ,z ,z) )  - 3 ( r  -  r2)(x,y,z),

C3(r) = 3(rx, y, z) -  3r(x, y, z) + (1 -  r)(rx, x, y, z),

U\(r) =  C3(r) +  [r].

Rozważmy następujący diagram:

A 5,3(iZ) C A 5{Rx ® Ry  ® Rz) T5{Rx ® Ry  ® Rz)

a 5(/) r5(/)

A5,2(i?) C A5(Rx  © Ry) ---- -----> r 5(f ix  © Ry)

gdzie homomorfizm /  : Rx  © Ry  © Rz  — > Rx  © Ry  jest określony na elementach 

bazy w następujący sposób: f ( x )  =  x, f ( y )  = x, f ( z )  = y. Powyższy diagram jest 

przemienny, gdyż h5 jest przekształceniem funktorów.

Oznaczmy W[(r) =  (AS(/))(C/i(r)) i zauważmy, że

W[(r) = 3(rx,x,y)  -  3r(x ,x ,y)  + (1 -  r ) (rx ,x ,x ,y )  +

+  (rx, x, x, y) + (x, rx, x, y) +  (x, x, ry, y) -  r 2((x, x, x, y) + (x, x, x, y) +

+  (x,x ,y ,y) )  -  3(r -  r2)(x,x ,y)  =

= 3(rx,x,y)  + (3 -  r ) (rx ,x ,x ,y )  + (x ,x ,ry ,y )  -

-  r2(2(x, x, x, y) + (x, x, y, y)) -  3(2r  -  r 2)(x, x, y) G A 5,2(R).

Z poprzedniego rozdziału wiemy, że h5,3(Ui(r)) = (r — r 2)(( 1 ,2 ,2 ) ) .  Z a te m  

^ ( ^ ( ^ ) ) ^ ( ^ ( 0 ) = ^ ( ( ^ ) ( / ) ) ( ( / , ( 0 )  =

= r5(/) ((ft5)(t/i(r))) = r5(/)((r -  r2)((l, 2,2))) = 

= (r -  r2)r5(/)(((l, 2,2))) = (r -  r2)r5(/)(x3/(2)2(2)).



Zauważmy, że

F5(/)(xy (2)z(2)) =  xx(2V 2) =  (1,2)x(3)y(2) =3((3,2)).

Stąd otrzymujemy, że h5,2(W[(r)) = 3(r — r 2)((3 ,2)).

Zamieniając rolami x i y otrzymujemy element

W2(r) = 3(x,ry,y) -  3r{x,y,y)  + (1 -  r) (x,ry ,y ,y)  +

+  (r x , x, y, y) + (x, ry, y, y) + (x, y, ry, y) -  r2((x, x, y, y) +  (x, y, y, y) + 

+ (x,y,y ,y))  ~ 3(r -  r2){x,y,y) =

= 3(x, ry, y) + (3 -  r)(x, ry, y, y) +  (x, x, ry, y) -

-  r2((x, x, y, y) + 2(x, y, y, y)) -  3(2r  -  r 2)(x, y, y), 

taki że /i5,2(Wj(r)) =  3(r — r 2)((2 ,3)).

W niosek 4.1.

Zachodzą następujące równości: 

h5'2((r + l)W i(r)) =  3(r -  r 3)((3 ,2)),

^ 5’2((r + l ) ^ ( r ) )  =  3 ( r - r 3)((2,3)).

Korzystając ze wzoru (4.1) otrzymujemy

h5'2(rx, y) =  r 4(( 4,1)) + r 3((3,2)) +  r 2((2,3)) +  r(( l, 4)),

h5’2( - r x , y )  = t-4((4, 1)) -  r 3((3,2)) + r 2((2,3)) -  r((l,4 )).

Odejmując stronami otrzymujemy

h5’2((rx,y) -  (- r x , y )) =  2r3 ((3,2)) + 2 r ( ( l ,4)), 

skąd w szczególności h5’2((x,y) — (—x,j/)) =  2((3,2)) + 2((1,4)),

Oznaczmy W"(r) = (rx , y ) -  (- r x , y ) -  r((x,y)  -  (- x , y )).

Wówczas z powyższego wynika, że łi*'2(W"(r)) = 2(r3 — r)((3 ,2)). 

Symetrycznie otrzymujemy element

(r) = (x , ry ) +  (~x,ry)  -  r{(x,y)  + (~x,y)) ,



taki że łi1'2 (W ^r) )  = 2(r3 — r)((2,3)).

Oznaczmy

M^i(r) =  - ( r  +  l)W[(r) -  Wj'(r),

W2(r) = - ( r  + l)W^(r) -  W f (t-).

Z Wniosku 4.1 i powyższych rachunków wynika

W niosek 4.2.

Zachodzą następujące równości:

£5’V i ( r ) )  =  (r3 -r)((3 ,2 )) , 

h5’2(W2(r)) = (r3 -7-)((2,3)).

Na mocy wzoru (4.2) otrzymujemy

hS’2(rx,y) = m + ( r 3-7-)((3,2))- r ( r 3-7-)((2,3))+  (r4- r ) ( ( (2 ,3))+  ((4,1))). (4.3)

Oznaczmy T(r) = (r x ,y ) — r(x,y)  — ^ 1(7-) +  7- ^ 2(7-).

W niosek 4.3.

Zachodzi następująca równość: 

h5'2(T(r)) = (r4 - r ) ( ( (  2,3)) +  ((4,1))),

D o w ó d .

Korzystając ze wzoru (4.3) oraz Wniosku 4.2 otrzymujemy 

h5'2(T(r)) =  ro +  (t-3 -  7-)((3,2)) -  7-(7-3 -  7-)((2,3)) +  (r4 -  7-)(((2,3)) +  ((4 ,1))) -  

_  r<y _ ( r 3 _ r )((3j 2 ) )  + r ( r3 -  r)((2 ,3)) =  (r4 -  7-)((2,3) + (4,1)). □

Przeprowadzimy teraz analogiczne rozumowanie, jak w poprzednim rozdziale. 

Niech

D(r,s)  =  (rx ,sy ) — rs4(x,y) — s ( s W i ( r )  — r l ¥ i ( s ) )  —

-  r{rW2{s) -  sW2(r)) -  (sT(r) -  rT(s)).



W n io s e k  4.4.

hb'2(D(r,s)) = 0,

D o w ó d .

Zauważmy, że

/t5,2(sV^i(r) -  r lV i(s ) )  =  ( s ( r3 -  r )  -  r ( s 3 -  s ) ) ( (3 ,2 ))  =  ( r 3s -  r s 3) ( ( 3 , 2)), 

h5,2(rW2(s) -  sW2 {t)) =  ( r ( s 3 -  s) -  s ( r 3 -  /-))((2 ,3)) =  ( r s 3 -  r 3s ) ( ( 2 , 3)), 

h5'2(rT(s) -  sT(r)) = ( r ( s 4 -  s) -  s(r4 -  r ) ) ( ( 2 , 3)) +  ( ( 4 ,1)) =

= (r4s — rs4)((2,3)) + ( ( 4 ,1)).

Porównując ze wzorem (4.2) otrzymujemy tezę.

□

Przedstawiając dowolny generator (r x , sy) przy pomocy D(r, s) oraz elementów 

typu W \ (r), W2(r), T(r) otrzymujemy następujący rozkład:

W n i o s e k  4.5.

A5,2{R) — R{D(r,s); r ,s , t  £ R} + R(x ,y , z )  + Wi(.R) +  W%(R) +  T(R),  

gdzie Wi(R) = fl{Wi(r); r  € R} dla i = 1,2 oraz T(R)  =  R{T{r)-, r e  R}.

T w i e r d z e n i e  4.2.

Jądro Ker  =  K, gdzie K  jest podmodułem generowanym przez

następujące elementy:

(1) D(r,s),

(2) Wi(rs) -  r3Wi(s) -  «W i(r),  i =  1,2,

(3) 3sWi(r) -  3rW i(s)  -  (r -  a)(Wi(r + s) -  Wi{r) -  Wi(a)), * =  1,2,

(4) Wi(ar3 + bs3) -  Wi(ar3) -  Wi(bs3) -  Wi(ar +  ba) +  Wi{ar) + Wi(bs) -

-  3a2bWi(r2s) -  3at?Wi{rs2), i = 1,2,



(5) Wi{r + s +  t) -  Wi(r + s) -  Wi{s + t ) ~  W ^ r  +  i) +

+ Wi(r) + H ^s) + Wi(t) -  rstWi(2), i = 1,2,

(6) T(r + s) -  T(r) -  T(s) -  (2r 3s + 3r2s2 + 2rs2) T ( - l ) ,

(7) T(rs) — r4T(s) — sT(r), 

gdzie a, i» ,r,s£ R.

D o w ó d .

Jak poprzednio zauważmy, że K  C  /fe r  ■ Istotnie, dzięki Wnioskowi 4.4
_g  2\ _g 2
h ’ ) . Dzięki Przykładowi 2.2 wiemy, że wartości h

na elementach (2)-(5) są zerowe, natomiast dzięki Przykładowi 2.1 wiemy, że war-
_5 2 _5 2

tości h ' na elementach (6)-(7) są zerowe. Zatem h ’ indukuje homomorfizm 

h> ■ A 5’2(R ) /K  — > T5,2(R) C r 5,2 (i?). Oznaczmy przez W^i(i?) (odpowiednio 

W2(R), T(R))  obraz Vi(/2) (odpowiednio W2(R), T(R))  przez homomorfizm natu­

ralny. Wówczas h!(V\(R)) =  / 3(/^)((3 , 2 )) i analogicznie h'(V2(R)) =  / 3 (/2)((2 , 3 )), 

h'(W(R))  =  / 4 (i?)(((4,l)) + ((2,3))) Jak poprzednio (dzięki Twierdzeniu 2.10) 

można pokazać, że ograniczenia h'\ w^(B) monomorfizmami oraz że (dzięki
___5  «

h

skąd x  G Ker(h'). Wtedy na mocy Wniosku 4.5 i tego że D(r,s) € K,  mamy 

x = r(x,y)  +vJ \+W2 + t, gdzie r £ R,Wi G Wi(R),i  =  1,2 oraz t G T(R).  Stąd 

0 =  h'(x) = rcr + h'(w\) +  h'^w^) +  h'(t).

Ponieważ każdy składnik sumy po prawej stronie należy do innego składnika pro­

stego modułu r 5’2, więc r = 0 oraz h!(wf) =  h'(w2) = h'(t) = 0. Korzysta­

jąc z tego, że ograniczenia homomorfizmu h1 są monomorfizmami otrzymujemy, że 

v\ = V2 — w — 0. Zatem x  = 0, skąd i G  K.  □

Opuszczając symetryczne wersje relacji otrzymujemy następujące



T w i e r d z e n i e  4.3.

Następujące relacje tworzą pełny zestaw 2-równości dla klasy Horn,5 :

[A\),  (A2), (A) oraz

(1) D(r,s) = O,

(2) W(rs)  =  r3W(s) + sW (r),

(3) 3sW(r) -  3 rW(a) = (r -  s)(W(r + s) -  W(r)  -  W  (a)),

(4) W  (ar3 + bs3) -  W  (ar3) -  W(bs3) -  W(ar  + bs) + W  (ar) + W(bs) = 

= 3 a2b\V(r2s) + 3 ab2W (rs2),

(5) W(r  + a + t) -  W(r + s) -  W(s +  t) -  W(r  + t) +

+ W(r) + W  (a) + Wi(t) -  rstW(  2 ) =  O,

(6 ) T(r + s) = T(r) + T(s) + (2r3s + 3r 2s2 +  2rs2) T ( - l ) ,

(7) T(rs) = r*T(s) + sT(r),

gdzie a, b, r,a, t  G R, x, y, z są dowolnymi elementami z dzedziny odwzorowania, 

W(r) = - ( r  + l)(3(rx,x,y) + (3 -  r) (rx ,x ,x ,y )  + (x ,x ,ry ,y )  -

-  r2(2(x, x, x, y) +  (x, x, y, y)) -  3(2r -  r2)(x, x, y)) -

-  ((rx,y) -  (—rx,y)  — r((x,y) -  (-x , y) ) ) ,

T(r) = (rx ,y ) -  r(x,y)  +

-  ( - ( r  + l)(3(rx,x,j/) + (3 -  r ) (rx ,x ,x ,y )  + (x , x , r y , y ) -

-  r2(2(x,x,x ,y)  + (x , x , y , y )) -  3(2r -  r2)(x,x ,y))  -

-  ((rx, y) -  (—rx, y) -  r((x, y) -  ( - x ,  y)))) + 

r ( - ( r + l ) ( 3 ( x , r y , y )  + (3 -  r) (x ,ry ,y ,y )  + (x ,x ,ry ,y )  -

-  r2((x, x, y, y) + 2(x, y, y, y)) -  3(2r -  r2)(x, y, y)) -  

~ ((x, ry) + ( -x , ry) -  r((x, y) + (~x,  y)))),

D(r,s)  =  (rx,ay) — ra4(x,y) — s(sVTi(r) — rW ^s)) —

-  r(rW2(s) -  sŴ 2(/-)) -  (sT(r) -  rT(s)),



przy czym W\(r) =  W (r), W2(r) jest symetryczną wersją W\(r), a (x, y), (x , y , z ) 

oraz (x , y , z , t ) oznaczają wartość odpowiednio drugiego, trzeciego i czwartego de­

fektu rozważanego odwzorowania.



ROZDZIAł 5

Podsumowanie

Poniższe twierdzenie podsumowuje dotychczasowe badania nad relacjami speł­

nianymi przez odwzorowania stopnia 5, zawarte w Podrozdziale 3.2 oraz Rozdziale 4.

T w i e r d z e n ie  5.1.

Następujące relacje tworzą pełny zestaw równości spełnianych przez odwzoro­

wania stopnia 5, czyli deńniują klasę ED(Hom5) :

(1) relacje (Al), (A2), (A3),

(2) D(r,s,t) = 0,

(3) U(r + s) = U(r) + U(s) + rsU(2),

(4) U(rs) = r2U(s) + sU(r),

(5) V(rs) =  r3V(s) + aV(r),

(6) 3sV(r) -  3rV(s) = (r -  s)(V(r + s) -  V(r) -  ^(s)),

(7) V(ar3 + bs3) — V(ar3) — V(bs3) — V(ar + bs) + V(ar) + V(bs) =

= 3a2 bV(r2s) — 3 ab2V(rs2),

(8) V ( r + s + t ) - V ( r + s ) - V ( s + t ) - V ( r + t )  + V(r) + V(s) + V ( t ) - r s tV ( 2) =  0,

(9) D(r, s) = 0,

(10) W(rs) = r3W(s) + sW(r),

(11) 3sW(r) -  3rW(s) =  (r -  s)(W (r +  s) -  W(r) -  W(a)),

(12) W(ar3 +  bs3) -  W(ar3) -  W(bs3) -  W(ar + bs) + W  (ar) + W(bs) -

— 3a2bW(r2s) — 3ab2W(rs2) = 0,
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(13) W(r + s + i) — W(r + s) — W(s + t) — W(r + t) +

+ W(r) + W (a) + W{t) -  rstW{  2) =  0,

(14) T(r + s) = T(r) + T(s) + (2r3s + 3r2s2 +  2rs2)T { - \ ) ,

(15) T(rs) = r 4T(s) + sT(r),

gdzie wyrażenia D(r, s),U(r), V(r) zostały zdefiniowane Twierdzeniu 3.4, a wyraże­

nia D{r, s,t), W(r) ,T(r)  zostały zdefiniowane w Twierdzeniu 4.3. Ponadto

1) równość (3) można opuścić, a równość (4) zastąpić równością (2) 

z Twierdzenia 3.7,

2) równości (2)-(8) można zastąpić równościami (B), (BI), (B2), (S) 

z Twierdzenia 3.1.

Zauważmy, że w dowodach kluczowych twierdzeń (Twierdzenia 3.3 oraz Twier­

dzenia 4.2) nie korzysta się z postaci elementów U(r), F (r), W(r),  T(r).  Istotne 

jest tylko to, aby ich obrazy spełniały relacje analogiczne do tych, jakie spełniają 

elementy r2 — r, r 3 — r oraz r 4 — r. Oznacza to, że gdyby udało się znaleźć prost­

sze elementy o powyższych własnościach, również ostateczne równości mogłyby być 

prostsze. Zwróćmy również uwagę, że przy dodatkowych założeniach dotyczących 

pierścienia R  ostateczny zestaw równości również mógłby być prostszy. Łatwo za­

uważyć, że przy pomocy elementów W[(t),  (odpowiednio W"(r))  moglibyśmy otrzy­

mać prostsze równości w przypadku pierścieni z odwracalną trójką, (odpowiednio 

dwójką). Na koniec warto zauważyć, że zastosowana w tej pracy metoda może być 

również użyta do znalezienia relacji dla klasy Hom4.
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