Uniwersytet Slaski

Instytut Matematyki

Relacje spetniane przez odwzorowania stopnia 5

Maciej Maciejewski

Praca doktorska
napisana pod kierunkiem
dra hab. Andrzeja Prészynskiego

Katowice 2013



Sktadam serdeczne podziekowania

Panu dr. hab. Andrzejowi Proszynskiemu
za pomoc i cenne wskazowki

podczas pisania pracy.



Spis tresci
Wstep

Rozdziat 1. Preliminaria
1.1. Defekty odwzorowar i m—edwzorowania
1.2. Podzielone potegi

1.3. Procedura poszukiwania relacji

Rozdziat 2. Ideaty In(R)
2.1. Relacje pomiedzy elementami r2 —r
2.2. Relacje pomiedzy elementami rn —r,
gdzien=2l,1=1,2,3,...

2.3. Relacje pomiedzy elementami r3 —r

Rozdziat 3. 3-réwnosci dla klasy Horn5

3.1. Pelny zestaw 3—Ownosci - pierwsza wersja

3.2. Peiny zestaw 3—dwnosci - druga wersja

3.3. Modyfikacja drugiej wersji
Rozdziat 4. 2-réwnosci dla klasy i/om5
Rozdziat 5. Podsumowanie

Bibliografia

10

14

15

16

3

45
45
46

54

61

69

71



W:step

Niech R bedzie pierscieniem przemiennym z jedynka. W$réd wszystkich odwzo-
rowann pomiedzy il-modutami mozna wyrdzni¢ takie, ktére sg scharakteryzowane
przez pewne warunki typu réwnosci. Na przyktad odwzorowania liniowe spetniajg
nastepujgce dwa warunki:

(1) f(rx) =rf(x),r €R,
(@) f(x +y) =f(x) +1(y),
gdzie x,y sg dowolnymi elementami dziedziny /.
Odwzorowania kwadratowe mozna scharakteryzowa¢ przy pomocy nastepujgcych
warunkow:
(1) f(rx) —r2f(x),t ¢ R,
(2) funkcja dwdch zmiennych A2/ okreslona wzorem
(A2)(r,y) = f(x +y) - f(x) - Hy)
jest dwuliniowa.
Uog6lnieniem obu powyzszych typdw odwzorowan sg tak zwane m —edwzorowania
zdefiniowane w [1]. Zostang one oméwione w dalszej czesci pracy. W [4] udowod-
niono, ze wszystkie odwzorowania pochodzace z wielomianéw jednorodnych stopnia
m sg m—odwzorowaniami, jednak, w przeciwienstwie do przypadkéw m = 1 oraz
m = 2, na ogo6t nie na odwr6t. Oznacza to, ze przy m > 2 potrzebne sg dodat-
kowe warunki typu réwnosci. Przez warunek typu réwnosci bedziemy rozumieli

zwigzek  erjf("2k SjkXk) — 0, gdzie j, k przebiegaja skonfczone zbiory indeksow,



Tj,Sjk € R oraz Xk sg dowolnymi elementami dziedziny odwzorowania /. Przy tym
wygodnie jest zaktadaé, ze rj,Sjk sg ustalone dla kazdej rownosci. Je$li natomiast
sg one traktowane jako dodatkowe zmienne, to tak rozumiang réwno$¢ nazywamy
Scista. Doktadniej mowigc, rj oraz sjk rozumiemy woéwczas jako ustalone funkcje
wielomianowe skornczonej ilosci zmiennych o wsp6tczynnikach z Z, do ktérych mo-
zemy podstawi¢ dowolne elementy pierscienia (dla przyktadu w warunku (1) powyzej
wystepuje wyrazenie r2, w ktérym zmienng niezalezng jest r). Kiedy wiec méwimy
o Scistych rownosciach, dotyczg one odwzorowan pomiedzy modutami nad dowolnym
pierscieniem przemiennym R.

Klase A odwzorowan pomiedzy i?-modutami nazywamy réwnosciowo definiowalng,
jesli sktada sie ona ze wszystkich odwzorowan / : X —Y (X,Y ¢ R —Mod) spet-
niajgcych ustalony zestaw warunkéw typu réwnosci, tzn. takich odwzorowan, dla

ktérych

A nijk-EK) —0,i G GX
} k

przy pewnych ustalonych Tij,Sijk £ R. Jesli R nie jest ustalonym, lecz dowolnym
pierscieniem i réwnosci te sg Sciste, to klase takze nazywamy Scista.

Klasa Horrid odwzorowan pochodzacych od wielomiandéw jednorodnych stopnia
m nad ustalonym pierscieniem R na og6t nie jest rdwnosciowo definiowalna. Wine
za to ponosi fakt, ze z reguty wielomiany i odwzorowania wielomianowe nie sg tym
samym. Istnieje jednak najmniejsza klasa réwnosciowo definiowalna ED (HomJj)
zawierajgca H o r n przy czym wiadomo z [7], ze klasy te sg rowne nad dowolnym
ciatem. Inng sprawg jest kwestia, czy ta klasa jest Scista, czy tez nie. Odpowiedz
na to pytanie daje [3], Theorem 6.2. Okazuje sie, ze jest tak doktadnie wtedy,
gdy T < 5. Rownosci definiujace klase ED(Hom”) bedziemy nazywali peinym

zestawem réwnoscéi dla klasy H o r n Jesli rownosci te sg Sciste, bedziemy mowili



0 petnym zestawie rownosci dla klasy Homm. Jedng z rdwnosci, ktorg spetniajg od-
wzorowania klasy H o rn jest tak zwany warunek regularno$ci. W przypadku
m = 3 pokazuje sie ([7]), ze klasa ED(Hom?R) jest identyczna z klasg regularnych
3-odwzorowan. W przypadku m = 4 potrzebne sgjeszcze trzy dodatkowe Sciste row-
nosci. Dokitadny wynik dla m = 3 i m = 4 przedstawimy w nastepnym rozdziale.
Przypadek m = 5, jako ostatni niezbadany, jest przedmiotem niniejszej pracy. Dla
m = 5 rozwigzanie sktada sie z dwdch czesci. Jedna z wersji pierwszej czesci zostata
opublikowana w pracy [2]. W niniejszej pracy przypadek m = 5 zostanie zbadany
niezaleznie z wykorzystaniem innej metody, niz bylo to zrobione w [2]. Warunkiem
zastosowania tej metody jest znajomos$¢ relacji spetnianych przez elementy r2 —,
r3—- oraz r4 —r pierscienia R.

W pierwszym rozdziale podajemy definicje i twierdzenia znane z prac [4], [5], [7].
W rozdziale drugim znajdujemy relacje generujgce pomiedzy elementami rn —r,
gdzien = 21,1 = 1,2,... (Twierdzenie 2.6) oraz relacje generujgce pomiedzy ele-
mentami r3 — pierscienia przemiennego (Twierdzenie 2.10).

W rozdziale trzecim znajdujemy relacje tworzace petny zestaw tzw. 3-réwnosci dla
klasy Horn5 (Twierdzenie 3.3 oraz Twierdzenie 3.4).

W rozdziale czwartym znajdujemy relacje tworzace peiny zestaw tzw. 2-rdwnosci
dla klasy Hom5 (Twierdzenie 4.2 oraz Twierdzenie 4.3).

W rozdziale pigtym podsumowujemy badania nad relacjami spetnianymi przez od-
wzorowania stopnia 5, zawarte w Podrozdziale 3.2 oraz Rozdziale 4.

W catej pracy stosujemy podwojna numeracje, osobno dla twierdzen, lematéw, wnio-

skow i definicji.



ROZDZIA} 1
Preliminaria

Niech R bedzie pierscieniem przemiennym z jedynka. Przypomnijmy definicje

znane na przyktad z [1], [4] lub [7],
1.1. Defekty odwzorowan i m—edwzorowania

Definicja 1.1.

Jesli X, Y sg R—modutami, to dowolnemu odwzorowaniu f : X —Y mozna
przyporzadkowac jego n—ty defekt Anf : Xn —» Y, (n = 0,1,2,...), okreSlony
wzorem

(Anf)(Xi,...,Xn)= (-)n- W/ (5> ), (1-1)
Hc\l,n] iSH

gdzie [1,n] = {1.2,...,n}.

Defekty odwzorowania / pozwalajg wyrazi¢ wartosci tego odwzorowania na su-

mach elementéw za pomocg wzoru:

f{xi+ X2+ ...+ Xn) = E £ (A /X * * (L2
t=0 I<ji<...<je<n

Zauwazmy, ze A0/ = /(0), AV =/ —/(0) oraz Anf = A"(/ —/(0)) dla n > 0.
Poniewaz interesujg nas formy stopnia dodatniego, bedziemy dalej zaktada¢, ze

/(0) = 0 oraz n > 0. Przy tych zatlozeniach defekty mozna okresli¢ indukcyjnie

W nastepujacy sposob:



(D) A7 =/,
(2) (An+l/)(xo0,..., xn) = (Anf)(x0+ Xxi,x2,... ,Xxn)~
-(An)(x0,x2,...,a:n) - (An/)(xi, x2,..., Xn).
Ponadto (An/)(xi,,... ,xn) = 0, jeSli Xi = 0 dla pewnego i. Oczywiscie A"/ jest

symetryczne.

Definicja 1.2 (Ferrero, Micali, [1]).
m-odwzorowaniem nazywamy odwzorowanie f : X -» Y spelniajgce nastepu-
jace warunki:
(Al f(rx)=rmf(x) dlar GR, x GX,

(A2) Amf :Xm —Y jest odwzorowaniem m-liniowym.

D efinicja 1.3.
m —odwzorowanie f : X —» Y nazywamy regularnym, jesti jego (m —1)—szy
defekt () = Am-7 spelnia nastepujgcy warunek:
(A) (rx,sy,-) - r(x,sy,-) - s{rx,y,-) +rs(x,y,-) =0
dlar,s GR, x,y GX,

gdzie — oznacza pozostate k - 1 zmiennych.
Pewne wiasnosci regularnych m-odwzorowan podaje nastepujace

Twierdzenie 11 ([5], Proposition 2.5).
Dowolne regularne m-odwzorowanie f na R-module X spetnia nastepujgce
rownosci:
1) (ri*lt memtrm—AXm-) =
m—

Mooee eoeTm—i(Xi, ..., X_j,mXi, X _(i,...,Xm=Y)



m—
@) | Od XXX, - X
i=

- (2+ (771 2)1)(Xi,..., xm_i) = 0,
(3) (rsx,-) =r(sx, ) +s2(rx, — - rs2(x, -),
4) (r,-) = (m+r2)(rx, -) - +3(x,-),
(B) (r—r2)(sx,d = (s - s2)(rx, -) + (rs2—72s)(x, M),

gdzie ) = Am_1/ orazn, r,s £R, X,x £ X.

Pokazuje sie, ze wszystkie odwzorowania pochodzace od wielomianéw jednorod-
nych stopnia m sg regularnymi m —edwzorowaniami ([5]). Dotyczy to takze ich
uogdlnien, tzn. odwzorowarn wielomianowych wyznaczonych przez formy stopnia m
w sensie N. Roby [9], tzw. "prawa wielomianowe". Te odwzorowania sg okreslone
pomiedzy ii—modutami X, Y, w odréznieniu od zwyktych odwzorowar wielomia-
nowych, ktére sa okreSlone na Rn i tworza klase HorA”, o ktérej byta mowa we
Wstepie. Wiadomo jednak ([7]), ze zarbwno szersza, jak i wezsza klasa spetniajg
te same rownosci, dlatego prawami wielomianowymi nie bedziemy sie w tej pracy
zajmowali. W przypadku 771 = 3 pokazuje sie, ze klasa ED(Hom?R) jest identyczna z
klasg regularnych 3—edwzorowan, a zatem sktada sie doktadnie z tych odwzorowan,
ktére spetniajg warunki (Al), (A2) i (A). W przypadku = = 4 potrzebne sg jeszcze
trzy dodatkowe Sciste réwnosci, a mianowicie klasa ED (//om”) skiada sie doktadnie

z tych odwzorowan, ktore spetniajg warunki (Al), (A2) i (A) oraz
(B1) (rx,sy) - r(x,sy) - s(rx,y) +rs(x,y) - (s- s2[r] =0,
(B2) (rsx,y) - r(x,sy) - s3{rx,y) + rs3(x,y) + (s2- s3)[F] = 0,
(B3) 3(rx,y) - 3r(x,y) + (1 - r)(rx,x,y) +[r] =0,

gdzie [] = (rx,x,y) + (x,ry,r) - r2((x,x,y) + (x,y,y)) - 3(r - r2)(x.y).

W tym przypadku po raz pierwszy pojawiajg sie elementy [r] o skomplikowanej



postaci, ale o bardzo dobrych wiasnosciach, analogicznych do wiasnosci elementéw

t 2 —r pierScienia R. Podaje je nastepujace

Twierdzenie 1.2 ([7], Wniosek 5.1.4).
Dla dowolnych r,s 6 R mamy
() [r+s]= 1[0+ [8 +rs[2],
(2) [rs] = rls] + s2[r],
(3) (r2- nla] = (s2- )],
(4) 2[ = (r2- n[2], [2r] = (2r2- r)[2],

() M=1n—r [@=Mm=0 [2=[1]

1.2. Podzielone potegi

Niech E bedzie pierscieniem przemiennym z 1. JeSli X jest R-modutem, to
algebrg z podzielonymi potegami na module X (zobacz [9]) nazywamy R-algebre
przemienng generowang przez elementy x<m),x GX, m = 0,1,2... z relacjami

1) =1

(2) (rx)(m) = rmx®m\

(3) x(my(n) = (m, n)x m-+n\

(4) (x+y)M = Zi+j=mX{i¥ j)
dla x,y £ X,r £ R, gdzie (m,n) = (m+n) = (m+n) .
Algebre te oznaczamy r/t(X) lub po prostu T(Jf).
Przyjmujac degx(m) = m otrzymujemy naturalng gradacje r(X). Sktadowg stopnia
m oznaczamy r m(X) i nazywamy m-tg podzielong potega modutu X. Jest ona gene-
rowanajako il—modut przez elementy x”1)...xnn) dlaxi,... xn GX, ii+...+in=m,
z relacjami pochodzacymi z wypisanych powyzej. w szczegélnosci re(X) = R,

rir) = X oraz rm(R) = R m(m) « R.



Zaréwno T, jak i Tm sg funktorami. Jesli / : X — >Y jest homomorfizmem
R—modutéw, to T(f) : TA) —>T(F), T(f)(x*) = /(x)(m) jest homomorfi-
zmem algebr, a dla kazdego m = 0,1,2,... mamy homomorfizm R —modutow

rm(/) : rm(X) —¥rm(y) okres$lony na generatorach wzorem

rm(/)(*ii,)®\a)... xEn)) = soe/(*,)<F»>,

Formy stopnia m na X wsensie N. Roby ([9]) sa reprezentowane przez Tm(X). Ozna-
cza to, ze modut form stopniam z X do Y jest izomorficzny z HomR(Tm(X),Y),

a w szczegoélnosci modut form stopnia m z pierscienia ii[Xi,..., Xn]do R jest izo-
morficzny z HomR(Tm(Rn), R). Warto zauwazy¢, ze przyporzadkowanie X — >Tm(X),

X i=>x(m) jest regularnym m —odwzorowaniem, ktérego A—ty defekt () jest okreslony

wzorem (Xi,..., Xk) = " mm"k\ gdzie (i) oznacza cigg takich liczb catkowi-
to
tych dodatnichii,..., ifc, ze i\ +...-Hk = ra. Natych faktach opiera sie wykorzystanie

funktora Tm do znajdowania roéwnosci spetnianych przez odwzorowania stopnia m.

1.3. Procedura poszukiwania relacji

m—edwzorowania (odpowiednio regularne m—edwzorowania) tworzg klase row-
nosciowo definiowalng Applm (odpowiednio Appl™), ktdra jest oczywiscie Scista.
Klase m—edwzorowan (odpowiednio regularnych m —edwzorowarn) nad R bedziemy
oznaczali przez Appl* (odpowiednio Appl”*). Niech Am(X) = A*(X) (odpowiednio
Am(X) = A*(X)) bedzie il-modutem generowanym przez elementy om(x),x G X
(odpowiednio 6m(x),x £ X) z relacjami oznaczajacymi, ze Sm : X — >Am(X) (od-
powiednio 6™ : X — >A™(X)) jest m-odwzorowaniem (odpowiednio regularnym

m—edwzorowaniem). W przypadku 6™ chodzi o relacje

(Al) ™(rx) = rTSm(x) dlar GR, x GX,

(A2) ATR" : X m — >=>A™(X) jest odwzorowaniem m-liniowym,



(A) (rx,sy,-)- r(x,sy,-)- s(rx,y,-) +rs(x,y,-) =0,
gdzie () = A™-1~™
Z definicji tej wynika, ze regularne m-odwzorowanie / na X przedstawia sie jed-

noznacznie w postaci f = f o<I’, gdzie / jest fl-homomorfizmem. Oznacza to, ze

diagram

n/
=

jest przemienny, a wiec / jest okreSlony na generatorach wzorem / Af™(X)" = /(x).
Z wiasnosci uniwersalnosci otrzymujemy, ze A~ jest funktorem, przy czym jesli
[ : X —>Y jest homomorfizmem modutéw, to A™(/) : Am(X) — »A~" V),
s m(/) (T (x))=r((*)).

Stosujac wiasnos¢ uniwersalnosci do regularnego m —edwzorowania X — >Tm(X),

X i=>x(m), opisanego na koncu paragrafu 1.2, otrzymujemy

Twierdzenie 1.3 ([5], Corollary 2.2).
Okreslony jest nastepujgcy homomorrizm:
TT =JTiX) :Am(X) —>rm(X), /T A~ x)) = x(m\
Ponadto TTI((AkSm)(xi,... ,ik)) = mmx ¥\ gdzie (i) oznacza cigg takich

0
liczb catkowitych dodatnich i\,..., z%, zei\ + ... + i* = m.

Z podanych wzoréw, ze /i™ wyznacza przeksztatcenie funktorow, tzn. jesli

[ : X —>Y jest homomorfizmem modutdéw, to przemienny jest diagram



Niech {xi,... ,Xjt} bedzie bazg standardowg modutu Rk, k = 1,2,... Okreslamy

r mfc = = =mi.> cr

Amh=Amk(R) = R{(rix1,...,rkxky,rl,...rk ¢ R} ¢ A"i?*),
gdzie () = AkSm oraz (i) oznacza ciag takich liczb catkowitych dodatnich ii,...,ik,
ze ii + .. +ik—m. Ponadto okre$lamy

JT'k=TTV"n,K{R) :* (R ) -+ r™k(R),

JMIPEXINATKXK) = E(nzi) (il)... (rfxf)(d) = £> I*... r*x[n)... XEf).
W dalszej czesci pracy bed(;)iemy czesto pisali ((n ,...,(I?k)) zamiast x ~ ... x"k\
Pokazuje sig, ze Tm,k(R) jest modutem wolnym o bazie ((ii,..., ik)) = X*I*... x K\

>1,%+ ... +i*=m.

Poniewaz Amjest funktorem, mozemy podstawi¢ dowolne elementy za elementy bazy
X1i,..., Xjt, otrzymujac ii-homomorfizm na A71(Rk). W szczegd6lnosci dowolna permu-
tacja elementéw x\, ...,xk daje nam automorfizm modutu Arn(Rk), a po ogranicze-
niu automorfizm A mk(R). Innym przyktadem jest np. podstawienie xi za xk, ktére
daje homomorfizm na A mk(R) — >Am'k 1(R), (r\X\,... ,rkXk) >» (nxi,... ,rkX\).
Rzeczywiscie, obrazem elementu (rixi,... , TiXo) jest element
((n+nfe)xi,r2x2... , ™ -~ -1)-(7111,712 .. mrfc iXfc i)-(7-fxi, 7-2X2 .. mrk- iXfc i),
ktéry nalezy do A™* 1(R).
Pokazuje sie ([3]), ze réwnosci dla klasy Horrid sktadajg sie z tzw. fc-réwnosci (dla
ft > 1), ktére mozemy wyrazi¢ przy pomocy wartosci defektu Akf. Otrzymujemy je
znajdujac generatory jadra Ker . W celu otrzymania réwnosci z generatorow
wystarczy ([3]) nastepujgco zmieni¢ znaczenie symboli {r\X\, ...,TkXk). () oznacza
Akf zamiast Ak'6m oraz xi, ...,Xk sg dowolnymi elementami z dziedziny /. Modwimy
wtedy, ze sg to A—r6wnosci dla klasy H o m Jesli sg one Sciste, to méwimy, ze sg

to k—rownosci dla klasy Homm.



Jak wynika z [3], homomorfizm h™Z% jest izomorfizmem dla k = ik >m —1
To znaczy, ze (Al), (A2) i (A) tworzg Scisty system /c-rownosci klasy Horri® dla
tych k. System fc-rownosci klasy Horn” jest wiec Scisty dla k = 1 oraz k > m —1
Poza tym przypadkiem system ten jest Scisty jedynie dla (m, k) = (4,2), (5,3) i (5,2)
(patrz [3], Theorem 6.2). System taki zostat znaleziony dla (4,2) w pracy [6] oraz
(5,3) w pracy [2]. Wypracowane w przypadku (4,2) i (5,3) metody nie nadajg sie do
zastosowania w ostatnim niezbadanym przypadku (5,2). W zwiagzku z tym w niniej-
szej pracy za pomocg innej metody znajdziemy takie systemy zaréwno dla (5,2), jak
i (5,3). Osiggniemy to poprzez zbadanie Ker oraz Ker A mGeneratory
jadra Ker zostaty znalezione w rozdziale trzecim, natomiast generatory jadra

Ker (h5 j zostaty znalezione w rozdziale czwartym.



ROZDZIA} 2
Ideaty iIn(R)

Mowimy, ze ideat | piescienia przemiennego z jedynka R ma indeks n < 0o, o ile
[R/11=n. A zatem w pierScieniu R wyr6zniamy klase ideatéw skoriczonego indeksu

id(R) = {/ ¢ R; \R/I\ < 00}. Niech max(R) oznacza zbidr ideatbw maksymalnych

skonczonego indeksu.

Podstawowg role w dalszych rozwazaniach bedg odgrywaty zdefiniowane w [4] ideaty
In(Ry=(rn- 7 r GR) = (rns- rsn; r,s GR).

Rownos¢ obu postaci wynika z tego, ze rns —rsn = s(rn —r) —r(sn —s). Przy-
pomnijmy podstawowe wiasnosci tych ideatow udowodnione w [4]. Ideat In(R) jest

zachowany przy przejsciu do pierscienia utamkow i pierscienia ilorazowego. Inaczej

mowiac, mamy nastepujacy

Lemat 2.1 ([4], Lemma 5.1).

In(Rs) = In(R)S, In(R/J) = (/,,(«) + I)/J.
Poza tym mamy nastepujaca charakteryzacje:

Twierdzenie 2.1 ([4], Proposition 5.5).

In(R) = D{M Gmax(R); \R/M\ —I|n - 1}.

W dalszej czesci pracy szczegolne znaczenie bedag miaty ideaty I1(R) = h{R),

h(R), la{R). Z powyzszego twierdzenia mamy
14



W niosek 2.1.
Zachodzg nastepujace réwnosci:
12(R) = f|{M € max(R)-, \R/M\ = 23},

13(R) = f|{M G max{R); \R/M\ = 2 lub 33},

14(R) = fI{M e max(i?); [i?/M] 2 iub 4}.

W niosek 2.2.
Jezeli Rjest pierscieniem lokalnym o ideale maksymalnym M, to zachodzi jeden

z dwoch warunkéw:

(1) In(R) =M, gdy \R/M\ - I|n - 1
lub
(2) In(R) = R, gdy \R/M\ - 1 /n - 1.
W szczegdblnosci
(a) /2(fl) = M<*> |i?/M] = 2,
(b) /2(ii) = M [i?/M]| = 2 Jub 3,

© 12(R) =M  \R/M\ = 2 lub 4,

2.1. Relacje pomiedzy elementami r2 —r

Gtownym wynikiem pracy [8] jest nastepujace

Twierdzenie 2.2.
Niech C(R) bedzie R-modulem generowanym przez elementy

[r].r € R, z relacjami

1) [r+s]=1[]+[s]+rs[2], r,s £R,
) [rs] = r2[s] + s[r], r,s GR.



Wtedy istnieje R-izomorfizm P :C(R) — >I(R), taki ze
P(t-]) = r2—r dlar GR.

Inaczej mowiac, ideat 1(R) = /2(R) jest generowany przez elementy [rf] = r2—r
z relacjami (1) i (2). W dalszych rozwazaniach bedzimy potrzebowa¢ analogicz-
nych twierdzen dla elementéw r3 —r oraz r4 —r. W tym celu uog6lnimy powyzsze
twierdzenie dla wyktadnikow bedacych potegami dwdjki, a nastepnie udowodnimy

analogiczne twierdzenie dla elementéw r3 —.

2.2. Relacje pomiedzy elementami rn —r,

gdzien=2,1=1,2,3,...

Niech n bedzie ustalong liczbg postaci n — 21, | = 1,2,... Udowodnimy, ze
relacje generujgce pomiedzy elementami [r] = rn —r pierscienia przemiennego R sg
nastepujgce:

@) Ir+ 8] =[]+ B}+p(rs)-11, rs £R,
gdzie p(r, s) = fi:i\ (1) r n~ksk,
(2) [rs] = r"[s] + s[r], r,s GR.
Nalezy zwrdci¢ uwage, ze liczby ~ (£) w powyzszej sumie sg catkowite, gdyz n = 2|
oraz 0 < k <n.
Niech ii,i2, mmik oznaczajg nieujemne liczby catkowite i niech (ii,*2, mmm ik) ozna-

cza uogolniony symbol Newtona,

. (A + %2+ eee+ )
{i1,%2, = -—-—%-.—;-.-’-'I;! _____ .

Woprost z definicji wynika nastepujacy



W niosek 2.3.

Dla dowolnych o,ik>*fcH 6 N mamy:

(1) (¥11%2) e m*ei0) — (12> e m*fO)i

(2) (*0,i2, oo *jt*fcHi) = (*i + *2 + ome+ *fc *fc+i)(*ii*2, m-,h),

(3) (iui2,...,ik)= ("+---+%) ’

(4) jesli *i+*2+ ... +i* = 2l, oraz co najmniej dwa z indeksOw ij sg niezerowe,

to 5(»i,%2j oo, *fe) € Z.
Niech teraz p(ri,r2,..., rk) = _ \(N,*2,o0¢,*Orilr2 «sm»*, gdzie . oznacza

sume po zbiorze I tych ukladéw ind:akséw nieujemnych liczb ca’:kowitychI
@] *2»-oo zeii+i2+...+8fc = n oraz co najmniej dwa z indeksow ij sg niezerowe.
W szczegdlnosci przy k = 2 otrzymujemy poprzednig warto$¢ p(r, s) =

Tl—1

~ k5—215 (Zc) rMi~ksk- W dalszej czesci wykorzystamy uogélniony wzér Newtona
(n+r2+ ...rBro= n2 (h,i2,---ik)r\Ir2. .. rlk, (2.2)
ii+..#fc=Tn
gdzie jak poprzednio zaktadamy, ze ii, »2, mm  o0znaczajg nieujemne liczby catko-

wite. Z Whniosku 2.3 oraz wzoru (2.1) otrzymujemy nastepujacy

Lemat 2.2.

Dla dowolnych r\,r2,..., rk,rk+\ ¢ R mamy

p(n,r2,...,rk,rk+l) =p(n + r2+ ... + rk,rk+i) + p(n,r2,.s. ,rfo.

Dowod.
Z definicji mamy

p(n+r2+ ... +rfigHcH) = £ 5(MIM2)"M + r2+ ... + TK)3Ir*+V
ii +32=n
J2>°
Na mocy wzoru (2.1) wyrazenie to jest réwne



rﬁiﬁa"ii+i2+...+i*:ji K K+i

M+ —+ifc+l=n K AC+1
w+. — +ifc>0,ifc+,>0
= £ SAl--- % *AN N2 -~ L
f +-+ifc+l=n “ K+1
*1+ wm+*/t>° *fc+1>0
Otrzymali$my wiec sume po wszystkich takich uktadach indeksow ii, ..., ik+1, wérdd

ktérych przynajmniej dwa sg wieksze od zera, przy czym jednym z nich jest ik+i-
Wobec tego ostatnie wyrazenie, dzieki Whnioskowi 2.3 (1), jest to roznica

p(ri,r2,eee ~Mc,rfcH) —p(r\,r2,... ,r%), co dowodzi tezy.

2.2.1. C-funkcje.

Definicja 2.1.

C-funkcja nad R bedziemy nazywac taka funkcje f : R — >M, gdzie M jest
R-modutem, ktéra spetnia nastepujgce warunki:

1) f(r +s) =1f(r) +f(s)+p(r,s)f(-1), r,seR,

2y f(rs) = rnf(s) +af(r), r,s€ R,

Tl—1

gdziep(r,s) = £ .5 (fc)?'-*5%
fc=i

Lemat 2.3.
Jesli f jest C—funkcja, to dla dowolnych r,s £ R mamy
(3) (rn- nf(s) = (sn- s)f(r),
(4) 2/(r) = (rn-r)/ (1),
(5 /(0) = /(1) =0,

(6) jezeli sjest elementem odwacalnym, to /(s-1) = —s~n~1f(s).



Dowadd.

Relacje (3) otrzymujemy odejmujac stronami dwie symetryczne wersje (2).
Relacje (4) otrzymujemy z (3), przyjmujac s = —1 i korzystajac z tego, ze n jest
parzyste. Réwnosci /(0) = /(1) = 0 otrzymujemy kladagc w (2) r = s = 0 lub L
Niech s bedzie odwracalne. Poniewaz dzieki (2) mamy 0 = /(1) = f(s *s-1) =
= snf(s~1) + s~1f(s), wiec sn/(s-1) = —s~1f(s). Po pomnozeniu przez s~n otrzy-

mujemy /(s-1) = -s_n_1/(s). O

Uogdlnieniem (1) jest nastepujacy

Lemat 2.4.

Dla dowolnych T\,r2,mmrk £ R, k >2 zachodzi nastepujacy wzor:

k \ k
("Zri): +P(ri,r2,. rk)f{-1).

Dowod.

Stosujemy indukcje wzgledem k.
Na mocy warunku (1) wzdr zachodzi dla k = 2.
Jesli wzdr zachodzi dla pewnego k > 2, to

/ (E =/ (e ri+rk+ij =f ~"E + f{rk+1) +p n, rfcHin =

K
E f(ri)+p(n, 2,...,rf)/(-1) + /(rfcH) + p(ri,..., rk,rfcH)/(-1) =
1=1

fc+1

E/(n)+p(n,r2,...,rfcH)/(-1)

dzieki Lematowi 2.2. O



Przyk#ad 2.1.

Okre$lamy f :R — >R wzorem f{r) = rn —r. Wdwczas / jest C—funkcja.

Pokazemy, ze elementy rn —r spetniajg relacje (1)-(2).
(1) Poniewaz (—)" —(—1) = 2, wiec ze wzoru dwumianowego Newtona mamy:

(r+s)n—(r+s) —(n—r) - (sn—s) = "2 (£) rn~ksk —rn —sn =

=2Ei(l) = 2P(r,5) = p(r, -)/(-1),

(2) (rs)n —rs —rn(s" —s) —s(rn —r) = 0.

2.2.2. Funktor C.

Definicja 2.2.

Niech C(/i) = C\R) bedzie R-modutem generowanym przez elementy
[r], r GR, z relacjami:

D) [r+sl=1[1+Bl+p(rs)[-1], rs €R,

(2) [rs] = rn[s] -k-s[r], r,s £R.

Doktadniej, C(R) = F(R)/K(R), gdzie F(R) jest i?—modutem wolnym o bazie

{r; r GR}, a K(R) jest podmodutem generowanym przez elementy

1) F+§—HF-8§—(,s)-1, r,s £R,

(2) rs—rns- sr, r,s £R
i przyjmujemy [r] = t + K(R). Odwzorowanie ¢ : R — >C(R) okre$lone wzo-
rem c(r) = [r] jest oczywiscie C—funkcjg, ktdrg bedziemy nazywaé kanoniczng
C —funkcja. Zauwazmy, ze C(R) jest obiektem uniwersalnym ze wzgledu na C —funkcje,
co oznacza, ze dowolna C-funkcja moze by¢ jednoznacznie przedstawiona jako zto-
zenie kanonicznej C-funkcji ¢ : R — >C(R), c(r) = [r], oraz .R-homomorfizmu

okreslonego na C(R). Dokfadniej, mamy nastepujace



Twierdzenie 2.3.
Niech f : R — >M, gdzie M jest R—modutem, bedzie C—funkcja. Wowczas

istnieje doktadnie jeden homomorfizm R—modutéw f : C(R) — >M, taki ze diagram

R C(R)

1\\ v
M

jest przemienny. Jest on okres$lony na generatorach wzorem f ([r]) = f(r).

Dowod.
Z przemiennosci wynika wzér, a wiec takze jedyno$é. Wykazemy istnienie /.

Uzupetnimy diagram

R —" F(R) C{R)

w ktérym i :R — >F(R) jest okreslone wzorem i(r) = f,natomiast v : F{R) — >C{R)
jest homomorfizmem naturalnym. Oczywiscie / przedtuza sie do homomorfizmu g na
F(R), okreslonego na elementach bazy wzorem g(r) = f{r), a na dowolnym elemen-
cie wzorem g (13a»*7) =  aif(ri)- Poniewaz / jest C—funkcjg, wiec wszystkie ge-
neratory modutu K(R) przechodza poprzez g w zero. Istnieje wiec homomorfizm in-
dukowany / : C(R) — >M okres$lony na generatorach wzorem / ([r]) —gir) = f(r),

czyli taki, ze rozwazany diagram jest przemienny. O

Niech i : R — >R' bedzie homomorfizmem pierScieni przemiennych z jedynka.
Rozwazmy diagram
R C(R)
i 1C(i)

R’ c{R")



Poniewaz C(R') jest R'—modutem, wiec jest rowniez ii—modutem przez cofniecie
wzgledem i, z dziataniem mnozenia okreSlonym wzorem rm = i(r)m. Zauwazmy, ze
ztozenie d oi jest C—funkcjg nad R. Istotnie,

{doi)(r +s) =d(i(r +5s)) =d{i(r) +i(s)) =

= C(*M) + c'(i(s)) + p(i(r),i(s))d(i(-1)) =

= (doi)(r) + (do i)(s) + p(i(r), i(s))d(-1),

(doi)(rs) =d(i(rs)) = d(i(r)i(s)) = i(r)nd (i(s)) + i(s)d(i(r)) =

= rn(d oi)(s) + s(d o i)(r).
Zatem homomorfizm pierscieni z jedynkg i : R — >R"' indukuje homomorfizm
ii—modutéw C(i) : C(R) — >C(R") okreslony na generatorach wzorem
C*)([r]D = [*(M] Jest to homomorfizm modutéw nad i, co oznacza, ze
C(i)(x +y) = C(i){x) + C(i)(y) oraz C{i){rx) = i(r)C(i)(x).
Okres$lamy kategorie par w nastepujacy sposéb: obiektami sg pary (R, M), gdzie
R jest piescieniem przemiennym z jedynka, a M jest ii—modutem, natomiast od-
wzorowaniami sg pary gdzie i : R —>R! jest homomorfizmem pierscieni
z jedynka, natomiast j :M — >M" jest homomorfizmem modutdéw nad i. Poniewaz
oczywiscie C(ji) = C(j)C{i) oraz C(idp) = idc(R), wiec C jest funktorem z ka-
tegorii pierscieni przemiennych z jedynka do kategorii par, przyporzadkowujgcym

pierscieniowi R pare (R,C(R)), a homomorfizmowi i : R — >R' pare (i,C(i)).

2.2.3. Przemienno$¢é C z lokalizacjami. Pokazemy, ze funktor C komutuje

z lokalizacjami. Niech S bedzie zbiorem multiplikatywnym w R iniech i : R — »Rs
oraz i : M — >Ms beda homomorfizmami kanonicznymi, okre$lonymi wzorami

i{r) = f, i(m)=f .



Twierdzenie 2.4.
Dla dowolnej C-funkcji f : R — >M istnieje jedyna C-funkcja
fs mRs —* Ms spetniajgca warunek fs{i(r)) = i(f(r)) dlar e R,

tzn. uzupetniajgca diagram

R —~>RS
I

/ 'fs
M —> Ms

do diagramu przemiennego. Jest ona dana wzorem

lub réwnowaznie

, ke sf(r)-rf(s) fnA
h W e . (2'3)

Zachodzi réwniez nastepujgca rownosc:

Dowod.
Zauwazmy najpierw, ze prawe strony wzorow (2.2) i (2.3) sg identyczne dla

dowolnej C—funkcji /. Ich réwnos$¢ wynika stad, ze

/(O _ (T\nIM = (a"-a)/(r)-(rn-r)jf(a)+s/(r)-r/(3) sf(r)-rf(s)
a \s) S sn+l s™rn

dzieki Lematowi 2.3 (3).
Zatbézmy, ze istnieje uzupetnienie powyzszego diagramu. Warunek przemiennosci
oznacza, ze fs (y) = dlar € R. Niech s € S. Jezeli fs jest C-funkcja, to
fo=h Q)=fs (H)= ()" 1s({) +{fs (i) =
=(;r? +fls0O ,
skad wynika wzor (2.2). To dowodzi jedynosci fs-

Okreslamy teraz fs wzorem (2.2). Zeby udowodnié, ze fs jest poprawnie okre$lona,



zauwazmy najpierw, ze dzieki (2) mamy

f(Tt) _ (rt\n f(st) _ rnf(t)+tf(r) _ /r\« 3nf(t)+tf(s) _ /£r) _ /r\n /(a)
st \stJst st Va/ st j Vs / s !

Oznacza to, ze po prawej stronie wzoru (2.2) orzymujemy to samo, jezeli zastgpimy
r przez rt i s przez st dla dowolnego t £ S.

Niech teraz ~ = Woéwczas istnieje taicie t G S, ze rs't = r'st. Ale

oraz 7 = * Poniewaz liczniki i mianowniki po prawych stronach sg odpowiednio
réwne, wiec z poprzedniego rachunku wynika, ze prawe strony wzoru (2.2) dla i
sg identyczne.

Dla dowodu wzoru (2.4) zauwazmy, ze /(0) = 0, wiec na mocy wzoru (2.3) mamy

(4%) ({,})=fsm -ls«) - fs (f>=
_ tf(r+a)-(r+s)f(t) _ tf(r)-rf(t) _ tf(s)-af(t) _
(n+1 An+l fn+1

= «(/(r+«)-/(r)-/W) _
t+i

(A 2f)(r,s)
tn
Pozostaje udowodnié warunki (1) i (2) dla /5. Zauwazmy, ze dzieki przemiennosci
diagramu mamy fs(—1) = fs(®) = a z drugiej strony
p(f,f) = e }(Dar-*®* ="p-
k=1
Niech | i ~ beda dowolnymi elementami RS.
(1) Korzystajac ze wzoru (2.4) otrzymujemy
fs (! +$)- fs (f) - fs (5) = (AZs)(l,!) =
= = PfrW - =p(f,)/s(-1).

(2) Korzystajac ze wzoru (2.3) otrzymujemy

_ s2(f(ab)-a"f(b)-8n-1bf(a))-ab(/(a2)-an- 1sf(a)-anf(s)) _



_ a2(b-bsn I)/(%}r—&g(s-san Df(s) :bs((s-sn)fg%éo—en)/(a)) =U

dzieki (2) i (3) dla /. To konhczy dowdd. O

Twierdzenie 2.5.

Istnieje i?s-izomorfizm C(R)s ~ C(Rs), taki ze £ [yl

Dowod.

Stosujac Twierdzenie 2.4 do kanonicznej C-funkcji ¢ : R — »C(R), c(r) = [r],
otrzymujemy C-funkcje nad Rs okreslong nastepujaco:

cs -.Rs *"C(R)s,cs(;) =“ -(5H)”
Z Twierdzenia 2.3 mamy i?s-homomorfizm g : C(Rs) — >C(R)s,
okreslony wzorem g ([*]) = ¢s(®) = » —(™)n Z drugiej strony mamy homo-
morfizm C{i) : C(R) — >C(Rs) nad i : R — >Rs, taki, ze C(i)([r]) = [y]. ktory
daje nam dzieki uniwersalno$ci lokalizacji ife-homomorfizm h : C(R)s — >C(Rs),
taki ze /1(3%1) = i[f].
Zauwazmy, ze h = g-1. Istotnie,

J(R(*)) = Of)y=i(¥- (¥ =%
dzieki (5). Z drugiej strony, dzieki (7) i (2) obliczamy, ze

Stad h jest izomorfizmem. O

2.2.4. Homomorfizm P. Przypomnimy, ze z Przyktadu 2.1 mamy C —edwzorowanie
f : R ~ R okreSlone wzorem f(r) —rn —r. Zatem dzieki uniwersalnosci C(R)

istnieje R- homomorfizm P = P(R) : C{R) — >R uzupetniajgcy diagram

R —% C(R)



Jest on okreslony na generatorach wzorem P([r]) = rn—r ijego obrazem jest In{R).
Homomorfizmy P(R) wyznaczajg przeksztatcenie funktoréw, tzn. dla dowolnego

homomorfizmu pierscieni i : R — >R' nastepujacy diagram

C(R) R
c(i) i
C(R)) R!

jest przemienny. Rzeczywiscie,

P{RY) (COHYIrD) = PE)([I(M]) = (i(n)" - i(r) = i(r" - 1) = *(P(<)[r]).

Pokazemy, ze P jest monomorfizmem dla dowolnego pierScienia R.

Lemat 2.5.
Dla dowolnego zbioru multiplikatywnego S pierscienia przemiennego R mamy
nastepujacy diagram przemienny:
C(R)S
f
C(RS) P(Rs) Rs
gdzie f jest izomor&zmem z Twierdzenia 2.5. Zatem P(R)s jest monomorfizmem

wtedy i tylko wtedy, gdy P(Rs) jest monomorizmem.

Dowod.

p(Rs)(/(?)) =PRs)(HT) =\ ((F)n- f)=7 = = P(R)s (%)
[
Zauwazmy, ze
(r2] = [rw] = ro\A +r[r] = (rn+ n)[r].
Podstawiajac r2k za r otrzymujemy nastepujacy wzOr rekurencyjny:
Vet = ((rZg “ + r29 [r2]

W szczegoélnosci otrzymujemy



W niosek 2.4.

Niech r £ R. Wtedy
rl=pl] =(p-.)" + ((r*-f+r*-")... (r<+r) M.

Rozwazmy jadro i?-homomorfizmu P :C(R) — >R, P ([r]) = rn—r dlar £ R.

Lemat 2.6.

In(R)Ker(P) =0.

Dowod.
Niech x = E iat[r» £ Ker(P), to jest Ej ai(rP ~ ri) = 0. Wtedy dzieki Lema-
towi 2.3 (3) otrzymujemy, ze

(rm-r)x=Ej<rn-r)[rj =EjOi(r? - r))[r] =0[r] = 0. O

Przypomnijmy, ze na mocy Lematu 2.4 dla dowolnych n,r2,... ,rk£ R, k > 2

zachodzi nastepujacy wzor:

k

r< (2.5)

E .
Lt=I t=i
Lemat 2.7.

Niech z —1E_1 £ Ker(P), gdzie jeden z r*jest rowny —1. Jezeli wszystkie

k
g nalezg do In{R)m dla pewnego m > 0, to x = E bi[r*], gdzie wszystkie bi naleza
1=1

do In(R)nm+\

Dowod.
k k
Z zatozenia E tu™= E 1ajT{. Na mocy wzoru (2.5) otrzymujemy
1= 1=
iri = Fr.i1 = . Al o
Ela'”J =1 pl-i] 1|:Elau[n] + 1|:51 rilail +pl-il,

Eairi, =Ek?]+glil=E M +E rPM+¢[1]
gdzie



p=p(am,... ,akrk) = E §(*1,22,eee,u)(am)n (a2r2)12... (akrk)lk =
1
= E \ (*1»*2>eee ik)al a2 mmmak rl r2 mmmTk

g=p{air™,..., akrl) = E s(*i,*2,ee¢, *fc) (air?)M (a2r%w)l2... {akr%)lk =

= e W -0 j WnrT om )",
przy czym £ oznacza sume po zbiorze / tych uktaddéw indeksdéw nieujemnych liczb
/
catkowitych i\,... ik, ze ii + ... + ik = n oraz co najmniej dwa z indeksow ij sa

niezerowe. Poniewaz
k k k k
+£>"hi+ =X >N +£>?[*] +pM]>

i=1 i=1 i=1 i=1

wiec otrzymujemy

X = leoifa] = EI a"K"l1+ (9 - p)[-i] =

= E ai ((ri/1) +Till)((ri,2) +rf~2) mmri +r»)M + (9- >)—Pp
na mocy Whniosku 2.4.
Poniewaz at ¢ In(R)m, wiec a2 ¢ In(R)nmoraz r* + = = (-rj)n - (-*) ¢ In(R),
bo n jest parzyste. Stad

2(0 fD"+-F ") ((>F)n+'mr-2) eeoce+r<€ N(«) " m+l
Zauwazmy réwniez, ze a™al,2 G In(R)nm, bo aj ¢ In(R)morazii+..,+ik = n,
a takze (r°rn L tE] —rAr2 Lor]f 6 /,(i?). Stad
9-P = Ei(»i»2u.. A (M2 rx )t o e k%) G Tn(i?2rm+l.

To konczy dowdd. O

Z Lematu 2.7 otrzymujemy nastepujacy

W niosek 2.5.

k
Niech x = a,ifri] ¢ Ker(P) i niech M oznacza podmodut modutu C(R)
i=1

generowany przez [n],..., [rfdi [-1], Wtedy X G fim=0 IN(R)mM.



Dowod.

Teza wynika z tego, ze nm + 1> m dlam > 0, a podmoduty In(R)mM tworza
cigg zstepujacy. O
2.2.5. Zasadnicze twierdzenie. Glownym wynikiem tego paragrafu jest na-

stepujace

Twierdzenie 2.6.

Niechn =2, 1=1,2,... oraz C(R) = C"n\R) bedzie R-modulem generowa-
nym przez elementy [r],r 6 R, z relacjami:

Q) [r+s]=1[]+I[s]+p(r, Q] r.s€ R,

(2 [rs] = IF"[s] + s[r], r,s GR.

Wtedy istnieje R-izomorfizm P : C(R) —>/,(/?), taki ze P([r]) = r" —r dlar £ R.

Dowod.

Rozwazmy nastepujace przypadki:
Przypadek lokalny noetherowski.
Zatdézmy, ze R jest pierscieniem lokalnym i noetherowskim. Z Whniosku 2.2 wynika,
ze mamy dwa przypadki:
przypadek 1:In(R) = RmWtedy dzieki Lematowi 2.6 otrzymujemy, ze Ker(P) — O.
przypadek 2: In(R) jest ideatem maksymalnym pierscienia R. Niech x G Ker(P).
Okreslamy podmodut M jak we Whniosku 2.5 i zauwazamy, ze jest on modutem
skonczenie generowanym nad lokalnym pierscieniem noetherowskim R. Wtedy prze-
kréj we wniosku jest zerowy dzieki twierdzeniu Krulla o przekroju i w konsekwencji

x = 0. To dowodzi, ze Ker(P) = 0.



Przypadek noetherowski.

Zalézmy, ze pierscien R jest noetherowski. Wtedy wszystkie jego lokalizacje wzgle-
dem ideatéw pierwszych sg lokalne i noetherowskie. Z poprzedniego przypadku i z
Lematu 2.5 mamy, ze P jest takim homomorfizmem, ktory po lokalizacji wzgledem
dowolnego ideatu pierwszego jest monomorfizmem, a zatem P jest monomorfizmem.
Przypadek ogdlny.

Niech x —E iai[r»y e Ker(P). Okre$lamy podpierscieri S pierScienia R generowany
przez wszystkie elementy a* i r*. Poniewaz S jest skonczenie generowany, wiec jest
noetherowski, a zatem na mocy poprzedniego przypadku P : C(S) — >S jest mono-
morfizmem. Niech i :S — >R bedzie wiozeniem. Poniewaz P jest przeksztatceniem

funktoréw, wiec mamy diagram przemienny

C(S) S
C(i) i

v p *
C{R) -~> R

Zauwazmy, ze x = (C(i)) (y), gdziey = E iaqri] e
Poniewaz 0 = P{x) = P(C(i)(y)) = i(P(y)), wiec P(y) = 0, bo i jest wlozeniem.
Z poprzedniego przypadku wynika, ze y = 0 i w konsekwencji x = 0. To konczy

dowod. O

W niosek 2.6.
Jezelin =2I,1=1,2,..., to relacje generujace pomiedzy generatorani
[F] = rn—r ideatu 1,,(R) sg nastepujace:
Q) [r+s1=1[1+ [ +p(r.,s)[] r.s GR,
gdzie p(r,s) = f€=i\ (£)rn~fsfo
(2 T[rs] = rn[s] + s[r], r,s € R.



2.3. Relacje pomiedzy elementami r3- r

W tym paragrafie znajdziemy relacje generujgce pomiedzy elementami
{r} = r3 —r pierscienia przemiennego R. W tym celu przeprowadzimy analogiczne
rozumowanie, jak w poprzednim paragrafie. W zwigzku z tym bedziemy uzywac

podobnych oznaczen i terminéw.

2.3.1. C-funkcje i Funktor C.

Definicja 2.3.
C—funkcja nad R nazywamy takg funkcje f : R — >M, gdzie M jest R-
modutem, ktora spetnia nastepujgce warunki dla dowolnych a, b, r, r', sGR :
(1) f(rs) =r3/(s) + s/(r),
(2) 3sf{r) - Srf(s) = (r - s)(A2f){r, s),
(3) (A2/)(ar3,bs3) —(A2f)(ar,bs) = 3a2bf(r2s) + 3ab2f(rs2),

4) (A2H)(r +r',s) = (A2/)(r,a) + (A2/)(r',s) + rr'sf(2).

Zauwazmy, ze warunek (4) mozna zastapi¢ warunkiem
(4) (A3f)(r, r',s) = rr'sf(2),

gdyz z warunku (1) wynika, ze /(0) = 0 (por. ponizszy lemat).

Lemat 2.8.
Jesli f :R — >M jest C—funkcjg, to dla dowolnych r,s GR mamy
(5) (r3- r)f(s) = (s3- s)f(r),
(6) 6f(r) = (r3- /-)/(2),
(1) 1(0) = /(1) =0,
(8) jezeli s jest elementem odwracalnym, to /(s-1) = —s_4/(s),

(9 (A2f)(tr, ts) = t3(A2f)(r,s),



(10) (t3- t)(AZ)(r,s) = (3r2s + 3rs2)f(t),
(11) A4/ = 0.

Dowod.

Relacje (5) otrzymujemy odejmujac stronami dwie symetryczne wersje (1). Re-
lacje (6) otrzymujemy z (5), przyjmujac s = 2. Réwnosci /(0) = /(1) = 0 otrzy-
mujemy kiadagc w(1)r = s = 0 lub 1 Niech s bedzie odwracalne. Poniewaz dzigki
(1) mamy 0 = /(1) = f(s ms-1) = s3/(s_1) + s_1/(s), wiec -s-1/(s) = s3/(s-1).
Stad po pomnozeniu przez s-3 otrzymujemy /(s-1) = s~4f(s). Relacja (9) wynika
z definicji A2/ oraz (1). Istotnie,

(A20)(tr, ta) = f(tr + ta) - f{tr) - f(ta) =

= t3f(r +s) + (s+t)f(t) - t3f(r) - rf(t) - t3f(s) - sf{t) =

= t3{f(r +s)~ f(r) - f(s)) = t3{A2f)(r, s).

Relacje (10) otrzymujemy z definicji A2/ oraz (5). Istotnie,

(*3- t)(A2f)(r,s) = (t3- t)(f(r +s) - f(r) - f(s)) =

= ((r+s)3- (r+s))f(t) - (r3- r)f(t) - (@3- s)f(t) = (3r2s + 3rs2)f(t).
Poniewaz /(0) = 0, wiec z (4) otrzymujemy (11). Relacja (12) wynika z trdjliniowo-

sci A3/. O

Przyktad 2.2.

Okreslamy f : R — >R wzorem f(r) = r3—r. Pokazemy, ze f jest C —funkcja.

Zauwazmy najpierw, ze /(0) = 0, skad

(A2/)(r,s) —3r2s + 3rs2, (2.6)

(A3f)(r,s,t) = 6rst. 2.7



Istotnie,

(A2)(r, ) = f(r +5) - f(r) - f(s) =

= (r+s)3- (r+s)- (r3-r)- (s3- s) = 3r2s +3rs2,

(A)(r,s,t) = (AZ)(r +5s,t) - (AZ)(r,t) - (AZA)(s,t) =

= 3(r+s)2t+ 3(r+ s)t2- (3r2t +3rt2) - (3s2 + 3sf2) = 6rst.
Pokazemy, ze funkcja / speinia relacje (1)-(4).

(1) f(rs) - r3f(s) - sf(r) = (rs)3- rs- r3(s3- s) - s(r3- r) =0.

(2) 3sf(r) - 3rf{s) - (r- s)(A2/)(r,s) =

= 3s(r3- r)- 3r(s3-s)- (r- s)(3rs+ 3rs2)= 0.

(3) (A2f)(ar3,bs3) - (A2f)(ar,bs) - Za2bf(r2s) - 3ab2f(rs2) =

= S(ar3)2bs3 + 3ar3(bs3)2- (3(ar)2bs + 3ar(bs)2) -

- 3a2b{(r2s)3- r2s) - Sab2((rs2)3- rs2) =

= 3a2b(r6s3- r2s - r6s3+ r2s) + 3ab2(r3s6- rs2- r3s6 + rs2) = 0.

(4) Wynika to bezposrednio ze wzoru (2.7) i tego, ze /(2) = 6.

Podobnie jak poprzednio wprowadzmy nastepujgca definicje.

D efinicja 2.4.
Niech C(R) = C*(R) bedzie i?-modutem generowanym przez elementy

{r}, r € R, z relacjami:

(1) {rs} = r3{s} + s{r},

(2) 3s{r} - 3r{s} = (r- 9)lr.s],

(3) [ar3,bs3] —][ar, 6s] = 3a26{r2s} 4- 3a62{rs2},
(@) [rr\s] = [rs]+ [r,s]+ rr's{2}

gdzie [r,s] = {r + s} - {r} - {s} = (A2{})(r,s) oraz a,b,r,r',s e R.



Jak poprzednio mamy kanoniczng C—funkcje ¢ : R — >C(R) okreslong wzorem
c(r) = {r}. Modut C(R) jest obiektem uniwersalnym ze wzgledu na C—funkcje, co
oznacza, ze dowolna C-funkcja moze by¢ jednoznacznie przedstawiona jako ztozenie
kanonicznej C-funkcji ¢ : R — >C(R) oraz /i-homomorfizmu okreslonego na C(R).

Doktadniej, mamy nastepujace

Twierdzenie 2.7.
Niech f : R — >M, gdzie M jest R—modutem, bedzie C—funkcjg. Wdwczas

istnieje doktadnie jeden homomornzm R—modutéw f : C(R) — >M, taki ze diagram

R— C(R)
'I7
M

jest przemienny. Jest on okre$lony na generatorach wzorem /({r}) = f(r).

Jeslii : R —>i?'jest homomorfizmem pierscieni, to jak poprzednio otrzymujemy
indukowany homomorfizm modutéw C(i) : C(R) — >C(R") nad i, ktéry okreslony
jest na generatorach wzorem C(i)({r}) = {i(n}. Podobnie pokazujemy, ze C jest
funktorem z kategorii pierscieni przemiennych z jedynkg do kategorii par pierscien-
modut okre$lonej w poprzednim paragrafie.

Podobnie jak poprzednio pokazemy, ze C komutuje z lokalizacjami.
Niech S bedzie zbiorem multiplikatywnym w R i niech i : R — >Rs oraz

i :M — >Ms bedg homomorfizmami kanonicznymi.



Twierdzenie 2.8.
Dla dowolnej C-funkcji f : R — >M istnieje jedyna C-funkcja
fs mRs — > Ms spetniajgca warunek fs{i{r)) = dlar £ R,

tzn. uzupetniajgca diagram

r —U rs
|
/ 'fs
M —U Ms

do diagramu przemiennego. Jest ona dana wzorem:

fr\  f(r)  /r\3 f(s)

lub réwnowaznie

fs (% = (2.9)

Przy tym
(2.10)
(A1) (FFF) = ~ (U)

Dowod.

Réwnowaznos¢ wzoréw (2.8) oraz (2.9) wynika stad, ze dla dowolnej C—funkcji

/ mamy
f(r) _ /r\3 fis} (s3-s)f(r)-(r3-r)f{s)+sf(r)-rf(s) _ sf(r)-rf(s)
a \s) s ? J3

na podstawie (5) dla /.
Zalézmy, ze istnieje uzupeinienie powyzszego diagramu. Warunek przemiennosci
oznacza, ze fs (y) = dlar £ R. Niech s £ S. Jezeli fs jest C-funkcja, to
=fs (f) = s ((;) (F)) = (8)3/s (}) + (F)fs (§) =
= M3¥ +(M/*(),

skad wynika wzor (2.8). To dowodzi jedynosci /5.



Zeby udowodnic¢, ze fs jest poprawnie okres$lona, jak poprzednio, wystarczy spraw-
dzi¢, ze z prawej strony wzoru (2.8) orzymujemy to samo, jezeli zastagpimy r przez

rt i s przez st dla dowolnego t £ S. Dzieki (2) obliczamy, ze

f(rt) _ (rt\3f(st) _ r3f(t)+tf(r) _ /r\3 s3f(t)+tf(s) _ /(r) _ /t\3 f(s}
st \st/ st st \s/ st s \'s) s

Udowodnimy wzory (2.10) i (2.11), korzystajac z tego, ze fs(0) = 0. Tak samo jak

w dowodzie Twierdzenia 2.4 ze wzoru (2.9) otrzymujemy

(A2A) (2,f) =fs (5+ ) - fs (?) - fs (f) =
_ tf(r+s)-(r+s)f(t) _ tf(r)-rf(t) _ tf(s)-sf(t) _

— f(T+s)-f(r)-f(s) _ (A2/j(r,])
Wz6r (2.11) wynika ze wzoru (2.10). Istotnie,

(AVs) (f, f f) = (A2/s)(1 + T.f) - (A2fs) (b 1) - (AVs) (f f) =
= (A2/)(r+r';s) _ (A2/~(r,a) _ (A2/HTr's) = (A3/)(r,r',a)
Pozostaje udowodni¢, ze /s jest C—funkcjg. Niech [, j, | beda dowolnymi

elementami Rs. Wowczas

(L)/*(H)-(f)3/s(f)-(1)/s(S) =
_t2f(rs)—rsf(t2) _ /r\3 tf(s)-af(.t) _ rtf(r)-rf(t) _
t5 ul t3 t t3

_t2(r3/(a)+s/(r))-ra(t3/(t)+t/(t)) _ r3(t2/(a()8-at/(t)) _ s(t4/(r)(§'t3/(t)) .
:s'[Zf(T)-rstf(t)+r3stf(t)-st4f(r) —
_ost(t-t3)f(r)-(r-r3)stf(t) _ n
- S - u
dzieki (1) i (6) dla /.

(2) 3%s () - 3j/s(f) =3 rr~r» -3 ® no=

= 3,/(r)-3r/() = (r-*)(A2)(rS) = (D) (~) ()
dzieki (2) dla / i wzorowi (2.10)

(3) Korzystajgc ze wzoru (2.10) oraz (10) dla / otrzymujemy

(A2/s)(j(F)3,F(F)3) - (A2s)(?7>i7)



A2/ 3,6»3 A 2f ,b A 2f)(aT3,bs3) - (A 2f ,b t9-t3) (A2f ,b
( )(tnlé ) _ (A2f)(ar,bs) _ (A2f)(aT3,bs3)-(A2f)(ar,bs)  ( )(:15)(35__52 .
_ 3a2bt3f(r2s)+3ab2t3f(rs2) _ (3(ar)2bs+3ar(bs2))f(t3) _

— E))%%thf(rZs)-rZsf(tS) ; oab2 t3f(r52)\-r_§_?_f_(__t_§) _

=3#/*(£) +3f/s1£) ==3(F)«/s((Fp]) +3«(P)Vs(i(5)2).
(4" Zauwazmy, ze dzieki przemiennosci diagramu mamy /5 (f) = wiec ze
wzoru (2.11) otrzymujemy, ze

(A3/s)(j,j.i)= = = r_rL,m O

Twierdzenie 2.9.

Istnieje fl*-izomorfizm C(R)S « C(RS), taki ze +{£}.

Dowod.
Przeprowadzimy analogiczne rozumowanie jak w poprzednim przypadku. Sto-
sujac Lemat 2.8 do kanonicznej C-funkcji ¢ : R — >C(R), c(r) = {r}, otrzymujemy
C —funkcje cs :Rs —>C(R)s nad Rs, ¢s (§8) =~ —(n)3 Z Twierdzenia 2.7
mamy J?s-homomorfizm g : C(Rs) — >C(R)S,g ({*}) -cs(®) ="~ - (™)3
Z drugiej strony mamy homomorfizm C(i) : C(R) —>C(RS) nad i :R — >Rs okre-
Slony na generatorach wzorem C(i)({r}) = {y}, ktéry daje nam Ae-homomorfizm
h :C(R)s — >C(Rs), taki ze h = Hf}- Zauwazmy, ze h = g~I. Istotnie,
9(h(<?))=y «{»=K 1 - «)3*?)=¥
dzieki (7). Z drugiej strony, dzieki (8) i (1) obliczamy, ze
M(3))) =" -(5) ) =
= Hi) - F(f) =Hi) +{fH)3ti) =(51) = (5-

Stad h jest izomorfizmem. O



2.3.2. Homomorfizm P. Przypomnijmy, ze z Przykladu 2.2 mamy C —funkcje
/ : R — >R okre$long wzorem f(r) = r3—. Zatem na mocy Twierdzenia 2.7 istnieje
fi—homomorfizm P = P(R) :C(R) — >R uzupetniajgcy diagram
R — C(R)
¢
R
Jest on okreslony na generatorach wzorem P({r}) = r3—r ijego obrazem jest /3(i?).

Homomorfizmy P(R) wyznaczajg przeksztatcenie funktoréw, tzn. dla dowolnego

homomorfizmu pierécieni i : R — >R! nastepujacy diagram

C(R) -~> R
C(t) i
C(R") R>

jest przemienny. Rzeczywiscie,

P{R") (C()({r})) = PRH{i(N}) = (*(M3- t(r) = i(r3- r) =i (P(R){r}).

Pokazemy, ze P jest monomorfizmem dla dowolnego pierscienia R.

Lemat 2.9.
Dla dowolnego zbioru multiplikatywnego S pierScienia przemiennego R mamy
nastepujacy diagram przemienny:
C(R)S
f

cCw Rs
gdzie f jest izomorfizmem z Twierdzenia 2.9. Zatem P(R)s jest monomorfizmem

wtedy i tylko wtedy, gdy P{Rs) jest monomorfizmem.



Dowod.
pRs)(fF{")) =m sm T}) =
- {s- iy =1 = =p(R)s (%) » 0

Stosujac relacje (1) otrzymujemy nastepujacy

Lemat 2.10.
Dla dowolnego r £ R zachodzg wzory:
(1) 3= (r3+r)M -
(2) {t-2s} = rs{r} + + re{s},
(3 {r3}= (r6e +r4+ r2){r},

Dowéd.
Zauwazmy, ze
(1) {r2} = {rer} = r3{r} + {7} = (r3+ ?){r},
(2) {t"s} = r6{s} + s{r2} = r6{s} + s(r3+r){r} = rslr} + r3s{r} + r6{s}.

Wiasnos¢ (3) otrzymujemy z (2) przy s =r. O

Przypomnijmy, ze z wiasnosci (4’) mamy (A3{})(r, s,t) = rst2,

a z Lematu 2.8 (11) wynika, ze A4{} = 0. Stad i na mocy wzoru (1.2) otrzymujemy

W niosek 2.7.
Dla dowolnego skonczonego uktadu elementéw ri G R zachodzi nastepujgcy
WzOr:

=E fa) + ZJ[ri’r" + Tirirk{2)-
1

Vi i<j i<j<k

Rozwazmy jadro i?-homomorfizmu P : C(R) — >R, P ({r}) —r3 —r.

Lemat 2.11.

h(R)Ker(P) =0.



Dowod.
Niech x = J2iai{ri} e Ker(P), to jest » a,i{rf - rt) = 0.
W tedy dzieki (5) otrzymujemy, ze

(r3- Nx=Y,iai(r3- n{rjiy =~ <{rf- ri){r} = 0{r} =0.

Lemat 2.12.

k

Niech x = 0j{rj} € Ker(P), gdzie jeden z ri jest rowny 2. Jezeli wszystkie

1=1

ai naleza do 1z(R)m dlapewnego m > 0 orazjezeli spetniony jest jeden z warunkéw:
(D ru...,rk &I3(R)
lub

(2) 3G I3(R),
k

to x = 22 M rt}, gdzie wszystkie bi naleza do 13(R)3m+1.
I=i

Dowod.
k k

airf — E airii co bedziemy zapisywali jako E atr? ~ E anx™*
i=1 i=1 i i

Na mocy Whniosku 2.7, Lematu 2.10 oraz warunku (1) Definicji 2.4 otrzymujemy:

Z zatozenia

SE airi\ = E{atri} + EJairi.OTj] + ~ AA~AAAANLD2 Y =

Vi I i< <j<k

= E ai{rt} + E Tiwi] + E [Qirt» +_ E ~7TAN0ON(2}
i i <] i<j<k

oraz

{{E* 3 = E»{alrf}+ IE<j[ i»f>a3rj] + i<I§<ka|r|aj riakru2} =

E a?K3}+ E r8{a»}+ E _k rf.a3rj\ + _E airiajrjakfk{2} =
i i I<j i<j<k

E af(ri + ¢\ +ri){n} + E riiai} + E h"3.airj] + _E airiajrjakrl{2}-
* i *<j i<j<k

Poniewaz lewe strony powyzszych réwnos$ci sg identyczne, wiec na mocy warunku
(3) Definicji 2.4 otrzymujemy

Y.\aiT~ a3rj] +
1<]

x = E ai{riy = E fli(ri + rf+ rf){r<} + E kf.a/]] -
| | |<J

+ E airiajrjakrl{2}- £ 0" oM-0" (2}=

i<j<k i<j<k



E “i(» +ri+ri){"} + E 3aiaj{rirj} + E_naiaj{rirj} +
i i<j i<j

+ E I(alajafc(rfrj rc- Tirjrk){2} =

i<j<l

= T,aH(ri)3- ri+ri('ri-ri)+irf){ri}+'£3a”aj (rirj {ri}+rfrj{ri}+rf{rj} +
[ i<j

+ E Saitfirirjirj} + nr~rj} + r®{rt}) + E aialak{(rIT]rkf - rir]rk){2).
i< i<j<k

Zauwazmy, ze (r2)3- r2,rf - ru (r*r*)3- r*r*. G J3(R).

Stad ai<ijak((rirjrk)3 —TiTjTk) G Is(R)3Tn+1. Jezeli 3 G h(R), to oczywiscie 3a2ctj,
3aja2 oraz a3((r2)3-/f+rj(r3-ri)+ 3r2) nalezg do /3(/%)37-1:1 W przeciwnym razie,
jezeli wszystkie n nalezg do h{R), to afajrt, a”rj, ia3((r2)3- r2+ n(rf - rt) + 3r2)
nalezg do /3(/%)37:1l Stad wszystkie wspétczynniki w powyzszych sumach nalezg

do /3(i?)3m+1. O

W niosek 2.8.
Niech x = Ei=iai¢riy £ Ker(P) i niech M oznacza podmodut modutu C(R)
generowany przez {/**},..., {rk} i {2}.
Niech spetniony bedzie jeden z warunkdw:
(1) n,...,rke /3(H) oraz 2 G h{R)
lub
(2) 3G h(R).

Wtedy x e )% 0h(R)mM.

Dowod.
Jak poprzednio teza wynika stad, ze 3m + 1 > m dlam > 0 i z tego, ze

podmoduty 13(R)mM tworzg ciag zstepujacy. O



2.3.3. Zasadnicze Twierdzenie. Gtownym wynikem tego paragrafu jest na-

stepujace

Twierdzenie 2.10.
Niech C(R) = C~(R) bedzie R-modutem generowanym przez elementy

{r}, r GR, z relacjami:

(1) {rs} = r3{s} + s{r},

(2) 3s{r}- 3r{s} = (r - 9)[r,sl,

(3) [ar3,6s3] —Jar, fes] = 3026{r2s} + 3a62{rs2},

(@) [r+r,s] = [rs]+ [r,s] +rris{2Z}
dla dowolnych a,b,r,r',s 6 R, gdzie [r,s] = {r + s} —{r} - {s} = (A2{})(r, 9).
Wtedy istnieje R-izomorrfizm P : C(R) — >h(R), taki ze P({r}) = r3—r dla

reR.

Dowod.

Rozwazmy nastepujace przypadki:
Przypadek lokalny noetherowski.
Zatdzmy, ze R jest pierscieniem lokalnym i noetherowskim. Wtedy mamy dwa przy-
padki:
przypadek 1: /3(%) = R. Wtedy dzieki Lematowi 2.11 mamy Ker(P) = 0.
przypadek 2 : /3 (fi) jest ideatem maksymalnym, czyli cialo ilorazowe pierScienia
R ma dwa lub trzy elementy (por. Wniosek 2.1).
przypadek 2a: Jesli ciato ilorazowe ma trzy elementy, to 3 G /3(R). OkreSlamy
podmodut M jak we Whniosku 2.8. W tym przypadku spetniony jest warunek (2),
zatem spetniona jest teza. Poniewaz M jest modutem skonczenie generowanym nad

lokalnym pierscieniem noetherowskim R, wiec przekroj we Wniosku 2.8 jest zerowy



dzieki twierdzeniu Krulla o przekroju i w konsekwencji x = 0.
przypadek 2b: Zatézmy teraz, ze ciato ilorazowe ma dwa elementy; sg nimi /3 (ii)
oraz 1+ h(R) = U(R), a ponadto 2 G /3(R). Dzieki relacji (2) Definicji 2.4 przy
s = 1 otrzymujemy, ze

3{r} - 3r{l} = (r- D{r+ 1} - {} - {1},
skad (r + 2){r} = (r —D{r + 1}. W zwigzku z tym jesli r ¢ U(R), to réwniez
r+2c U(R), skad {r} = ~ {r + 1}, przy czym r + 1 jest nieodwracalny. Niech
x = 5Ziai(ri} e Ker(P). Jezeli jakie$ ri jest odwracalne, to {r*} przedstawiamy
w postaci {r" + 1}, co oznacza, iz mozemy zatozyC, ze wszystkie r* w powyzszej
sumie sg nieodwracalne, czyli nalezg do /3(/3). Ponadto, jak zauwazyliSmy powyzej
2 G h(R). OkreSlamy podmodut M jak we Whniosku 2.8. W tym przypadku spet-
niony jest warunek (1), a wiec jak poprzednio x = 0.
To dowodzi, ze Ker(P) =0, czyli P jest monomorfizmem.
Przypadek noetherowski.
Zatézmy, ze pierscien R jest noetherowski; wtedy wszystkie jego lokalizacje sg no-
etherowskie. Z poprzedniego przypadku i z Lematu 2.9 mamy, ze P jest takim
homomorfizmem, ktéry po lokalizacji wzgledem dowolnego ideatu pierwszego jest
monomorfizmem, co oznacza, ze P jest monomorfizmem.
Przypadek ogo6lny.
Niech x = a;[rj] ¢ Ker(P). OkreSlamy podpierscien S pierscienia R generowany
przez wszystkie elementy a* i r*. Poniewaz S jest skonczenie generowany, wiec jest
noetherowski, a zatem na mocy poprzedniego przypadku P : C(S) — >S jest mono-
morfizmem. Niech i : S — >R bedzie wlozeniem. Wtedy podobnie jak poprzednio
x = (C(i)) (y), gdziey = E iai[ry] G C(S). Poniewaz P(y) = P(x) =0, wiecy =0

i w konsekwencji x = 0. To korczy dowdd. O



Otrzymujemy wiec nastepujacy

W niosek 2.9.
Relacje generujace pomiedzy generatorami {r} = r3 —r ideatu /3 (R)

sg nastepujace:

(1) {rs} =r3{s} + s{r},
(2) 3s{r} —3r{s} —(r—s)({r + s} —{r} —{s})
(3) {ar3+ 6s3} —{ar3}- {bs3}- {ar + bs} + {ar} + {6s} =
= 3a2b{r2s} + 3ab2{rs2},
@) {r+s+t] ={r+sp+ {s+tp+{r+t}- {r}- {s}- {f} +rst{2}

dla a,b,r,s,t GR.



ROZDZIA} 3

3-rownosci dla klasy Hom 5

Gléwnym celem tego rozdziatu jest znalezienie relacji tworzacych petny zestaw
3—rdwnosci dla klasy Homb. Jedna z wersji petnego zestawu 3—r6wnosci dla klasy
Homb5 zostata znaleziona w pracy [2], Podamy ja w pierwszej czesCi rozdziatu. Po-
niewaz metody zastosowane w pracy [2] nie pozwalajg znalez¢ 2-réwnosci w drugiej
czesci rozdziatu przedstawimy inng metode, ktéra pozwala znalezé peiny zestaw

zaréwno 3—r6wnosci, jak 2—rownosci.

3.1. Peilny zestaw 3—r6wnosci - pierwsza wersja

Zacytujmy gtéwny wynik pracy [2].

Twierdzenie 3.1 ([2], Theorem 8).
Nastepujace relacje tworzg petny zestaw 3-réwnosci dla klasy Hom5 :
{Al), (A2), (.4) oraz
(B) B(r,s,t) ;= (rx,sy, tz) - r(x, sy, tz) - s(rx,y, tz) - t(rx, sy, z) +
+rs(x, y, tz) +rt(x, sy, z) + st(x, sy, tz) - rst(x,y,z) =0,
(B1) B\(r,s) := (x,ry,sz) -r(x,y,sz) - s(x,ry,z) +rs(x,y,z) -
- (s- s2)(C3(r) + [1]) = 0,
(B2) B2(r,s) :=(rsx,y,z) - r(sx,y,z) - s3(rx,y,z) +rs3{x,y, z) -
- (s2- s3)C3(r) =0,
(S) S(r):=(Tx,y,z) + (x,ry,z) + (x,y,rz) - (r3+ 2r){x,y,z) +
+(1- 0l =0,



gdzie r,s,t e R, x,V, z sg dowolnymi elementami z dzedziny odwzorowania,
C3(r) = 3(rx,y,z) - 3r(x,y,z) + (1 - r)(rx,x,y, z),
[T = (X, xy.2) + (X ry,y,2) + (X Y,r272) -
- r2(xx,y,2) + (% y,y,2) + (x,¥,2,2)) - 3(r - r2)(x,y, ),
a {x)Viz) oraz (x,y,z,t) oznaczaja wartos¢ odpowiednio trzeciego i czwartego de-

fektu rozwazanego odwzorowania.

3.2. Pelny zestaw 3—r6wnosci - druga wersja

Znajdziemy inny petny zestaw 3—réwnosci dla klasy Hom5 uzywajac alterna-
tywnej metody, niezaleznej od wynikéw pracy [2]. Przypomnijmy, ze problem zna-
lezienia poszukiwanych relacji sprowadza si¢ do wyznaczenia generatoréw jadra ho-

momorfizmu i~ A (R) — >r 5,3(i?), okre$lonego wzorem
h5'3(rx, sy, tz) = r3st((3,1,1)) + rs3t((l, 3,1)) + rst3((l, 1,3))+

+r2s2t((2,2,1)) + r2st2((2,1,2)) + rs2t2((1,2,2)), (3.1)

gdzie ((i,j,k)) = x*y”*z"k\ a (rx,sy,tz) = (A363)(rx,sy,tz).

WprowadZmy nastepujgce oznaczenia:
a = ((3,1,1) + ((1,3,1)) + ((1,1,3)) + ((2,2,1)) + ((2,1,2)) + ((1,2,2)),
B= ((3,1,1)) + ((1,3,1)) + ((1,1,3)),
R=((2,2,1) + ((2,1,2))+ ((1,2,2)).

Woweczas h * (X,y, z) = &= (72+ 03.

Z pracy [4] znamy nastepujacy opis modutu r 53(i?) = Im(h53):



Twierdzenie 3.2 ([4], Theorem 5.9).

T5'\r) = Rv® I12(R)((1,2,2)) © 12(R)((2,1,2)) © 12(R)((2,2,1))©
®/3(i?)((1,3,1))©/3(f1)((3,1,1)).

Jak fatwo zauwazy¢, przedstawienie elementu e (rx, sy, tz) w tej sumie prostej

jest nastepujace:
h53(rx, sy,tz) = rst3o+ rt(s2t —st2)((l, 2,2)) + st(r2t —rt2)((2,1,2)) +

+(r2s2t - rst3)((2,2,1)) + s(r3t - rt3)((3,1,1)) + r(s3t - st3)((l,3,1)), (3.2

gdzie, jak tatwo zauwazy€, r2s2t —rst3 —rs(t + 1)(t —t2) —(rs —(rs)2) € 12(R)-
Znajdziemy elementy modutu Kgf (R) = R{(rx,sy,tz), r,s,t Gi?} C A (R"),
ktérych obrazami poprzez R sg skladniki powyzszej sumy.
Rozwazmy nastepujace elementy modutu A (R) :
C3(r) = 3(rx,y,z) - 3r(x,y,z) + (L - r)(rx,x,y,z),
1= (X y,2) + (X 1y, Y, 2) + (XY, r2,2) - 12((X, X, ¥, 2) + (X, ¥, Y,2) +
+ (X, ¥,2,2) - 3(r- r2)(x,y, 2)
dlar,s,tf£ R.
Wprowadzamy nastepujgce oznaczenia:
Ui(r) = C3(r) + [r] = 3(rx,y,z) - 3r(x,y,z) + L - r)(rx, x,y,2) + [r]
oraz symetrycznie
u2(r) = 3(x,ry, z) - 3r(x,y,z) + (L - r)(x,ry,y,z) + [r],
U3(r) = S(x,y,rz) - 3r(x,y,z) + (1 - r(x,y, rz, z) + [r],
a takze

Fx(t-) = 2(rx,y,z) - 2r(x,y,z) + (1 - r)(rx,x,y,z)



oraz symetrycznie
va2(r) = 2(x,ry,z) - 2r(x,y,z) + 01 - r)(x,ry,y,z),
V3(r) = 2(x,y,rz) - 2r(x,y,z) + (1 - r)(x,y,rz, 2).

Lemat 3.1.
Dla kazdego r € R mamy
hs3(rx,x, y, z) = (3r2+3r)((3,1,1)) + 2r(((2,1,2)) + ((2,2,1))),
hs3(x, ry,y,z) = (3r2+ 3r)((1, 3,1)) + 2r(((1, 2,2)) + ((2,2,1))),
hs'3(x,y,rz,z) = (3r2+ 3r)((l, 1,3)) + 2r(((I, 2,2)) + ((2,1,2))),
skad
h”((rx, %, y,2) + (X, 1y,y,2) + (X, y,rz,2)) = (3r2+ 3r)er3 + 4ra2.

Dowéd.
Wystarczy udowodni¢ pierwszg rownosg.

Poniewaz (rx,x,y,z) = ((r+ Dx,y,2) - (rx,y,2) - (x,y, 2), wiec
hs3((rx,x,y, z)) = (r+ 1)3((3,1,1)) + (r + 1)((1,3,1)) + (r + 1)((1,1,3)) +
+ (r+ 1)2((2,2,1)) + (r + 1)2((2,1,2)) + (r + 1)((1,2,2)) -
S(r3((3,1, D)) +r((1, 3, ))+r((l, 1,3))+r2((2,2, 1)) +ra((2,1,2))+r((l, 2,2)))-
- (((3,1,1)) + ((1,3,1)) + ((1,1,3)) + ((2,2,1)) + ((2,1,2)) + ((1,2,2))) =

- (3r2+ 31)((3,1,1)) + 2r(((2,1,2)) + ((2,2,1))). 0

Lemat 3.2.

Dla kazdego r GR mamy

t3(lr]) = (r- r2)(((1, 2,2)) + ((2,1,2)) + ((2,2,1))).



Dowod.
Na mocy Lematu 3.1 otrzymujemy, ze
fi53([r]) = (3r2+ 3ncr3 + 472 - r2(6a3 + 4ct2) - 3(r - r2)«2 + ¥3) =

= (r- r2a2= (r- r2(((1,2,2) + ((2,1,2) + ((2,2,1))).

Lemat 3.3.

Dla kazdego r £ R mamy

t B(C3(r) = (r2- r)(((2,1,2)) + ((2,2,1))).

Dowod.
Na mocy Lematu 3.1 otrzymujemy, ze
h53(C3(r)) = 3(r3((3,1,1)) + r((l, 3,1)) + r((l, 1,3)) +
+r2((2,2,1)) + r2((2,1,2))+ 7-((1,2,2))) - 3 r +
+ (1 - nN(@7-2+ 3r)((3,1,1)) + 27-(((2,.1,2)) + ((2,2,1)))) =
= 33((3, 1,1)) + 37-((1,3,1)) + 3r((l, 1,3)) +
+3r2((2,2,1)) + 3¢2((2, 1,2)) + 3r((1, 2,2)) - 3ra +
+ (3r- 3e3)((3, 1,1)) + (2r - 2r2)(((2,1,2)) + ((2,2,1))) =

= (F2-7-)(((2,1,2))+ ((2,2,1))).

W niosek 3.1.
Dla kazdego r € R zachodzg nastepujgce réwnosci:
hs3(Ui(r)) —(r —r2)((l, 2,2)),
A5B(f12(r)) = (7--12)((2.1,2)),

AB3(F3(7-) = (r-r2)((2,2,1)).



Lemat 3.4.
Dla kazdego r e R zachodza nastepujgce réwnosci:
£53(Vi(r) = (r —r3)((3,1.1)),
hb3(V2(r)) = (r-r=)((1,2.1)),
T2'3(V3(r)) = (r-r3)((1,1,3)).

Dowod.
Na mocy Lematu 3.1 mamy
h53(Vi(r)) = 2(r3((3,1,1)) + r((l, 3,1)) + 7-((1,1,3)) +
+12((2,2, 1)) + 72((2,1, 2)) + r((1, 2,2)))
- 2r(((3,1,1)) + ((1.3,1)) + ((1,1,3)) + ((2.2,1)) + ((2,1,2)) + ((1.2,2))) +
+ (1 - 7)(@7-2+ 37-)((3,1,1)) + 27-(((2,1,2)) + ((2,2,1)))) =
= (2r3- 27-+ 3r2+ 3r - 3r3- 3r2)((3,1,1)) +
+(2r2- 2r+ 2r- 2r2)(((2,1,2)) + ((2,2,1))) = (r - r3)((3,1,1)).

Dzieki symetrii otrzymujemy pozostate wersje. O
Niech
D(r, s, t) —(rx, sy, tz) —rst3(x, y, z) —t(sU\{t) —tU\(s)) —st(ruz(t) —tU2{r)) —

- (rs(t + DJ73(t) - tU3(rs)) - s(rVi(t) - tVi(r)) - r(svVa{t) - iVA(s)).

W niosek 3.2.

h5'3(D(r,s,t))=0.

Dowod.

Zauwazmy, ze
h53(st/i(2) - tUi(s)) = s(t- 12)((1,2,2)) - t(s- s2)((1,2,2)) = (s2t- st2)((1,2,2)),
hs3(rU2(t)-tU2M) =r ( t - 2))-t(r-r2)((2,1,2) = (r2t-rt2)((2,1,2)),
hs3(rs{t + Dt/3(@) - tU3(rs)) = rs(t+1)(*-12)((2,2,1)) - t(rs- (rs)2)((2,2,1)) =



= (r2s2t-rst3){(2,2,1)),
hS3(VIE - V) = Ht- B(B.LL)- (- rEBLL) = (3t ra)((3.1,0)),
hs3(sV2(D) - tV2(8)) = s(t - t3)((1,3,1)) - t(s - $3)((1,3,1) = (s3t- st3)(13,1)).

Poréwnujac ze wzorem (3.2) otrzymujemy teze. O

Przedstawiajac dowolny generator (rx,sy,tz) przy pomocy D(r,s,t) oraz ele-

mentow typu U\{t), U2(r), U3(r), V\(r), V2(r), otrzymujemy nastepujacy rozkiad:

W niosek 3.3.
A5'3(R) = D{R) + R(x,y,z) +
+ U\(R) + U2(R) + U3(R) + Vi(i?) + V2(R),
gdzie D(R) = R{D(r,s,t); r,s,t € i?}, Ui{R) = R{UI(N\ rei?} da i = 1,2,3

oraz Vi(R) —R{Vi{r)\ r £R} dlai =1,2.

Twierdzenie 3.3.
Ker "h53] = K, gdzie K jest podmodutem generowanym przez nastepujace
elementy:
(1) D(r.s, 1),
(2) Ui(r +s) - Ui(r) - Ui(s) - rsui(2), *= 1.2,3,
(3) Ui(rs) - r2ui(s) - sUi(r), i =1,2,3,
(4) Vi(rs) - ravi(s) - «Vi(r), i = 1,2,
(5) 3sVi(r) - 3rVi(s) - (r- s)(Vi(r +s) - V*r) - ~(s)), i= 1.2,
(6) Vi(ar3+ bs3) - Vi(ar3) - Vi(bs3) —Vi(ar 4 bs) + Vi(ar) + Vi(bs) —
- 3a2bVi(r2s) - 3ab2K(rs2), i = 1,2,
(7) Vi(r+s+1t)- Vi(r+s) - K(s+1) - K(r+t) +
+ Vi(r) + Vi(s) + Vi(t) - rstVi(2), i= 12,

gdzier,s,t € R.



Dowod.

Zauwazmy, ze K C Ker(ﬁ5’3). Istotnie, dzieki Wnioskowi 3.2 wiemy, ze

ﬁg'S\J . Dzieki Przyktadowi 2.1 wiemy, ze wartosci TTS'S na elemen-

tach (2)-(3) sg zerowe, natomiast dzieki Przyktadowi 2.2 wiemy, ze wartosci ﬁ5’3 na
elementach (4)-(7) sa zerowe. Zatem h‘g’3 indukuje homomorfizm
h' : A53(R)/K — >T53(R) ¢ T53(R). Oznaczmy przez Ui(R) (odpowiednio Vi(R))
obraz Ut(R) (odpowiednio Vi(R)) przez homomorfizm naturalny. Woéwczas
h'(Ui(R)) = 12(R)((1,2,2)) i analogicznie h'(Jh{R)) = 12(R)((2,1,2)),
h'(Us(R)) = 12(R)((2,2,1)), h'(VjR)) = IS(R)((3,1,1)), h"*R)) =13(R)((1,3,1))
Pokazemy, ze ograniczenia h! do tych podmodutéw sg monomorfizmami. Dla przy-
ktadu pokazemy, ze jest monomorfizmem. Poniewaz ((1,2,2)) jest elemen-
tem bazy modutu r53(/i), wiec mozemy rozwazy¢ ztozenie h" : Ui(R) — >h(R)
homorfizmu h' z izomorfizmem /2(/2)((1,2,2)) « h{R), przeciwnym do rzu-
towania na li(R), okre$lone na generatorach wzorem h"(U\(r)) — r2 —r. Roz-
wazmy odwzorowanie U\ : R — > U\(R) okre$lone wzorem U\(r) = U\(r). Po-
niewaz elementy U\(r) spetniajg odpowiednie relacje dzieki (2)-(3), wiec U\ jest
C —funkcja. Z wilasnosci uniwersalnosci (Twierdzenie 2.3) istnieje wiec homomor-
fizm i : C(R) — >Ui(R) okreslony wzorem i(c(r)) — U\(r). Ale dzigki Twierdzeniu
2.2 istnieje izomorfizm P : C(R) — >h(R) okre$lony wzorem P([r]) = r2 —r, a
wiec taki, ze P = h" oi. Poniewaz P jest izomorfizmem oraz i jest epimorfizmem,
wiec h" jest monomorfizmem, a w konsekwencji jest monomorfizmem. Ana-
logicznie pokazujemy, ze pozostate ograniczenia sg monomorfizmami, korzystajac z
relacji pochodzacych z pozostatych generatorow modutu K ((2)-(7)).
Niech teraz x € Ker , a wiec x G Ker(h’). Korzystajagc z przdstawienia we

Whiosku 3.3 i tego, ze D(R) ¢ K, mamy x —r(x,y,z) +tf[+ R+ B +W +\2,



gdzie r &R,Uie Ui(R),i = 1,2,3 oraz v{G~ ),1 = 1,2. Stad

0 = h'(x) = rt7 + hi(u\) + h'(v,2) + h'(u*) + h1(W\) + h'(v2).
Poniewaz kazdy sktadnk sumy po prawej stronie nalezy do innego sktadnika prostego
modutu r ’, wiec h'(ui) = h'iui) = h'(uz) — h!(W\) = h'{v2) = 0. Mamy takze

— 0, a w konsekwencji r —0. Korzystajac z tego, ze odpowiednie ograniczenia
homomorfizmu b! sg monomorfizmami otrzymujemy, zeW[ =W = =wW =W =

a zatem 5 = 0, skad x GK. O

Pomijajgc symetryczne wersje otrzymujemy nastepujace

Twierdzenie 3.4.
Nastepujgce relacje tworza petny zestaw 3-réwnosci dla klasy Hom5 :

(141), (j42), (A) oraz

(1) D(r,s,t) =0,
(2) U(r +s) = U(r) + 17(a) + rsU(2),
(3) U(rs) = r2u(s) + su(r),
(4) VA(rs) = r3Vv(s) + sV(r),
(5) 3sV(r) - 3rV(s) = (r- s)(V(r +5s) - V(r) - V(a)),
(6) V(ar3+ bs3) - V(ar3) - V(bs3)- V(ar +bs) + V(ar) + V(bs) =
= 3a2bV(r2s) —3ab2V{rs2),
() V(r+s+t)-V{r+a)-V(a+t)-V(r+1+) +V(r) +V(s) +V(t)-rstV(2) =0,
gdzier,s,t GR, Xx,y,z sg dowolnymi elementami z dzedziny odwzorowania,
u(r) = 3(rx,y,z) - 3r(x,y,z) + (1- n(rx,x,y,2) +
(XY 7))+ (Y, Y, 2) (XY, 1z, 2) - T2((6 XY, 2) + (XYY, Z) +
+ (*\V,2,2)) - 3(r- r2)(x,y,2),
V(r) =2(rxy,z) - 2r(xy,z) + (1- n(rx, x,y,2),



D(r, s, t) = (rx, sy, tz)- rst3(x,y, z) - rt(sU\ (t)- tU\(s)) - st(ru2(t) —tUz(r)) -

- (rs(t + 1)U3(t) - tUs(js)) - s(rVi(t) - tVi(r)) - r{sVa{t) - tV2(s)),
przy czym Ui(R) = U(R), = V(R), a U2(R), U3(R) (odpowiednio V2(R))
sg symetrycznymi wersjami U(R) (odpowiednio V(R)), a (x,y,z) oraz (x,y,z,t)
oznaczajg warto$¢ odpowiednio trzeciego i czwartego defektu rozwazanego odwzo-

rowania.
3.3. Modyfikacja drugiej wersji

Pokazemy teraz, ze w Twierdzeniu 3.4 relacje (2) mozna opusci¢, a (3) zmody-
fikowaC. Zastosujemy tu pewne fakty pochodzace z [2]. Niech P :KSS(R) —>R
bedzie rdéznicg ztozerh homomorfizmu ﬁ5’3 z odwzorowaniami wspo6trzednych przy
elementach bazy ((3,1,1) i ((1,2,2)). Jest to wiec homomorfizm okreslony wzorem
P(rx, sy,tz) = r3st —rs2t2. Nietrudno sprawdzi¢ (zob. [2], Lemma 1, Corollary 1),

ze wiemy, ze P([r]) = r2—r dla kazdego r £ R.

Twierdzenie 3.5 ([2], Theorem 2).
n3
Ograniczenie homomorfizmu P : A ” (R) — >R dopodmodutu [i?] = i?{[r];r £ R}

modutu A53(R) ustala izomorfizm [/?7] z ideatem I(R) = (r2—r;r £ R).

Dowéd.
Oczywiscie ograniczenie P do [/7] jest epimorfizmem. Pozostaje wiec udowodnic,
ze jest monomorfizmem. Zatézmy, ze E t0*79 e Ker(P) dla pewnych aj,rj 6 R,
a zatem Yli ai(ri ~ 1i) = 0- Wobec tego airi = Et airi = s* Rozwazmy element
u = T,iai(riXi,x2,x3,xi) £ A54(ii),
gdzie {x\,i2,x3,xa}jest bazg standardowg i?4. Poniewaz /i54 jest monomorfizmem
(por. Rozdziat 1) oraz

h54(u) = "2iai(r2x » X2X3Xi + rixix "x x4+ r~x "~ x ™ xg+ rix\x2x3x =



= 5(XAX2X3X4 + XiX2/DBX4 + XiX2X X4 + X\X2X3X A) = /I54(s(Xi, X2, X3, X4)),
wiec u = s(xi, X2, X3,X4). Przejdzmy teraz do modutu KS’B(R) przez podstawienie
xi,x4 X, X2, 3+>z- Dokladniej méwigc, zastosujmy homomorfizm
A5(/) : A5(R4) — >A5(R3), gdzie / : R1— >R3jest homomorfizmem okreslonym
na bazie jak powyzej. Z rownosci

n IX2.x3, X8)  s(xi, X2, X3, %4).
otrzymujemy

Eioi(TiX x,y,2) = s(X, XY, 2).
Dzieki symetrii otrzymujemy réwniez

Yliai(x’riy,y, z) = s(x,y,Y, 2),

Eiai(x>2riz.2) = s(x2-22)*
Stad

Eici[r] = v~iai(rix~x,y,z) + + 52i0i{x,V,riz,z) -

- Ei *2,%)- Ei yX.*) - Ei ¥,2,2) -

-3 T,iai{n-rt){x,y,z) =

= s(x,x,j/,z) + s(x,y,y,z) +s(x,y,z,z) -

- s(X, %, ¥, 2) - s(x,¥,Y,2) - s(x,y,z,z) = 0. O

Z powyzszego twierdzenia wynika, ze elementy typu [r] spetniajg zatozenia

Twierdzenia 2.2, otrzymujemy wiec

W niosek 3.4 ([2], Corollary 2).

Dla dowolnych r,s GR mamy
(@) [r+s] =11+ [s]+rs[2],
(2) [rs] = r[s] + s2[r],

() (r2—n)s] = (s2—9)[r],



4) 2[]=(r2- np2l, [2] = (2r2- n[2],
® M=0_—r [=1Mm=0 [2=[-1],
(6) jezeli r2—r —2s, to [r] = s[2],

(7) jezeli sjest odwracalne, to [s-1]= —s_3[s].

Dzieki uniwersalno$ci powyzsze réwnosci zachodzg rowniez dla dowolnego regu-
larnego 5—edwzorowania /. W dalszym ciggu rowniez zaktadamy, ze / jest dowol-
nym regularnym 5—edwzorowaniem, () = A3/ oraz x,y,z sg dowolnymi elementami

z dziedziny /.

Lemat 3.5 ([2], Lemma 6).
Dla dowolnych r,s GR mamy
(1) 2(rx,sx,y,2) = 2rs(x, X, ¥,2) + (rs2+ r2s - 2rs)(x, X, X, Y, z),
(2) C3(2) = (x,x,y,2) - (X,X,X,Y,2),
(3) ( tx.y,z) + (rx,y,z) =r2C3(2),
(4) B2(r,-1) = (r2- r)C3{2) - 2C3{t).

Dowod.
(1) Zauwaimy, ze na mocy Twierdzenia 1.1 (5), przy r = 2, mamy
2(sx, x,¥,2) = (s2- s)(2X, X, ¥, Z) + (4s - 2s2)(x, X, Y, 2).

Stad i dzieki regularnosci (wiasnos¢ (A)) otrzymujemy

2(rx, SX, ¥,z) = 2(r(x, sX,¥,z) + s(rx, x,y,2) - rs(x, x,y,2)) =

r((s2- s)(2x,x,y,z) + (4s - 2s2)(x,x,y,*)) +

+

s((r2 - r)(2x,x,y,z) + (4r - 2r2)(x,X,y, z)) - 2rs{x,x,y,z) =

(rs2--r2s —2rs)(2x, x, Y, z) + (6rs —2rs2 —2r2s)(x, X, y, z) =

(rs2 +r2s —2rs)(x, X, X, ¥, 2) + (2rs2 + 2r2s —4rs)(x, x,y, z) +

+ (6rs —2rs2- 2r2s)(x, X, ¥,z) = (rs2+r2s- 2rs)(x, X, X, ¥, z) + 2rs(x, X, Y, 2).



(2) C3(2) = 3(2x,y,z) - 3-2(X,¥,2) - (2®X,Yy,2) =
= 3(x,x,y,z) - (2(x,x,y,z) + (1,1,2,9,2)) = (x,X,y,z) —(X,X,X,y,2).
(3) Dzieki (A), (A2), (1) oraz (2) obliczamy, ze
(—x,y,z) + (rx,y,z) = -(—x,rx,y,z) = (rx,rx,y,z) + (—x,rx,rx,y,z) =
= 2r(rx, X, ¥,2) - r2(x,X,3,2) - r3(X, X, X, ¥, 2) =
=2r2(x, X, ¥,2) + (r3- r2(X, X, X, ¥,2) - r2(x, X,¥,2) - r3(x, X, X,y,2) =
= r2((x,x, j/,2) - (x,x,X,y,2)) = r2C3(2).
(4) Dzieki (3) otrzymujemy, ze
®mrx,y,z)- r(—x,y,z) + (rx,y,z) - r(x,y,z) = (r2- r)C3(2).
Zatem
B2(r,-1) = ( rx,y,2) - r(-x,y,2)+ (rx,y,2) - r(x,y,2) - 2C3(r) =

= (r2- r)C3(2) - 2C3(r).

Twierdzenie 3.6 ([2], Proposition 1).
Dla dowolnych r,s £ R mamy
(1) C3(r + s) —C3(r) + C3(s) + rsC3(2),
(2) C3(rs) - rC3(s) - s2C3(r) = 3B2(r,s) - (s2- s3)B2(r, -1),

gdzie B2(t,s) zostato zdefiniowane w Twierdzeniu 3.1.

Dowéd.
(1) Zauwazmy, ze
C3(r +s)~ C3(r) - C3(s) =
= 3((r+9)x,y,2) - 3(r+*)(xy,2) + (L- (r+s)((r+s)xxy,72) -
- 3(rx,y,2) + 3r(x,y,2) - (1- r)(rx, x,y,2) -
- 3(sX,y,2) + 3s(x,y,2)-(1- s)(sx, X,V,2) =

= 3(rx,sx,y,z) + (L - (r +9s))((rx,x,y, 2) + (sx,x,y,z) + (rx, sx,Xx,y, z)) -



- (1- 0, xY,2) - (- s)(sx,x,y,z) =
= 3(rx,sx,y, z) - r(sx,x,y,z) - s(rx,x,y,z) + (1 — —s)(rx, sx,x,y, 2).
Na mocy (A2), Lematu 3.5 (A) ostatnie wyrazenie jest rowne
2(rx, sx, ¥,z) + ((rx,sx,y,2) - r(sx, x,y,2) - s(rx, x,y,z)) +
+ (rs —2s —rs2)(X, X, X, ¥, Z) =
= 2rs(X,X,y, z) + (rs2+r2s —2rs)(x, X, X, ¥, 2) —rs(x, X, ¥, z) +
+ (rs - r2s —rs2)(x, X, X, Y, z) —
=rs(X, X, ¥,2) - rs(x,X, X,¥,2) =rsC3(2).
(2) Zauwazmy, ze
C3(rs) - rC3{s) - s3C3(r) - 3(B2{r,s) + (s2- s3)C3(r)) =
= 3(rsx,y,z) - 3rs(x,y,z) + (1 - rs)(rsx, x,y, z) -
- r(3(sx,y,z) - 3s(x,y,z) + (L - s){sx,x,y, z)) +
- 83(3(rx,y,2) - 3r(x,y,2) + (L - r)(rx, x,y,2)) -
- 3((rsx,y,z) - r(sx,y,z) - s3(rx,y,z) +rs3(x,y,2)) =
= (- rs)(rsx,x,y, z) - r(I - s)(sx,x,y,z) - (1 - r)s3(rx,x,y,z).
Dzieki regularnosci (Twierdzenie 1.1) (3) i (5), ostatnie wyrazenie jest rowne
(1 - rs)(r(sx,x,y, z) + s2(rx,xy,z) - rs2(x,x,y,z)) +
+ (rs - r)(sx,x,y,z) + (rs3- s3)(rx, x,y,2) =

= s(r- r2)(sx,x,y,z) + (s2- s3)(rx, x,y,2) - (1 - rs)rs2(x, x,y,z) =

s((s - s2)(rx,x,y, z) + (rs2- r2s)(x,x,y,z)) + (s2- s3)(rx,x,y, z) +
+ (r2s3- rs2)(x,x,y,z) =
= 2(s2- s3)(rx, x,y, z) - (s2- s3)(r + r2){x,x,y, 2).
Stosujac Lemat 3.5 (1) i (2) otrzymujemy, ze ostatni element jest réwny
(s2- s3)(2r(x,x,y,z) + (r2- r)(x,x,x,j/,z)) - (s2- s3)(r + r2)(x,x,y,z) =
= (s2- s3)(r - r2)((x,x,y,2) - (X,x,X,y,2)) = (s2- s3)(r - r2)C3(2).



Ostatecznie, dzieki Lematowi 3.5 (4) otrzymujemy, ze
C3(rs) - rC3(s) - s2C3(r) =
= 3(B2(r,s) + (s2- s3)C3(r)) - (s2- s3)C3(r) - (s2- s3)(r2- r)C3(2) =

3((fl2(r, @) + (s2- s3)C3(r)) - (s2- s3)C3(r)) -
- (s2- s3)(B2(r,-1) + 2C3{r) - 2C3(r)) =
= 3B2(r, s) —(s2 - s3)B2(r, —1). O

W niosek 3.5.
Dla dowolnych r,s e R mamy
(1) U(r +s) - U(r) - U(s) - rsU(2) =0,
(2) U(rs) - ra2u(s) - sU(r) =3B2{r,s) - (s2—s3)B2(r, -1),

Oznacza to, ze gtdwny wynik mozemy zapisa¢ jako nastepujace

Twierdzenie 3.7.
Nastepujace relacje tworzg petny zestaw 3-réwnosci dla klasy Homs :
(>11), (A2), (,4) oraz
(1) D(r,s,t) =0,
(2) SB2(r,s) —(s2 —s3)B2(r, —1) = 0,
(3) V(rs) =r3V(s) +sV(r),
(4) 3sV(r) —3rV(s) = (r—s)(V(r +s) —=V(r) —V(s)),
(5) V(ar3+ bs3) —V(ar3) —V(bs3) —V(ar + bs) + V(ar) + V(bs) —
= 3a2bV(r2s) + Sab2V(rs2) = 0,
(6) V(r+s+t)-V(r+s)-V(s+t)-V(r+t) +V(r) +V(s) +V(t)-rstV(2) = o,

gdzier,s,t € R, X,v, z sg dowolnymi elementami z dzedziny odwzorowania,



przy czym D(r, s, t) zostato zdefiniowane w Twierdzeniu 3.4,
B2(r,s) = (rsx,y,z) - r(sx,y,z) - s3{rx,y,z) +rs3(x,y,z) -
- (s2- s3)(S(rx,y, z) - 3r(x,y,z) + (1 - r){rx,x,y,z)),
V(r) =2(rx,y,z) - 2r(x,y,z) + (L- r)(rx,x,y,z).



ROZDZIAL 4

2-rownosci dla klasy Horn5s

Gléwnym celem tego rozdziatu jest znalezienie relacji tworzacych petny zestaw
2—ownosci dla klasy Hom5. Uzyjemy tych samych metod, co w poprzednim roz-
dziale. Tym razem problem znalezienia poszukiwanych relacji sprowadza sie do wy-

znaczenia generatoréw jadra homomorfizmu h52 : A52(R) — >T5.22(R), okre$lonego

wzorem
hs2(rx, sy) = rds((4,1)) + r3s2((3,2)) + r2s3((2,3)) + rs4((l, 4)), 4.2)
gdzie ((i,j)) — a (rx,sy) = (A263)(rx,sy).

Z pracy [4] znamy nastepujacy opis modutu 52(1?) = Im(h52) :

Twierdzenie 4.1 ([4], Theorem 5.9).

f52(i?) = Rn ©h(R)((3,2)) ® 13(R)((2,3)) © 14(R)(((4,1)) + ((2,3))).

Jak fatwo zauwazy¢ przedstawienie elementu R (rx,sy,) w tej sumie prostej

jest nastepujace:

hs52(rx, sy) = rsda+ s(r3s - rs3)((3,2)) + r(rs3- r3s)((2,3)) +

+(rds- rs4)(((2,3)) + ((4,1))), 4.2

gdzie o oznacza sume wszystkich elementow bazowych modutu r 52(/i), to znaczy

a = ((4.0) +(B.2) + ((23) + ((1.4)).
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Jak poprzednio potrzebujemy elementow, ktérych obrazy sa odpowiednimi wielo-
krotno$ciami elementow bazowych. Doktadniej, szukamy elementow, na ktorych
warto$ci h52 wynosza: (r3-r)((3,2)), (r3-r)((2,3)) oraz (r4—)(((2,3)) +((4,1))).
Przypomnijmy, ze dla kazdego r £ R mamy nastepujace elementy A ’ (R) :

1= (nrxy,2) + (z,ry,y, 2) + (XY, 12, 2) - r2((x, X, ¥, 2) + (%, y,y,2) +

+ (x,y,2,2)) -3(r - r2)(x,y,2),

C3(r) = 3(rx,y,2) - 3r(x,y,z) + (L - r)(rx,x,Y,12),

U\(r) = C3(r) + [1].

Rozwazmy nastepujacy diagram:

A53(iZ) CA5{Rx ® Ry ® Rz) T5{Rx ® Ry ® Rz)
as(/) r()
A52(i?) ¢ A5(Rx ©Ry) - --—- > r5(fix © Ry)
gdzie homomorfizm / : Rx © Ry © Rz — >Rx © Ry jest okre$lony na elementach
bazy w nastepujgcy sposob: f(x) = x, f(y) =x, f(z) =y. Powyzszy diagram jest
przemienny, gdyz h5 jest przeksztatceniem funktoréw.
Oznaczmy WI[(r) = (AS(/))(C/i(r)) i zauwazmy, ze
WI(r) =3(rx,x,y) - 3r(x,x,y) + (1- r)(rx,x,x,y) +
+ (X, X %)) + (G, X, y) + (X, 1y, y) - r2(06 X, X, y) + (X, X, X, y) +
+ (x.xy.y)) - 3(r- r2)(x,x,y) =
= 3(rx,x,y) + (- r)(rx,x,x,y) + (x,x,ry,y) -
- r22(x, %, X, y) + (X, X, ¥,Y)) - 3(2r - r2)(x,x,y) GA52(R).
Z poprzedniego rozdziatu wiemy, ze h53(Ui(r)) = (r —r2)((1,2,2)). Zatem
N0 =AM D)) (. (0) =
= r5(/) (fR)(/i(r))) = r3(N((r - r2((l, 2.2))) =
= (r- rr3(/)(((1, 2,2))) = (r- r2r(/)(x4(22(2).



Zauwazmy, ze
Fs(/)(xy@z(2) = xx(2V 2) = (1,2)x(3)y(d =3((3.2)).
Stad otrzymujemy, ze h52(W[(r)) = 3(r —r2)((3,2)).
Zamieniajac rolami x i y otrzymujemy element
W2(r) = 3(x,ry,y) - 3r{x,y,y) + (@ - r)(x,ry,y,y) +
YY) Gy Y) (YY) - r2(0G X YY) (XY YY)+
+(X,y.y,y)) ~3(r - ra){x,yy) =
=301y, y) + B- X1y, Yy, y) + (X X1y, Y) -
r2((x, x, y»y) + 2(x,y,v,¥)) - 3(2r - r2)(x,y, ),
taki ze /is2(Wj(r)) = 3(r —2)((2,3)).

W niosek 4.1.
Zachodzg nastepujace réwnosci:
h52((r + DWi(r)) = 3(r - r3)((3,2)),
AS((r+ 1)A(r)) = 3(r-ra)((2,3)).

Korzystajgc ze wzoru (4.1) otrzymujemy

hs2(rx,y) = r4((4,1)) + r3((3,2)) + r2((2,3)) + r((l, 4)),

hs52(-rx,y) =t4((4, 1)) - r3((3,2)) + r2((2,3)) - r((1,4)).
Odejmujac stronami otrzymujemy

hs2((rx,y) - (-rx,y)) = 2r3((3,2)) + 2r((l,4)),
skad w szczegdlnosci h52((x,y) —(—x,jh) = 2((3,2)) + 2((1,4)),
Oznaczmy W"(r) = (rx,y) - (-rx,y)- r((x,y) - (-x,y)).
Woweczas z powyzszego wynika, ze H*2(W"(r)) = 2(r3 —r)((3,2)).
Symetrycznie otrzymujemy element

() = x.ry) + (=x,ry) - r{(x.,y) + (=x.,y)),



taki ze HI2(WAr)) = 2(r3—)((2,3)).
Oznaczmy
MPNi(r) = -(r + DWI(r) - Wj'(n),
W2(r) = -(r + DWA(r) - WT(e).

Z Whniosku 4.1 i powyzszych rachunkéw wynika

W niosek 4.2.
Zachodzg nastepujace réwnosci:
ESVi(r)) = (r3-r)((3,2)),
h52(W2(r)) = (r3-7-)((2,3)).

Na mocy wzoru (4.2) otrzymujemy
hS2(rx,y) =m +(r3-7-)((3,2))-r(r3-7-)((2,3))+ (r4-r)(((2,3))+ ((4,1))). (4.3
Oznaczmy T(r) = (rx,y) —r(x,y) —" 1(#) + " 2(7).

W niosek 4.3.
Zachodzi nastepujgca rownosc:

h52(T(r)) = (r4-r)(((2,3)) + ((4.1))),

Dowod.

Korzystajac ze wzoru (4.3) oraz Wniosku 4.2 otrzymujemy

hs'2(T(r)) = ro+ (t3- 7-)((3,2)) - #(#3- 7-)((2,3)) + (r4- 7-)(((2,3)) + ((4,1))) -
rey _ (r3 _1)(@2)) +r(r3- 1)((2,3)) = (rd- 7-)((2,3) + (4,1)). O

Przeprowadzimy teraz analogiczne rozumowanie, jak w poprzednim rozdziale.
Niech
D(r,s) = (rx,sy) —rs4(x,y) —s(sWi(r) —rl¥i(s)) —

- r{rw2{s) - sW2(r)) - (sT(r)- rT(s)).



W niosek 4.4.

hb2(D(r,s)) = 0,

Dowod.

Zauwazmy, ze
15,2(sV7i(r) - rIVi(s)) = (s(r3- 1) - r(s3- 5))((8,2)) = (r3s - rs3)((3,2)),
h52(rW2(s) - sWa{t)) = (r(s3- s) - s(r3- /-))((2,3)) = (rs3- r3s)((2,3)),
h52(rT(s) - sT(r)) = (r(s4- s) - s(rd- ))((2,3)) + ((4.1)) =
= (rds —rs4)((2,3)) + ((4,1)).
Poréwnujac ze wzorem (4.2) otrzymujemy teze.

U

Przedstawiajac dowolny generator (rx,sy) przy pomocy D(r, s) oraz elementéw

typu W\(r), W2(r), T(r) otrzymujemy nastepujacy rozktad:

W niosek 4.5.
A52{R) —R{D(r,s); r,s,t £ R} + R(x,y,z) + Wi(.R) + W%(R) + T(R),

gdzie Wi(R) = fI{Wi(r); r € R} dlai = 1,2 oraz T(R) = R{T{r)-, r e R}.

Twierdzenie 4.2.

Jadro Ker = K, gdzie K jest podmodutem generowanym przez
nastepujace elementy:

(1) D(r.s),

(2) Wi(rs) - r3wi(s) - «wi(r), i = 1,2,

(3) 3sWi(r) - 3rwi(s) - (r - a)(Wi(r +s) - Wi{r) - Wi()), *= 1,2,

(4) Wi(ar3+ bs3) - Wi(ar3) - Wi(bs3) - Wi(ar + ba) + Wi{ar) + Wi(bs) -

- 3a2bWi(r2s) - 3at?Wi{rs2), i = 1,2,



(5) Wi{r+s+1t)- Wi(r+s)- Wi{s +t)~ Wrr +1i) +
+ Wi(r) + HAs) + Wi(t) - rstWi(2), i = 1,2,

(6) T(r+s)- T(r) - T(s) - (2r3s + 3r2s2+ 2rs2)T(-1),

(7) T(rs) —raT(s) —sT(r),

gdzie a,i»,r,s€ R.

Dowéd.
Jak poprzednio zauwazmy, ze K c /fer mlstotnie, dzieki Wnioskowi 4.4
n ’2\) . Dzieki Przyktadowi 2.2 wiemy, ze wartosci ﬁgZ
na elementach (2)-(5) sag zerowe, natomiast dzieki Przyktadowi 2.1 wiemy, ze war-

?

tosci ’rT5'2 na elementach (6)-(7) sg zerowe. Zatem TTS indukuje homomorfizm
h> mA52(R)/K —>T52(R) ¢ rs52(i?). Oznaczmy przez W"i(i?) (odpowiednio
W2(R), T(R)) obraz Vi(/2) (odpowiednio W2(R), T(R)) przez homomorfizm natu-
ralny. Woéweczas h!(V\(R)) = /3(/"*)((3,2)) i analogicznie h'(V2(R)) = /3(/2)((2,3)),
h*(W(R)) = 74(i?)(((4,1)) + ((2,3))) Jak poprzednio (dzieki Twierdzeniu 2.10)

mozna pokazaé, ze ograniczenia h'\w\B) monomorfizmami oraz ze (dzigki

5 «

h
skad x G Ker(h'). Wtedy na mocy Whniosku 4.5 i tego ze D(r,s) € K, mamy
X = r(x,y) +vI\+W2+1t, gdzier £ R,Wi ¢ Wi(R),i = 1,2 oraz t c T(R). Stad

0 = h'(x) = rer + h'(w\) + h'"w?) + h'(t).
Poniewaz kazdy sktadnik sumy po prawej stronie nalezy do innego sktadnika pro-
stego modutu r52, wiec r = 0 oraz h!(wf) = h'(w2) = h'(t) = 0. Korzysta-
jac z tego, ze ograniczenia homomorfizmu hisg monomorfizmami otrzymujemy, ze

W\ =V —w —0. Zatem x =0, skad i G K. O

Opuszczajac symetryczne wersje relacji otrzymujemy nastepujace



Twierdzenie 4.3.
Nastepujace relacje tworzg petny zestaw 2-réwnosci dla klasy Horn5 :

[A)), (A2), (A) oraz

(1) D(r.s) =Q

(2) W(rs) = raw(s) +swq(r),

(3) 3sW(r) - 3rW(a) = (r- s)(W(r +s)- W(r) - W(a)),

(4) W (ar3+ bs3) - W (ar3) - W(bs3) - W(ar + bs) + W (ar) + W(bs) =
= 3a2b\V(r2s) + 3ab2W(rs?2),

(5) W(r+a+t)- W(r+s)- W(s+1t)- W(r+t)+
+ W(r) + W (@) + Wi(t) - rstW(2)=Q

(6) T(r +s) =T(r) +T(s) + (2r3s + 3r2s2 + 2rs2) T(-1),

(7) T(rs) =r*T(s) +sT(r),

gdzie a, b,r,a,t GR, X, Y, z sg dowolnymi elementami z dzedziny odwzorowania,
W(r) =-(r + DE(rx,xy) + (B- r)(rx,x,x,y) + (X,x,ry,y) -
- 2206, %, %, y) + (X, %, Y,Y)) - 3(2r - r2)(x, x,Y)) -
- ((rxy) - (=xy) —r((xy) - (-x,y))),
T(r) = (rx,y) - r(x,y) +
- (C(r + DErxxj) + B - )(rx,x,x,y) + (X, x,ry,y) -
- r2(2(x.x,x,y) + (x,x,y,y)) - 3(2r - r2)(x,x,y)) -
- ((y) - (=xy) - r((xy) - (-x, ) +
r(-(r+D) B ry,y) + @- nxry.y,y) + (x,x,ry,y) -
- r2(( Xy, y) + 20y, 9, ) - 3(2r - r2)(x,y,Y)) -
~ ((ry) + (-x,ry) - (%) + (=X, ),
D(r,s) = (rx,ay) —ra4(x,y) —s(sVTi(r) —W"s)) —

- r(rwa(s) - sW2(/-) - (sT(r) - rT(s)),



przy czym W\(r) = W (r), W2(r) jest symetryczng wersja W\(r), a (x,y), (X,y,z)
oraz (x,y,z,t) oznaczajg wartos¢ odpowiednio drugiego, trzeciego i czwartego de-

fektu rozwazanego odwzorowania.



ROZDZIAt 5

Podsumowanie

Ponizsze twierdzenie podsumowuje dotychczasowe badania nad relacjami spet-

nianymi przez odwzorowania stopnia 5, zawarte w Podrozdziale 3.2 oraz Rozdziale 4.

Twierdzenie 5.1.
Nastepujgce relacje tworza petny zestaw réwnosci spetnianych przez odwzoro-

wania stopnia 5, czyli denniujg klase ED(Hom5) :

(1) relacje (Al), (A2), (A3),
(2) D(r,s,t) =0,
(3) U(r +s) = U(r) + U(s) + rsu(2),
(4) U(rs) =r2u(s) + su(r),
(5) V(rs) = r3v(s) +aV(n),
(6) 3sV(r) - 3rV(s) = (r- s)(V(r +s) - V(r) - *(s)),
(7) V(ar3+ bs3) —V(ar3) —V(bs3) —V(ar + bs) + V(ar) + V(bs) =
= 3a2bV(r2s) —3ab2V(rs2),
8) V(r+s+t)-V(r+s)-V(s+t)-V(r+t) +V(r) +V(s) +V(t)-rstV(2) = 0,
(9) D(r,s) =0,
(10) W(rs) = r3w(s) + sW(r),
(11) 3sW(r) - 3rW(s) = (r- s)(W(r+ s) - W(r) - W(a)),
(12) W(ar3+ bs3) - W(ar3) - W(bs3) - W(ar + bs) + W (ar) + W(bs) -

—3a2bW(r2s) —3ab2W(rs2) =0,
69



(13) W(r +s+ i) —W(r +s) —W(s + t) —W(r +t) +
+ W(r) + W@ + W{t) - rstw{2) = 0,

(14) T(r +s) =T(r) +T(s) + (2r3s + 3r2s2 + 2rs2) T{-\),

(15) T(rs) = r4T(s) + sT(r),
gdzie wyrazenia D(r, s),U(r), V(r) zostaty zdefiniowane Twierdzeniu 3.4, a wyraze-
nia D{r, s,t), W(r),T(r) zostaty zdefiniowane w Twierdzeniu 4.3. Ponadto
1) réwnos¢ (3) mozna opuscié, a rownosc (4) zastgpi¢ rownoscia (2)
z Twierdzenia 3.7,
2) réwnosci (2)-(8) mozna zastgpi¢ réwnosciami (B), (BI), (B2), (S)

z Twierdzenia 3.1.

Zauwazmy, ze w dowodach kluczowych twierdzen (Twierdzenia 3.3 oraz Twier-
dzenia 4.2) nie korzysta sie¢ z postaci elementow U(r), F(r), W(r), T(r). Istotne
jest tylko to, aby ich obrazy spetnialy relacje analogiczne do tych, jakie spetniajg
elementy r2 —r, r3—r oraz r4 —r. Oznacza to, ze gdyby udato sie znalez¢ prost-
sze elementy o powyzszych wiasnos$ciach, réwniez ostateczne réwnosci mogtyby byc
prostsze. Zwroémy réwniez uwage, ze przy dodatkowych zatozeniach dotyczacych
pierscienia R ostateczny zestaw réwnosci réwniez mdgtby by¢ prostszy. tatwo za-
uwazyé, ze przy pomocy elementéw W[(t), (odpowiednio W"(r)) mogliby$my otrzy-
mac prostsze rownosci w przypadku pierscieni z odwracalng trojka, (odpowiednio
dwdjka). Na koniec warto zauwazy¢, ze zastosowana w tej pracy metoda moze byc

réwniez uzyta do znalezienia relacji dla klasy Hom4.
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