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Introduction

The growing importance of regions and regional policy – regional programmes, participation

in European Union programmes, development of regional self-governance – also entails an

increase in the importance of national databases with a very detailed territorial division – sources

increasingly used by public statistics, such as PESEL, POLTAX, POMOST, and ZUS. This is

also related to the growing demand for information at an increasingly lower level of aggregation,

as well as the demand for methods that do not require large financial outlays, but make it possible

to obtain accurate estimations of subpopulation characteristics quickly, without the need for

a full survey. Small area estimation methods may be the answer to this demand, allowing

estimation and prediction under conditions where classical estimation methods prove to be

inefficient or too costly. They allow estimation even for very small sample sizes, and even when

the sample size of a subpopulation is zero. The choice of the topic considered in this monograph

is therefore related to the increasing demand for local cross-sectional analyses. Moreover, it is

also due to the multitude of fields in which the methods of small area estimation have already

found application, such as market analyses, regional policy, labour market and poverty analysis,

agricultural economics, and economic aspects of health policy.

The subject of this research will be the use of one of the main approaches in survey

sampling, besides randomised and model-assisted – the model-based approach, in small area

estimation for economic data. Aforementioned approach allows inference from purposive and

random samples. The problem considered was the prediction of subpopulation characteristics

and the analysis of predictor properties when there are different correlation relationships between

random variables. The analyses took into account longitudinal data from the Local Data Bank,

the largest organised collection of information in Poland on the socio-economic situation,

demographics, and state of the environment, enabling multidimensional regional and local

statistical analyses.

The main theoretical and exploratory objective of this book is to propose methods for

predicting subpopulation characteristics and to analyse the properties of the predictors, taking

into account the correlation between the random variables. The practical objectives include:

5



– adapting the methods of small area estimation, a model-based approach, for economic data

obtained in longitudinal surveys;

– proposing and using the author’s overpopulation models belonging to the class of general

linear mixed models;

– proposing and using original model verification methods;

– proposing and applying the author’s methods of prediction and assessment of prediction

accuracy of subpopulation characteristics for the proposed class of models;

– demonstrating the applicability of the proposed methods to real economic data – simulation

studies conducted using the Monte Carlo method.

The implementation of the above objectives will serve to answer the following research questions:

– Which models, belonging to the class of general linear mixed models, make it possible to

take into account the occurrence of correlational relationships between random variables for

prediction based on economic data obtained in longitudinal surveys?

– How can the presence of a correlation between random effects be verified for the proposed

class of models?

– What effect does the inclusion of the presence of a correlation between random effects have

on the properties of the considered predictors of subpopulation characteristics?

– How will the use of prior period information affect the accuracy of the considered predictors

compared to methods using single-period information?

The monograph consists of five chapters. Each of them begins with an introduction. The

first chapter of book discusses the theoretical basis of small area estimation. It presents the main

approaches in small area estimation, including basic definitions, and issues concerning their

development. Also presented are their selected areas of application in research of an economic

nature, with examples. However, the greatest emphasis was placed on the presentation of the

model-based approach. The process of building superpopulation models and their classification

were discussed more extensively. Special attention was paid to the class of linear mixed models.

The chapter presents the author’s proposals for some special cases of models of this class

with correlated vectors of random effects with their applications in small area estimation and

generalisations of selected predictors to the case of longitudinal data. The chapter also discusses

the author’s proposals for the possibility of using permutation tests and those based on the

parametric bootstrap method in verifying the significance of the parameters of the proposed

superpopulation models.

The second chapter deals with the issue of repeated surveys over time. It discusses the

essence of statistical longitudinal studies, including the main reasons for interest in and
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development of this type of research. It presents a classification of repeated surveys in time,

together with conducting schemes and examples of economic research conducted both in Poland

and worldwide. The essence of panel studies, and studies with partial and complete rotation are

discussed in more detail. The chapter emphasises the advantages and disadvantages of repeated

surveys over time. It also discusses the benefits and limitations of this type of research in the

context of analyses based on it.

Chapter three discusses the problem of prediction using BLUPs and EBLUPs, including

those proposed by Henderson (1950) and Royall (1976). Particular attention was paid to these

classes of predictors in terms of the classification of linear mixed models into type A and B

models. The author’s proposal for the use of EBLUP under the assumption of a linear mixed

model with correlated random effects in small area estimation is also presented. The chapter

also addresses the issue of possible modifications as well as properties of the EBLUP class.

Modifications of known methods for estimating the mean squared prediction error allowing for

the estimation of the accuracy of EBLUP taking into account the correlation between random

effects vectors are proposed. This part of the paper also included a review of selected economic

applications of the above predictors.

The fourth chapter is focused on the class of empirical best predictors and plug-in predictors.

The author’s proposals for the use of predictors belonging to these classes in prediction based

on models with correlated random effects vectors are presented. The problem of evaluating the

mean squared errors of the proposed predictors is also addressed. The chapter also presents

selected examples of applications of the discussed predictors in economic research.

Chapter five provides a description of the actual data set considered in the following section.

It also presents the assumptions and results of the simulation studies carried out. Each of the

subchapters was focused on one of the analysis variants, each of which was carried out according

to the model-based approach. The problem of predicting total values and medians in domains

under the assumption of a linear mixed model taking into account the correlation between

random effects was addressed. The properties of the three proposed predictors belonging to

the BP, EBP and plug-in classes were simulation tested. A comparison was made with selected

predictors, assuming no correlation between random effects and selected estimators. This chapter,

like the others, concludes with a brief summary of the issues raised. In the monograph, the author

used methods of mathematical statistics and multivariate statistical analysis, as well as computer

simulation techniques. The simulation studies used self-written programs in the R language

(R Core Team, 2022). Analyses were conducted using actual data from several periods.
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Chapter 1

Theoretical foundations of small area estimation

This chapter discusses the theoretical foundations of small area estimation. In the following

subchapters, the main approaches in small area estimation are presented, including issues

concerning their development and applications. In addition, for the model-based approach, the

process of building overpopulation models and their classification is discussed in more detail.

Particular attention is paid to the class of linear mixed models with correlated and uncorrelated

random effects.

1.1. Main approaches in small area estimation – basic definitions and notation

Small area estimation is a branch of statistics covering methods enabling inference about

the characteristics under study in distinguished subpopulations (domains) on the basis of data

obtained from a sample survey and additional information from, inter alia, censuses or registers.

Important issues in small area estimation include making inferences based on a sample of

small or even zero size in the domain under study and making the most of available additional

information. Among the main approaches in small area estimation we can mention: randomised,

model-based, and model-assisted.

Important concepts for all approaches in small area estimation are population and sample.

A finite N-element population Ω is a set of N objects such that Ω = {ω1,ω2, . . . ,ωN} with

N < ∞. Population elements are identifiable when they can be uniquely numbered from 1

to N and each element corresponding to a given number is observable (Cassel et al., 1977,

p. 4). The (unordered) sample s of n-elements is any subset of the set Ω with number of elements

n (cf. Bracha, 1996, pp. 18–19). Tillé (2006) defines a sample as a column vector such that

s = (s1, . . . ,sk, . . . ,sN), where sk for samples without replacement takes the value 1 when the k-th

element is in the sample and 0 otherwise. For randomised samples with replacement, sk may take

values greater than 1 when an element has been selected for sampling several times (Tillé, 2006,

p. 8). An ordered sample is an ordered sequence of elements s = (k1,k2, . . . ,ki, . . . ,kn), where
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1 ⩽ ki ⩽ N and 1 ⩽ i ⩽ n (the indices ki need not be different) (cf. Bracha, 1996, p. 17). The

effective sample size is the number of non-repeating sample elements. For unordered samples,

the effective sample size is equal to the sample size. The set S of all samples of type s is called

the sample space.

Another important concept is the sampling frame, which is an inventory of elements

belonging to the population, or at least disjoint subsets of the population (clusters). It should

be characterised by: completeness, timeliness and identifiability. It must therefore contain up-

-to-date information on all the units belonging to the population and allow the retrieval of each

unit that has been included in the sample (cf. Bracha, 1996, pp. 26–27).

A domain, also referred to as a study domain, is a subset of the Ω population. A small

domain, following Rao and Molina (2015), is a domain whose sample size is small, insufficient

to obtain estimates of domain characteristics by direct methods, thus using information about the

variable under study only from the domain under analysis, with sufficient accuracy. It should be

noted that the division into domains can be distinguished not only on the basis of geographical

or administrative division criteria, but also economic or socio-demographic criteria (Rao and

Molina, 2015, p. 3).

A trait and a trait parameter in a population or domain are also important concepts. A trait,

otherwise known as a variable, is a function defined on a set of Ω such that Y : Ω → R (Bracha,

1996, p. 14). The estimated parameter of a trait denoted by θ , following Wywiał (2010), can be

descriptive parameters of the structure, such as e.g. mean value, total value or standard deviation.

Also among the key concepts in small area estimation is the concept of statistics. A statistic

Z = z(M), in terms of the design-based approach, is a function defined on the space of a random

variable M (M = {(i,yi) : i ∈ S}), such that for each s∈ S, the function z(m) (m= {(i,yi) : i ∈ s})

depends on a vector of values of the test variable y through yi, where i ∈ s (cf. Cassel et al.,

1977, p. 20; Bracha, 1996, p. 35). Analogously to the design-based approach, it is also possible

to define the concept of statistics in the model-based approach. In this case, it is the function

θ̂(M∗) (M∗ = (i,Yi) : i ∈ S), such that for any s, realisation of the random variable S, the function

θ̂ depends on Y1,Y2, . . . ,YN through Yi, where i ∈ s (cf. Cassel et al., 1977, p. 91).

Also linked to the term “statistics” are the concepts of estimator and predictor used in

randomised and model-based approaches. In these approaches, an estimator and a predictor

are statistics that allow the assessment of the parameter θ . It should be noted that the basic

classification of estimators and predictors used in survey sampling and small area estimation

literature allows them to be divided into two classes: direct and indirect. An indirect estimator

or predictor uses information about the study variable from outside the analysed domain or
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period. This allows estimation or prediction even when the sample size of observations from

a small area is zero and the use of direct methods is not possible.

Taking the type of information about the study variable used in the estimation process as

a classification criterion, Schaible (1993) distinguishes three classes of indirect estimators:

– domain indirect estimators – using data from another small area, but not from other periods,

– indirect estimators of time – using information from other periods, but only for the domain

under study,

– indirect estimators of time and domain – taking into account information for another domain,

in periods other than the period under consideration.

This division will be important, in particular, when the data under consideration are longitudinal.

The remainder of this chapter will discuss in more detail all the approaches mentioned in

this section that are considered in small area estimation. For each approach, the basic definitions

and notation will be presented, as well as the selected estimators or predictors.

1.1.1. Design-based approach

The origins of the design-based approach in survey sampling, of which small area estimation

is a branch, can be traced back to the late 19th century. One of its precursors, according to Balicki

(1989), is Kiaer (1897). In this approach, the vector of values of the studied characteristic

is treated as non-random. Thus, also the characteristic of interest, e.g., θd = 1
Nd

∑
Nd
i=1 yid , is

non-random. The only source of randomness in this approach is the sampling design.

The sampling design is called the probability distribution P(s), defined on the sample space

S where for each sample s ∈ S, the conditions are satisfied (Cassel et al., 1977, p. 9): P(s) ⩾ 0

and ∑s∈S P(s) = 1. A sampling scheme, however, is a mechanism for drawing units into a sample

that enables the implementation of a sampling design (Cassel et al., 1977, p. 15). Also related

to the notion of a sampling design is the sampling strategy, which, for the parameter θ , is an

ordered pair (θ̂ ,P(s)), where θ̂ is the estimator of the parameter θ . It should be added, following

Rao (1962), that for each sampling design, there is at least one sampling scheme implementing

that design.

Another important concept in the design-based approach is the r-th inclusion probability

πk1,...,kr – probability of selecting population elements k1, . . . ,kr into the sample s:

πk1,...,kr = ∑
s∈A(k1,...,kr)

P(s),

where A(k1, . . . ,kr) = {s : ki ∈ s, for i = 1, . . . ,r} (cf. Cassel et al., 1977, p. 11). Thus, the

first-order inclusion probability πk is the probability of selecting for the sample s, the k-th
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element and the second-order inclusion probability – the k-th and l-th elements (k ̸= l) (Särndal

et al., 1992, pp. 30–31). Following Tillé (2006), the above definitions of inclusion probabilities

can be written as: πk = Pr(Sk > 0) and πkl = Pr(Sk > 0∧Sl > 0), where S = (S1,S2, . . . ,SN) is

a sample drawn from an N-element population (Tillé, 2006, p. 17). It should also be added that

the probabilities of πk and πkl fulfill the following conditions (Bracha, 1996, p. 20): 0 ⩽ πk ⩽ 1

and max{0,πk +πl −1}⩽ πkl ⩽ min{πk,πl}.

As has already been pointed out in this monograph, an estimator of the parameter θ ∈ Θ is

the statistic θ̂ with values belonging to the set Θ, the value of which represents an assessment

of the parameter θ (cf. Wywiał, 2010, p. 35). Taking into account, moreover, the division

into direct and indirect estimators discussed in this chapter, among the direct estimators, we

can mention: the estimator proposed by Horvitz and Thompson (1952), the ratio estimator

considered, among others, by Royall and Cumberland (1981) and Wu (1982), the regression

estimator (Watson, 1937), and the POS estimators presented by Bracha (1996). Among the

indirect estimators, nevertheless, we can distinguish a group of synthetic estimators, including,

among others, the synthetic oridinary estimator, the synthetic ratio estimator, and the synthetic

regression estimator (Domański and Pruska, 2001, pp. 42–43). When discussing the classification

of estimators, one should also mention the composite estimators. Both direct and indirect

estimators can be used to construct them (Rao and Molina, 2015, p. 57).

When discussing the concept of an estimator, it is important to mention its properties. The

bias of the estimator resulting from the assumed sampling design (p-bias of estimator) is given

by the following formula (Cassel et al., 1977, p. 26):

Bp(θ̂) = Ep(θ̂)−θ . (1.1)

It should be noted that if Bp(θ̂) = 0, the estimator is unbiased. The relative bias of the estimator

has the form:

rBp(θ̂) =
Bp(θ̂)

|θ |
. (1.2)

The variance of the estimator in the design-based approach (p-variance of the estimator) is

defined as (Cassel et al., 1977, p. 26):

D2
p(θ̂) = Ep(θ̂ −Ep(θ̂))

2. (1.3)

Furthermore, the root of the expression (1.3), called p-standard error Dp(θ̂), is a measure of the

estimation precision. The relative p-standard error is given by the formula (Żądło 2008, p. 24):

rDp(θ̂) =
Dp(θ̂)

|θ |
100%. (1.4)
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An expression having the following form:

MSEp(θ̂) = Ep(θ̂ −θ)2 = D2
p(θ̂)+B2

p(θ̂) (1.5)

is, however, the p-mean square error. The root of the above expression RMSEp(θ̂) is a measure

of the estimation accuracy (Cassel et al., 1977, p. 26). The relative root of the p-mean squared

error is given by the formula:

rRMSEp(θ̂) =
RMSEp(θ̂)

|θ |
100%. (1.6)

The lower the value of the root of (1.3) and (1.5), the higher the precision and accuracy of the

estimate, respectively. The estimator of θ̂ is furthermore consistent if, in the case of sampling

with a replacement for each ε , there is lim
n→∞

P{|θ̂ − θ | > ε} = 0 and for sampling without

replacement, θ̂ = θ when n = N (Särndal et al., 1992, pp. 166–168).

A selection of parameter estimators in the domain will be discussed below. For each

estimator, a formula describing the p-variance will be presented together with the estimator.

The first of the estimators presented is the estimator proposed by Horvitz and Thompson

(1952), also known as the expansion estimator. The starting point for presenting the form of this

estimator for the total value and the mean in the domain will be the estimator for the total value

in the population. If the condition is fulfilled that for any k, πk > 0, the p-unbiased estimator for

the total value in fixed population ỹ = ∑
N
k=1 yk) proposed by Horvitz and Thompson (1952) for

any sampling design has the following form:

θ̂
HT
Ω = ˆ̃yHT

Ω = ∑
k∈s

yk

πk
, (1.7)

where πk is the first-order inclusion probability of the k-th element. It should be noted that the

p-variance of the above estimator is given by the formula (Horvitz and Thompson, 1952, p. 670):

D2
p( ˆ̃yHT

Ω ) = ∑
k∈Ω

(
yk

πk

)2

πk(1−πk)+ ∑
k∈Ω

∑
l∈Ω,k ̸=l

ykyl

πkπl
(πkl −πkπl), (1.8)

when values πk are greater than 0. When the effective sample size is fixed, the p-variance of the

Horvitz–Thompson estimator is determined based on the following formula proposed by Yates

and Grundy (1953):

D2
pY G( ˆ̃yHT

Ω ) = ∑
k∈s

∑
l∈s,k ̸=l

(
yk

πk
− yl

πl

)2

(πkl −πkπl). (1.9)

If the condition k ̸= l is satisfied, the p-unbiased estimator (1.7) is given by the following formula

(cf. Horvitz and Thompson, 1952, p. 670):

D̂2
p( ˆ̃yHT

Ω ) = ∑
k∈s

(
yk

πk

)2

(1−πk)+∑
k∈s

∑
l∈s,k ̸=l

ykyl

πkπl

πkl −πkπl

πkl
. (1.10)
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This statistic may, however, take negative values. In this case, if πkl − πkπl ⩾ 0 (for k =

1, . . . ,N; l = 1, . . . ,N, k ̸= l), we can use the estimator considered by Sen (1953) and Yates

and Grundy (1953), which only takes non-negative values when:

D̂2
pSY G( ˆ̃yHT

Ω ) = ∑
k∈s

∑
l∈s,k ̸=l

(
yk

πk
− yl

πl

)2
πkπl −πkl

πkl
. (1.11)

Furthermore, if the assumption that for every k and l (k ̸= l) πkl > 0 is met, this estimator

is p-unbiased. It can be seen that in order to calculate the p-variance estimators, the values

of the inclusion probabilities of both first and second order are necessary. Assessment of the

p-variance of the Horvitz–Thompson estimator is also possible based on first-order inclusion

probability values only. The p-variance estimator considered by Matei and Tillé (2005) has the

following form:

D̂2
pH( ˆ̃yHT

Ω ) = ∑
k∈s

∑
l∈s

ykyl

πkπl
Dkl, (1.12)

where Dkl = ck −
c2

k
∑ j∈s c j

if k = l, otherwise Dkl = − ckcl
∑ j∈s c j

and ck =
n

n−1(1−πk). It should be

added that the value of ck was proposed in the work of Hájek (1981). Antal and Tillé (2014)

note the high efficiency and low bias of the above estimator. In the case where the parameter to

be estimated is a total value in the domain (ỹd), the Horvitz–Thompson estimator will be given

by the formula (1.7), where yi is replaced by yid , where yid = yi if i ∈ sd and 0 otherwise. In

this case, the p-variance will be given by the formula (1.8) and its assessment by the formulas

(1.10), (1.11) and (1.12), where yi is also replaced by yid . If the characteristic of interest is the

mean value in the domain (ȳd), the estimator has the following form:

ˆ̄yHT
Ωd

=
1

Nd
ˆ̃yHT
Ωd

, (1.13)

where ˆ̃yHT
Ωd

is given by the formula (1.7), where yi is replaced by yid . Between the p-variance of

the HT estimator of the total value and the mean value in the domain, the following

relation holds:

D2
p( ˆ̄yHT

Ωd
) =

1
N2

d
D2( ˆ̃yHT

Ωd
). (1.14)

An analogous dependence also exists for the p-variance assessments.

Further estimators, which will be presented more extensively in this section, are synthetic

estimators. These estimators, as reported by Gonzalez (1973), use direct estimators of

a subpopulation larger than the domain, such as a stratum or the whole population. The synthetic

ratio estimator of the total value in the domain for any sampling design is given by the formula

(cf. Bracha, 1996, p. 260):

θ̂
il−SY N =

x̃Ωd

ˆ̃xHT
Ω

ˆ̃yHT
Ω =

x̃Ωd

ˆ̃xΩ

ˆ̃yil
Ω, (1.15)
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where x̃Ωd and x̃Ω are the total value of the auxiliary variable in the domain and population,

respectively, and ˆ̃xHT
Ω

is the Horvitz–Thompson estimator of the total value of the auxiliary

variable in the population. In addition, ˆ̃yil
Ω

is the ratio estimator of the total value of the study

variable in the population, determined by the following formula:

ˆ̃yil
Ω =

ˆ̃yHT
Ω

ˆ̃xHT
Ω

x̃Ω. (1.16)

The p-value of the above estimator is calculated as (Bracha, 1996, p. 260):

D2
p

(
θ̂

il−SY N
)
= D2

p

(
x̃Ωd

ˆ̃xΩ

ˆ̃yil
Ω

)
=

(
x̃Ωd

ˆ̃xΩ

)2

D2
p

(
ˆ̃yil
Ω

)
. (1.17)

It should be added that the p-variance of the ratio estimator necessary to calculate the total value

has approximately the following form:

D2
p

(
ˆ̃yil
Ω

)
≈

N

∑
k=1

N

∑
l=1

Ek

πk

El

πl
(πkl −πkπl) , (1.18)

where Ek = yk − Bxk and B = (∑k∈Ω yk)/(∑k∈Ω xk). The p-variance of the synthetic ratio

estimator can be estimated using the following statistic (Żądło, 2008, p. 69):

D̂2
p

(
θ̂

il−SY N
)
=

(
x̃Ωd

ˆ̃xΩ

)2

D̂2
p

(
ˆ̃yil
Ω

)
, (1.19)

where:

D̂2
p

(
ˆ̃yil
Ω

)
≈

n

∑
k=1

n

∑
l=1

ek

πk

el

πl

(
πkl −πkπl

πkl

)
, (1.20)

ek = yk −bxk and b =
(

∑k∈s
yk
πk

)
/
(

∑k∈s
xk
πk

)
.

The synthetic regression estimator of the total value in the domain for any sampling design

is given by the following formula (cf. Bracha, 1996, p. 260):

θ̂
reg−SY N = Nd

[
ˆ̄yHT
Ω + β̂

(
x̄Ωd − ˆ̄xHT

Ω

)]
=

Nd

N
ˆ̃yreg
Ω

+Nd β̂ (x̄Ωd − x̄Ω) , (1.21)

where the regression estimator of the population total value can be written as:

ˆ̃yreg
Ω

= ˆ̃yHT
Ω + β̂

(
x̃Ω − ˆ̃xHT

Ω

)
, (1.22)

and the estimator β̂ is given by the formula:

β̂ =
∑

n
k=1
(
xk − ˆ̄xHT

Ω

)(
yk − ˆ̄yHT

Ω

) 1
πk

∑
n
k=1
(
xk − ˆ̄xHT

Ω

)2 1
πk

. (1.23)

Assuming the approximation x̄Ωd = x̄Ω the p-variance of the above estimator is given by the

formula (Bracha, 1996, p. 261):

D2
p
(
θ̂

reg−SY N)≈ D2
p

(
Nd

N
ˆ̃yreg
Ω

)
=

(
Nd

N

)2

D2
p
(

ˆ̃yreg
Ω

)
, (1.24)
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Where the p-variance of the regression estimator of the total value has the form:

D2
p
(

ˆ̃yreg
Ω

)
≈

N

∑
k=1

N

∑
l=1

Ek

πk

El

πl
(πkl −πkπl) , (1.25)

and: Ek = yi−B2xk−B1, B2 =
∑

N
k=1(xk−x̄Ω)(yk−ȳΩ)

∑
N
k=1(xk−x̄Ω)

2 , and B1 = ȳΩ−B2x̄Ω. The p-variance estimator

of the synthetic regression estimator can be determined based on statistics (Żądło, 2008, p. 76):

D̂2
p
(
θ̂

reg−SY N)= (Nd

N

)2

D̂2
p
(

ˆ̃yreg
Ω

)
, (1.26)

where the p-variance of the regression estimator is given by the formula:

D2
p
(

ˆ̃yreg
Ω

)
≈

n

∑
k=1

n

∑
l=1

ek

πk

el

πl

(
πkl −πkπl

πkl

)
, (1.27)

and, furthermore, ek = yi −b2xk −b1, b2 =
∑

n
k=1(xk− ˆ̄xHT

Ω )(yk− ˆ̄yHT
Ω )/πk

∑
n
k=1(xk− ˆ̄xHT

Ω )
2
/πk

, b1 = ˆ̄yΩ −b2 ˆ̄xΩ.

The last of the synthetic estimators presented in this paper is the synthetic oridinary estimator,

which is given by the following form (cf. Bracha, 1996, pp. 259–260):

θ̂
zw−SY N =

Nd

N̂
ˆ̃yHT
Ω =

Nd

N
ˆ̃yil
Ω, (1.28)

where ˆ̃yHT
Ω

and ˆ̃yil
Ω

are determined from the formulas (1.15) and (1.7), respectively, and N̂ =

= ∑i∈s
1
π

.

For the above estimator, the p-variance is given by the formula (Bracha, 1996, p. 259):

D2
p
(
θ̂

zw−SY N)= (Nd

N

)2 N

∑
k=1

N

∑
l=1

(
yk − ȳΩ

πk

)(
yl − ȳΩ

πl

)
(πkl −πkπl) , (1.29)

while its estimate can be obtained using the following statistics:

D̂2
p
(
θ̂

zw−SY N)= (Nd

N

)2 n

∑
k=1

n

∑
l=1

(
yk − ȳs

πk

)(
yl − ȳs

πl

)
(πkl −πkπl) . (1.30)

Above, it was shown how the p-variance of synthetic estimators can be estimated. The problem

of estimating their p-mean squared error was considered by Rao and Molina (2015).

The third type of estimator relevant to the analyses conducted in this book is the composite

estimator. The composite estimator can be written as a linear combination of the component

estimators (Rao and Molina, 2015, p. 57):

θ̂
COMP = qθ̂1 +(1−q)θ̂2, (1.31)

where θ̂COMP is the composite estimator of the parameter θ , θ̂1 and θ̂2 are the first- and second-

-order component estimators, respectively, and q is the assumed weight (q ∈ [0,1]). Calculating

the p-mean square error of the above estimator, we use the formula:

MSEp
(
θ̂

COMP)= q2MSEp
(
θ̂

A)+(1−q)2MSEp
(
θ̂

B)
+2q(1−q)Ep

(
θ̂

A −θ
)(

θ̂
B −θ

)
. (1.32)
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The optimal value of q, and therefore minimising (1.32), has the following form (cf. Rao and

Molina, 2015, p. 57):

q∗d =
MSEp

(
θ̂ B
)
−Ep

(
θ̂ A −θ

)(
θ̂ B −θ

)
MSEp

(
θ̂ A
)
+MSEp

(
θ̂ B
)
−2Ep

(
θ̂ A −θ

)(
θ̂ B −θ

) ≈ MSEp
(
θ̂ B
)

MSEp
(
θ̂ A
)
+MSEp

(
θ̂ B
) ,

where the approximation is based on the assumption that Ep
(
θ̂ A −θ , θ̂ B −θ

)
is small relative to

the mean squared errors. Touching on the choice of the component estimators of the composite

estimator, Longford (2005) proposes that they should be estimators of the parameter under study

based on the same formula for the population and the domain. It should further be noted that

compound estimators have the advantage of being able to reduce the p-error of the mean squared

versus relative to its component estimators.

1.1.2. Model-based approach

The model-based approach has been developed in survey sampling since the late 1930s,

and one of the first publications was the paper by Cochran (1939). In this approach, the vector

of values of the trait under study is treated as a vector of realisations of random variables, so that

the characteristic of interest, e.g. θd = 1
Nd

∑
Nd
i=1Yi, is random.

An important concept for the model-based approach is the superpopulation model, which is

a set of conditions defining the joint probability distribution of ξ of a vector of random variables

Y = [Y1,Y2, . . . ,YN ]
T (cf. Cassel et al., 1977, pp. 81–82). The predictor, as mentioned above,

is the statistic θ̂(Y ∗) used to predict the parameter θ (cf. Cassel et al., 1977, p. 91). Among

both direct and indirect predictors, we can distinguish, among others, the simple predictor, the

ratio predictor presented in the paper by Chaudhuri and Stenger (2005), and the multivariate

regression predictor considered by Valliant et al. (2000). It is also possible to distinguish a class

of predictors of the BLU (best linear unbiased predictors) and EBLU (empirical best linear

unbiased predictors) types presented in Rao and Molina (2015).

Predictors belonging to the BLUP and EBLUP classes will be presented in more detail in

Chapter 3 in the context of linear mixed models. Also relevant to the analyses presented in this

book are the classes of best predictors (BP) and empirical best predictors (EBP), which will be

discussed in Chapter 4.

The bias of the predictor resulting from the assumed superpopulation model (ξ -bias of the

predictor) is given by the following formula (Cassel et al., 1977, p. 92):

Bξ (θ̂) = Eξ (θ̂ −θ). (1.33)

In the case where Bξ (θ̂) = 0, the predictor is ξ -unbiased. The relative ξ -bias is determined
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based on the formula:

rBξ (θ̂) =
Bξ (θ̂)

|Eξ (θ)|
. (1.34)

The prediction error is given by the formula:

Uξ = θ̂ −θ , (1.35)

whereas its variance:

D2
ξ
(U) =Varξ (U) = Eξ (U −Eξ (U))2. (1.36)

It should be noted that the root of the above measure (prediction standard error) having the

following form (Żądło, 2008, pp. 28–29):

Dξ (θ̂ −θ) =
√

Varξ (θ̂ −θ) (1.37)

is a measure of the prediction precision. The relative prediction standard error is given by

the formula:

rDξ (θ̂) =
Dξ (U)

|Eξ (θ)|
100%. (1.38)

The root of the mean squared prediction error that has the form:

MSEξ (θ̂) = Eξ (θ̂ −θ)2 =Varξ (θ̂ −θ)+B2
ξ
(θ̂), (1.39)

denoted by RMSEξ (θ̂) is a measure of the prediction accuracy (Żądło, 2015, p. 31). The

following measure:

rRMSEξ (θ̂) =
RMSEξ (θ̂)

|Eξ (θ)|
100% (1.40)

is the relative prediction root mean square error.

The problem of the non-informativeness of the sampling design should also be mentioned.

For a non-informative sampling design, following Cassel et al. (1977), we refer to the case when

it does not depend on the study variable but only on a known matrix of auxiliary variables X.

Attention should also be paid to the consequences of the non-informativeness of the sampling

design. Given two sources of randomness in sample selection – the sampling design p(s) and

the joint distribution ξ associated with the assumed superpopulation model – if the sampling

design is non-informative, then any p-unbiased or ξ -unbiased predictor is also pξ -unbiased. It

is worth noting that the order of the operators can be changed. It follows that (cf. Cassel et al.,

1977, pp. 90–94):

EpEξ

(
θ̂ −θ

)
= Eξ Ep

(
θ̂ −θ

)
. (1.41)

In the case of an non-informative sampling design, when the predictor minimises the mean

squared error of the prediction for each s sample, the ξ -expected value of the p-mean squared
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error is also minimised (cf. Cassel et al., 1977, pp. 90–94):

∀s Eξ

(
θ̂ −θ

)2 → min ⇒ Eξ Ep
(
θ̂ −θ

)2 → min . (1.42)

Thus, the search for a predictor that will minimise the ξ -expected value of the p-mean squared

error can be restricted to predictors that minimise the mean squared error of the prediction for

each sample s. The issue of informative and non-informative sampling designs has been raised

by Nathan and Holt (1980), Raghunath (1990), Pfeffermann et al. (2001), Eideh and Nathan

(2006), and Pedone and Romano (2011). It should be added that it is also possible to test the

non-informativeness of the sampling design. This problem has been considered, in his study, by

Pfeffermann (1993).

This subsection will also discuss a selection of BLUPs, both direct and indirect. For each

predictor, the assumptions as well as the form of the mean squared error of the prediction will be

presented, together with its estimator. It should be added that in the case of direct predictors, the

parameter vector of the overpopulation model βββ may take different values in individual domains,

in contrast to indirect predictors where βββ is assumed to be fixed for the whole population

(or take different values in subpopulations larger than domains).

Let us introduce the notation. We consider longitudinal data from M periods. The population

in period t (t = 1,2, . . . ,M) denoted by Ωt with size Nt is divided into subpopulations (domains)

Ωdt (d = 1,2, . . . ,D, t = 1,2, . . . ,M) with sizes Ndt , where
⋃D

d=1 Ωdt = Ωt and ∑
D
d=1 Ndt =

= Nt . The sample (random or non-random) in period t will be denoted by st and its size by

nt . Let Ωrt = Ωt \ st , Nrt =
¯̄
Ωrt , sdt = Ωdt ∪ st and Ndt = ¯̄sdt , Ωrdt = Ωdt \ sdt, and Nrdt =

¯̄
Ωrdt .

Furthermore, Ω =
⋃M

t=1 Ωt , N = ¯̄
Ω, s =

⋃M
t=1 st , n = ¯̄s, Ωd =

⋃M
t=1 Ωdt , Nd = ¯̄

Ωd , sd =
⋃M

t=1 sdt ,

nd = ¯̄sd , Ωr = Ω\ s, Nr =
¯̄
Ωr, Ωrd = Ωd \ sd , and Nrd = ¯̄

Ωrd , where ¯̄
Ω is cardinality of Ω.

Ωt

Ωdt

sdt

st

Figure 1.1. Notation in the t-th period of the longitudinal study

Source: Own elaboration.
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It is worth noting that the above notation take into account the possibility that populations,

subpopulations and the affiliation of population elements to subpopulations may change over

time. Furthermore, they can be used for any type of longitudinal study. These notation is also

presented in Figure 1.1.

The first predictor presented is a direct multivariate regression predictor. Let us make the

following assumptions in this case (they are a generalisation of the longitudinal data model of

the model considered by Żądło (2008)): Eξ (Ydt) = Xdtβββ dt ,

D2
ξ
(Ydt) = σ2

dtINdt ,
(1.43)

where Ydt is a vector of random variables of dimension Ndt × 1, Xdt is a known matrix of

auxiliary variables of dimension Ndt × p, βββ dt is a vector of unknown parameters of dimension

p × 1, σ2
dt is an unknown parameter, and INdt is a unit matrix of degree Ndt . Furthermore,

independence of the random variables is assumed for observations from different domains and

different periods. The BLUP of the total value in the d-th domain in period t is given by the

formula (it is a direct generalisation to the case of longitudinal data of the predictor presented

by Żądło (2008)):

θ̂
reg
BLU = γγγ

T
s Ys + γγγ

T
r Xrβ̂ββ dt , (1.44)

where β̂ββ dt =
(
XT

sdt
Xsdt

)−1 XT
sdt

Ysdt . Ys is a vector of random variables of dimension n × 1,

Ysdt is a vector of random variables of dimension ndt × 1, Xr is a known matrix of auxiliary

variables of dimension Nr× p, Xsdt is a known matrix of auxiliary variables of dimension ndt × p,

and γγγs and γγγr are vectors of dimension n× 1 and Nr × 1, respectively, with elements equal to

1 for observations from the d-th domain in the t-th period and 0 otherwise. The mean squared

error of the above predictor is given by the formula:

MSEξ

(
θ̂

reg
BLU

)
=Varξ

(
θ̂

reg
BLU −θ

)
= g1(σ

2
dt)+g2(σ

2
dt), (1.45)

where g1(σ
2
dt) = Nrdt and g2(σ

2
dt) = σ2

dtγγγ
T
r Xr

(
XT

sdt
Xsdt

)−1 XT
r γγγr. Calculation of the MSE score

is possible in this case by replacing the estimator given by the formula in place of σ2
dt in the

above formula:

σ̂
2
dt =

1
ndt − p

(
Ysdt −Xsdt β̂ββ dt

)T (
Ysdt −Xsdt β̂ββ dt

)
. (1.46)

In the case of a direct ratio predictor, we also assume independence of the random variables

and the model has the form (cf. Żądło, 2008, p. 98): Eξ (Yidt) = xidtβdt ,

D2
ξ
(Yidt) = σ2

dtv(xidt),
(1.47)
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where v(xidt) are the values of the known value function of the auxiliary variable. The BLUP

is thus given by the formula (it is a direct generalisation to the case of longitudinal data of the

predictor presented by Żądło (2008)):

θ̂
il
BLU = ∑

i∈sdt

Yi + β̂dt ∑
i∈Ωrdt

xi, (1.48)

where β̂dt is calculated based on the following formula:

β̂dt =

(
∑

i∈sdt

x2
i

v(xi)

)−1

∑
i∈sdt

xiYi

v(xi)
. (1.49)

The mean squared error of the above predictor has the following form:

MSEξ

(
θ̂

il
BLU

)
=Varξ

(
θ̂

il
BLU −θ

)
= σ

2
dt ∑

i∈Ωrdt

v(xi)+σ
2
dt

(
∑

i∈sdt

x2
i

v(xi)

)−1

. (1.50)

Replacing σ2
dt in (1.50) with the estimator:

σ̂
2
dt =

1
ndt −1

ndt

∑
i=1

(
Yi − xiβ̂d

)2

v(xi)
(1.51)

we will produce an estimator of the mean squared error of the presented predictor.

Let us generalise the considerations presented by Żądło (2008) and present below indirect

regression and ratio predictors for longitudinal data. In the first case, let us assume a following

superpopulation model of the form:  Eξ (Y) = Xβββ ,

D2
ξ
(Y) = σ2I,

(1.52)

where independence of the random variables is assumed. The BLUP of the total value in the

domain is given by the formula (1.44), however, β̂ββ dt is replaced by: β̂ββ =
(
XT

s Xs
)−1 XT

s Ys, where

Xs is a known matrix of auxiliary variables of dimension n× p, Ys is a vector of random variables

of dimension n×1, and n is understood as n = ∑
M
t=1 nt (as declared before the introduction of the

model (1.43)). We can determine the mean squared error of the indirect multivariate regression

predictor based on the formula (1.45), where g1(σ
2
dt) and g2(σ

2
dt) are replaced by g1(σ

2) = Nrdt

and g2(σ
2) = σ2γγγT

r Xr
(
XT

s Xs
)−1 XT

r γγγr. Calculation of the MSE score in this case is possible by

replacing σ2 with the estimator given by the formula:

σ̂
2 =

1
n− p

(
Ys −Xsβ̂ββ

)T (
Ys −Xsβ̂ββ

)
. (1.53)

In the case of the indirect ratio predictor, independence of the random variables is also

assumed and the model has the form: Eξ (Yidt) = xidtβ ,

D2
ξ
(Yidt) = σ2v(xidt),

(1.54)
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The BLUP in this case is given by the formula (1.48), where β̂d is replaced by β̂ , determined by

the following formula (cf. Żądło, 2008, p. 101):

β̂ =

(
∑
i∈s

x2
i

v(xi)

)−1

∑
i∈s

xiYi

v(xi)
. (1.55)

The mean squared error of the above predictor is given by the formula (1.50), where σ2
dt is

replaced by σ2 and the second sum is determined after the set s instead of sdt . However, by

replacing the estimator:

σ̂
2 =

1
n−1

n

∑
i=1

(
Yi − xiβ̂

)
v(xi)

(1.56)

we obtain an estimator of the mean squared error of the indirect ratio estimator.

1.1.3. Model-assisted approach

The last approach discussed in small area estimation is the model-assisted approach. The

polarisation between randomised and model-based approaches, according to Särndal (2010),

occurred about 50 years ago. Both approaches found their proponents, and the differences be-

tween them and which statistics (estimators, predictors) are preferred under each approach

became the focus of interest. One of the first papers to address the use of elements of both ap-

proaches was by Brewer et al. (1988). Already in its title, the authors ask the question: how rec-

oncilable are model-based prediction and sampling design-based estimation? This question was

also considered in the works of, among others: Smith (1994), Brewer (1995; 1999). One of the

most important publications influencing the development of this approach is the work of Särndal

et al. (1992). In both the randomised and model-based approaches, as Särndal (2010) states, there

is a need to incorporate elements of these approaches into each other. For researchers following

the design-based approach, the challenge is to explicitly define a model that can be used, e.g.,

in stratified variance modelling to determine sampling fractions from strata. For proponents of

the model-based approach, this may include consideration of random sampling and selection of

a sampling design with an assumed over-population model. It should be noted that within the

methods belonging to the model-assisted approach, it is possible to distinguish those closer to

the randomised or model-based approach. Statistics closer to the design-based approach include

calibrated estimators (e.g. Deville and Särndal, 1992), while model-based – pseudo-empirical

best linear predictors (e.g. Prasad and Rao, 1999).

In the following section, calibrated estimators for characteristics in the domain will be

discussed in more detail, together with some modifications. The starting point for consideration

is the calibrated estimator for the total value in the population presented in the work of Deville

21



and Särndal (1992), which is given by the following formula:

θ̂
CAL
Ω = ˆ̃yCAL

Ω = ∑
i∈s

wsiyi, (1.57)

where the weights wsi fulfil the conditions defined by the calibration equation:

∀k∈{1,2,...,p} ∑
i∈s

wsixik = ∑
i∈Ω

xik. (1.58)

Deville and Särndal (1992) also proposed that, in addition, the weights should take values as

close as possible to the inverse of the first-order inclusion probabilities πi. Thus, the second part

of the task to designate the weights can be written as:

fs(wsi,di,qi)→ min, (1.59)

where fs(wsi,di,qi) is a function of the assumed distance of the weights wsi of the calibrated

estimator and the weights di =
1
πi

of the Horvitz–Thompson estimator, and some additional

weights are denoted by qi. It should be noted that the above estimator (1.57) is asymptotically

p-unbiased if there is a solution to the conditional minimisation task (1.59) under the condition

(1.58). In addition, (1.58) is a ξ -unbiased condition under the assumption of a general linear

model. Under an additional assumption:

fs(wsi,di,qi) = ∑
i∈s

(wsi −di)
2

diqi
, (1.60)

the solution to the above task will be the generalised regression estimator (GREG). This estimator

has the following form:

θ̂
GREG = ∑

i∈s
diyi +

(
∑
i∈Ω

xi −∑
i∈s

dixi

)T

B̂, (1.61)

where B̂ =
(
∑i∈s diqixixi

T
)−1

∑i∈s diqixiyi.

The asymptotic form of the p-variance of this estimator is given by the following formula:

D̆2 (
θ̂

GREG)= ∑
i∈Ω

∑
j∈Ω

(πi j −πiπ j)diEid jE j, (1.62)

where Ei = yi−xT
i B and B =

(
∑i∈Ω qixixT

i
)−1

∑i∈Ω qixiyi. The following p-consistent estimator

(Rao, 2003, p. 12) can be used to estimate its variance θ̂ GREG:

D̂2 (
θ̂

GREG)= n

∑
j>i

n

∑
i
(πiπ j −πi j)π

−1
i j (diei −d je j)

2 . (1.63)

Note that the above variance estimator is of the estimator form (1.11), where yi is replaced

by residuals of the form: ei = yi − xT
i B̂. Due to the underestimation of variance by the above

22



estimator, the literature proposes using the following statistic, also being a p-consistent estimator,

to estimate the variance of θ̂ GREG:

D̂2 (
θ̂

GREG)= n

∑
j>i

n

∑
i
(πiπ j −πi j)π

−1
i j (digsiei −d jgs je j)

2 , (1.64)

where gsi is given by the following formula:

gsi = 1+

(
∑
i∈Ω

xi −∑
i∈s

dixi

)T (
∑
i∈s

diqixixT
i

)−1

xiqi. (1.65)

When the parameter under consideration is the total value in the domain, the GREG estimator

is given by the following formula (Rao, 2003, p. 17):

θ̂
GREG
d = ˆ̃yGREG

Ωd
= ∑

i∈sd

wsiyi. (1.66)

The weights wsi have the form:

wsi = gsidi, (1.67)

where gsi are given by the formula (1.65). It can therefore be seen that ˆ̃yCAL
Ωd

= ˆ̃yCAL
Ω

in (1.57)

is replaced by yid , where yid = yi if i ∈ sd and 0 otherwise. It should be added that the use of

the above estimator is not possible when sd = /0. Furthermore, this estimator does not require

knowledge of the values of the auxiliary variables at the domain level. Even when the expected

value of the abundance in the domain is small, it is approximately p-unbiased. The assessment

of the variance of the GREG estimator of the total value in the domain can be determined based

on the formula (1.63), however, the values of ek should be replaced by (Rao, 2003, p. 17):

eid = aid∗yi −xT
i B̂d∗, (1.68)

where aid∗ takes the value 1 for i ∈ Ωd∗ and zero otherwise, and B̂d∗ is given like in formula

(1.61), where yi is replaced by aid∗yk. In the case of elements not belonging to Ωd∗, the residuals

are of the form: eid =−xT
i B̂d∗. The consequence of this can be, according to Rao (2003), inef-

efficient variance estimation. If the characteristic of interest is the mean value in the domain, the

GREG calibrated estimator is given by the following formula:

ˆ̄yGREG
Ωd

=
1

Nd
ˆ̃yGREG
Ωd

, (1.69)

where ˆ̃yGREG
Ωd

has the form (1.66). The variance estimator of the estimator in discussion is given

by the formula:

D̂2( ˆ̄yGREG
Ωd

) =
1

N2
d

D̂2( ˆ̃yGREG
Ωd

), (1.70)

where D̂2( ˆ̃yGREG
Ωd

) is calculated on the basis of (1.63) and (1.68).
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Särndal also considers some modification of the GREG estimator. The MGREG estimator

for the total value in the domain is given by the following formula:

ˆ̃yMGREG
Ωd

= ∑
i∈sd

diyi +

(
∑

i∈Ωd

xi − ∑
i∈sd

dixi

)T

B̂ =

(
∑

i∈Ωd

xi

)T

B̂+ ∑
i∈sd

ei

πi
, (1.71)

where B̂ =
(
∑i∈s diqixixi

T
)−1

∑i∈s diqixiyi and ei = yi −xT
i B̂. The first component of the above

estimator, following Särndal and Hidiroglou (1989), is called synthetic, while the second is

called correctional. It should be noted that this estimator has the following property:

D

∑
d=1

ˆ̃yMGREG
Ωd

= ˆ̃yGREG. (1.72)

In addition, Särndal and Hidiroglou (1989) suggest the following modification of this estimator,

or more precisely of its correction component:

ˆ̃yMGREG
Ωd

= ∑
i∈Ωd

xT
i B̂+NdN̂−1

d ∑
i∈sd

ei

πi
, (1.73)

where N̂d = ∑i∈sd
1
πi

. For cases where the sample size is large, irrespective of the domain sample

size, Rao and Molina (2015) propose to determine the variance of the above estimator from the

formula (1.63) and thus the formula also used for GREG. In the above formula, ei is replaced by:

eMGREG
id = aid∗(yi −xT

i B̂), (1.74)

where aid∗ takes the value of 1 for elements in the domain under study, and 0 in other cases. In

the case of a zero sample size in the domain, the MGREG estimator is simplified to a synthetic

estimator having the following form:

ˆ̃yMGREG
Ωd

=

(
∑

k∈Ωd

xk

)T

B̂.

In this case, given the formula (1.63), it is not possible to estimate its variance.

When the parameter being estimated is the mean value in the domain, the MGREG estimator

is given by the formula:

ˆ̄yMGREG
Ωd

=
1

Nd
ˆ̃yMGREG
Ωd

, (1.75)

where ˆ̃yMGREG
Ωd

has the form (1.73). It should be added that the following dependence holds for

the estimation of variance for the estimators of the data by the formulae (1.75) and (1.73):

D̂2( ˆ̄yMGREG
Ωd

) =
1

N2
d

D̂2 ( ˆ̃yMGREG
Ωd

)
. (1.76)

This section also discusses the pseudo-empirical best linear unbiased predictor presented by Rao

and Molina (2015). We assume a model belonging to area level models obtained by including
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the weights w̃di =
wdi

∑
nd
j=1 wd j

in the unit level model, thus (Rao and Molina, 2015, pp. 206–207):

ȳdw =
nd

∑
i=1

w̃diydi =
nd

∑
i=1

w̃di
(
xT

diβββ + vd + edi
)
= x̄dwβββ + vd + ēdw, (1.77)

where xdw = ∑
nd
i=1 w̃dixdi, ēdw = w̃died j and wdi are the inverses of the first-order inclusion

probabilities. In addition, ēdw has a distribution with the expectation value 0 and variance

σ2
e δdw (where δdw = ∑

nd
i=1 w̃2

di). The best linear unbiased predictor µd = X̄T
d βββ + vd under the

post-aggregation model assumption is given by the formula (Rao and Molina, 2015, pp. 206–207):

µ̃
H
dw = X̄T

d βββ + γdw (ȳdw − x̄dwβββ ) , (1.78)

where γdw = σ2
v

σ2
v +σ2

e δdw
. Estimates of the parameters σ2

v and σ2
e for the type B model are obtained

using the maximum likelihood method with constraints. In order to obtain a βββ estimate, it is

necessary to obtain the best linear predictor of the random effect vd :

ṽdw
(
βββ ,σ2

e ,σ
2
v
)
= γdw

(
ȳdw − x̄T

dwβββ
)
, (1.79)

and then the solution to the equation (Rao and Molina, 2015, p. 207) is:

D

∑
d=1

nd

∑
i=1

wdixdi
[
ydi −xT

diβββ − ṽdw
(
βββ ,σ2

e ,σ
2
v
)]
.

We derive β̃ββ w from it, given by the formula:

β̃ββ
(
σ

2
v ,σ

2
e
)
=

[
D

∑
d=1

nd

∑
i=1

w̃dixdi (xdi − γdix̄dw)
T

]−1

×

[
D

∑
d=1

nd

∑
i=1

w̃di (xdi − γdix̄dw)ydi

]
. (1.80)

This estimator is ξ -unbiased. Replacing σ2
e and σ2

v by their estimator, we get the p-weighted

estimator β̂ββ w. If we replace the βββ in (1.77) by the estimate β̂ββ w, we obtain a pseudo-empirical

best linear unbiased predictor (µ̂H
dw). Under the assumption of normality of the distribution of

random effects and random components, the estimate MSE
(
µ̂H

dw

)
is given by the formula (You

and Rao, 2002, p. 434):

MŜE
(
µ̂

H
dw
)
= g1dw

(
σ̂

2
v , σ̂

2
e
)
+g2dw

(
σ̂

2
v , σ̂

2
e
)
+2g3dw

(
σ̂

2
v , σ̂

2
e
)
, (1.81)

where

g1iw
(
σ

2
v ,σ

2
e
)
= γdwδdwσ

2
e , (1.82)

g2iw
(
σ

2
v ,σ

2
e
)
=
(
X̄d − γiwx̄dw

)T
Φw
(
σ

2
v ,σ

2
e
)(

X̄d − γdwx̄dw
)

(1.83)

and

g3dw
(
σ

2
v ,σ

2
e
)
= γdw(1− γdw)

2
σ
−2
v σ

−2
e h

(
σ

2
v ,σ

2
e
)
. (1.84)
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In addition: h
(
σ2

v ,σ
2
e
)
= σ4

e V̄vv(δδδ )+σ4
v V̄ee(δδδ )− 2σ2

e σ2
v V̄ve(δδδ ), where V̄vv, V̄ee and V̄ve are the

asymptotic variances and covariance of the estimators σ̂2
v and σ̂2

e . Also, Φw
(
σ2

v ,σ
2
e
)

is instead

denoted by the variance-covariance matrix β̃ββ
(
σ2

v ,σ
2
e
)

given by the formula:

Φw
(
σ

2
v ,σ

2
e
)
=

(
D

∑
d=1

nd

∑
i=1

xdizT
di

)−1( D

∑
d=1

nd

∑
i=1

zdizT
di

)( D

∑
d=1

nd

∑
i=1

xdizT
di

)−1
T

σ
2
e

+

(
D

∑
d=1

nd

∑
i=1

xdizT
di

)−1
 D

∑
d=1

(
nd

∑
i=1

zdi

)(
nd

∑
i=1

zdi

)T
( D

∑
d=1

nd

∑
i=1

xdizT
di

)−1
T

σ
2
v , (1.85)

where zd j = wd j
(
xd j − γdwx̄dw

)
. Pseudo-EBLUP predictors were also considered by Prasad and

Rao (1999), among others.

1.2. Superpopulation model and the steps of its construction

In this subsection, issues related to the key concept of the superpopulation model, which is

central to the model-based approach, will be discussed in more detail. In the next subsections,

a classification of superpopulation models will be presented with particular reference to the

classes of models considered in this book, as well as the different steps in the process of building

a superpopulation model.

1.2.1. Mixed models

In view of analyses conducted as part of this book, the classification of superpopulation

models into models containing only fixed effects, random effects models and mixed models

should be presented in more detail. Relevant to this classification of models are the concepts of

fixed and random factor and fixed and random effect. We can speak of a random factor when

a specific distribution is assumed for its levels, whereas we can speak of a fixed factor when

the values are fixed (McCulloch, 2003, pp. 10–11). Following Biecek (2012), we can speak of

the possibility to classify the effects of the levels of a variable as fixed effects when the number

of levels of a trait is relatively small compared to the number of observations and does not

change when the number of observations changes, and therefore when all variants of the trait

are observed. In the case of fixed effects, the most common result of the analysis is a direct

assessment of the effect value. Random effects, however, are treated as realisations of a random

variable describing effects in the population. This is due to their abundance and, consequently,

the possibility of there being some that are not observed. They cannot therefore be treated as
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model parameters. In the case of random effects, the aim is to assess the distribution of these

effects, their variability in the population.

Fixed effects models were considered, among others, in the works of Borenstein et al. (2010)

and Bramati and Croux (2007). Borenstein et al. (2010) use fixed effects models in meta-analyses.

They emphasise that models of this class are applicable when two conditions are met. Firstly,

we can assume that all studies are functionally identical, so that the conditions for conducting all

studies are the same, e.g. the participants were recruited in the same way and the same people

conduct the study. Secondly, the aim of the analysis is to determine a common effect size that

would not be generalised beyond the (narrowly defined) population included in the analysis.

Bramati and Croux (2007) used a fixed effects model in their analysis of private sector responses

to fiscal policy. The authors used the national savings rate as the study variable, and the lagged

national savings rate, the demand gap and the ratio of the population under 15 years and over 65

years, among others, as explanatory variables. Authors conducting analyses based on random

effects models include, for example, Box and Tiao (1968), and Menegaki (2011). Box and Tiao

(1968) consider the problem of estimating the mean in a random effect model from a Bayesian

point of view. Menegaki (2011), nevertheless, used a random effects model in analyses of econo-

mic growth and renewable energy in 27 European countries. In her study, the author used panel

data over a ten-year period (2007–2017).

Mixed models allow both fixed and random effects to be included in the model. They allow

the analysis of data grouped by one or more classification variables. It should be noted that

models belonging to this class can be applied to many types of data, including: cross-sectional

and time series, repeated measures data and multivariate data. They also allow the modelling of

multivariate data, and data with high variability and heterogeneity. The mixed model approach,

according to Demidenko (2004), can be considered as a kind of compromise between the classical

and Bayesian approaches.

Within the class of mixed models, we can make a division between linear and non-linear

mixed models. All considerations and analyses presented in the remainder of this book apply

to linear mixed models. In the case of non-linear mixed models, non-linearity may apply to all

or only selected fixed and random effects alike. Models belonging to this class can, following

Pinheiro and Bates (2000), be considered as extensions of non-linear regression models and

linear mixed models. In the first case, by including random effects in the coefficients of the model,

it is possible to account for between-group variation, correlation within groups, and in the second,

the expected value of characteristics associated with random effects is a non-linear function.

Non-linear mixed models have been considered in the work of Pinheiro and Bates (1995),
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Lindstrom and Bates (1990), Kuhn and Lavielle (2005), and Vonesh and Carter (1992).

The general non-linear mixed model has the following form (Lindstrom and Bates, 1990,

pp. 674–675):

Yi j = f (φφφ iii,xi j)+ ei j, (1.86)

where Yi j is the realisation of the random variable for the j-th response of the i-th unit, and f is

a non-linear function of the vector of auxiliary variables denoted by xi j and the parameters φφφ iii.

In this model, we also assume a normal distribution of the random component ei j. Furthermore,

we can write the vector φφφ iii as (Lindstrom and Bates, 1990, pp. 674–675):

φφφ iii = Aiβββ +Bivi, (1.87)

where βββ is the p-element vector of parameters (fixed effects) and vi is the q-element vector

of random effects. The Ai and Bi matrices of n× p and n× q, respectively, are well-known

matrices that simplify model specification. They allow different fixed-effects parameter values

to be assigned for different groups of units or random effects to be prescribed to them or not. The

above model for a single i-th response vector can be written as follows (Lindstrom and Bates,

1990, p. 675):

Yi = ηηη i(φφφ iii)+ ei, (1.88)

where ei ∼ N
(
0,σ2∆∆∆

)
and the elements of the vector ηηη i(φφφ iii) are the values of the function

f (φφφ iii,xi j). In many cases, ∆∆∆ is a unitary matrix, however, with this matrix it is possible to take

into account the covariance structure.

The general linear mixed model, the special cases of which are considered in this monograph,

is given by the following formula (cf. Jiang, 2007, pp. 1–2):

Y = Xβββ +Zv+ e, (1.89)

where Y – a random vector of values of the explanatory variable, X, Z – known matrices of

auxiliary variables, and βββ – a vector of unknown parameters. In this model, we assume that the

random effects v and the random components e are independent, their expected values are equal

to 0, and their variance-covariance matrices, respectively denoted as G(δδδ ) and R(δδδ ), depend

on the variance component vector δδδ . The variance-covariance matrix Y is given by the formula

(Littell et al., 2006, p. 736):

V(δδδ ) = ZG(δδδ )ZT +R(δδδ ). (1.90)

The linear mixed model (1.89) can also be written in the following form:

Y = Xβββ +Z1v1 +Z2v2 + · · ·+Zhvh + e, (1.91)
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where

D2


v1

v2
...

vh

=


G11 G12 . . . G1h

G21 G22 . . . G2h
...

...
. . .

...

Gh1 Gh2 . . . Ghh

 .

It is important to note that in general, for i ̸= j, it is possible that Gi j ̸= 0. Usually, it is

additional assumed that the matrix R(δδδ ) has the form R(δδδ ) = σ2
e diag(ai) for 1 ⩽ i ⩽ N, where

ai is some known function of the auxiliary variables. It is therefore possible to account for the

heteroscedasticity of the random components.

In small area estimation, model (1.91) and its special cases are considered, but when

v1,v2, . . . ,vh are independent, implying that Gi j = 0 for each i ̸= j (cf. Rao and Molina, 2015,

pp. 88–89). We propose to use the linear mixed model with correlated random effects vectors

given by equation (1.91) in small area estimation without the additional assumption that Gi j = 0

for each i ̸= j.

Within the class of linear mixed models, Jiang (2007) distinguishes between Gaussian and

non-Gaussian models. This classification is based on the assumption of normality of distribution.

In the case of Gaussian models, the normality of the distribution of both effects and random

components is assumed. In the case of non-Gaussian linear mixed models, it is assumed that

the effects and random components are independent or uncorrelated and that their distributions

are not normal. The joint distribution of the variable under study may not be fully specified. It

should also be noted that the assumption of the normality of the distribution provides greater

flexibility in modelling, whereas its absence provides resistance to failure to meet distribution

assumptions.

Within linear mixed models, we can also distinguish between type A (area level models)

and B (unit level models). It should be emphasised that unit level models require data at the level

of individual units, while area level models use data at a higher aggregation level, e.g. for areas,

groups, domains.

Amongst the models belonging to type A, we can distinguish the model considered by Fay

and Herriot (1979) for single-period data:

θd = xT
d βββ + vd , (1.92)

θ̂d = θd + ed , (1.93)

where d = 1,2, . . . ,D, and θ̂d is some direct estimator of the characteristic θd . It should be added

that in the classical Fay–Heriot model, the independence of the random components ed and the

random effects vd is assumed. Furthermore, we assume that ed have a distribution with an
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expected value of 0 and a known variance of σ2
e . Similarly, for random effects vd , a distribution

with an expectation value of 0 and a variance of σ2
v is assumed. The vector of auxiliary variables

for the domains is denoted by xd . It should be added that this model can allow accurate estimates

to be obtained for small domains by using combined models for direct estimators, auxiliary

variables and borrowing power from other domains. The model also allows data from different

sources to be combined (Datta et al., 2005, p. 184; Rueda et al., 2010, p. 571). The Fay–Heriot

model and its modifications have been used in estimating, among other things, per capita income,

the unemployment rate in selected Canadian cities (Rao and Yu, 1994), the number of school-age

children living in poverty (Lohr and Rao, 2009), and the value of the mean and kurtosis of

household income (Jędrzejczak, 2011).

An example of a model belonging to the latter class is the model with a nested random

component presented for single period data by Battese et al. (1988). This model for domain-

-specific random effects and longitudinal data has the following form (cf. Battese et al., 1988,

pp. 29–30):

Yidt = xT
idtβββ + vd + eidt , (1.94)

where d = 1,2, . . . ,D, i = 1,2, . . . ,N, and t = 1,2, . . . ,M. As in the model given by the formulas

(1.92) and (1.93), we make the assumptions that eidt and vd have distributions with expectation

values of 0 and variances of σ2
e and σ2

v , respectively, and therefore vd ∼ iid
(
0,σ2

v
)

and eidt ∼

iid
(
0,σ2

e
)
. In addition, the variance-covariance matrices for the effects and random components

have the following forms:

G(δδδ ) = σ
2
vd

ID×D, (1.95)

R(δδδ ) = σ
2
e diag(ait) (1.96)

for 1 ⩽ i ⩽ N and 1 ⩽ t ⩽ M, where ait is some known function of the auxiliary variables. Thus,

for the model (1.94), we also have:

E (Yidt) = xT
idtβββ (1.97)

and

Covξ (Yidt ,Yi′d′t ′) =


σ2

e +σ2
v when i = i′∧ d = d′∧ t = t ′,

σ2
v for i ̸= i′∧ d = d′,

0 for d ̸= d′.

(1.98)
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For the above model, the Z matrix can be written as:

Z =


1N1 0 · · · 0

0 1N2 · · · 0
...

...
. . .

...

0 0 · · · 1ND


NM×D

,

where 1Nd is a vector of 1’s of dimension NdM×1 while the matrix V(δδδ ) is of the form:

V(δδδ ) = diag
1⩽d⩽D

Vd = diag
1⩽d⩽D

(
σ

2
vd

1NdM1T
NdM +σ

2
e INdM×NdM

)
. (1.99)

The model proposed by Battese et al. (1988) or some modifications of it have found application,

among others, in forecasting crop areas using geodetic and satellite data (Battese et al., 1988).

The issue of prediction using the above model was also considered in the work of Prasad

and Rao (1990), where the problem of estimating the mean squared error was also considered,

Torabi and Rao (2010), where the use of pseudo-EBLUP was considered, and Rivest et al. (2016),

where combining functions were used.

Among the single random effect models, besides the model with a nested random component

presented above, we can distinguish a model with a random slope. This model with a domain-

-specific random effect for longitudinal data has the form (for data from a single period, cf.

Dempster et al., 1981, pp. 342–344):

Yidt = (β1 + vd)xidt +β0 + eidt , (1.100)

where i = 1,2, . . . ,N, d = 1,2, . . . ,D, t = 1,2, . . . ,M, vd ∼ iid
(
0,σ2

d

)
, and eidt ∼ iid

(
0,σ2

e
)
. The

matrices G(δδδ ) and R(δδδ ) have the form given by the formulas (1.95) and (1.96), and therefore

as in the case with a nested random component, the matrix of auxiliary variables Z can be

written as:

Z =


x1 0 · · · 0

0 x2 · · · 0
...

...
. . .

...

0 0 · · · xD


NM×D

,

where i = 1,2, . . . ,N, d = 1,2, . . . ,D, t = 1,2, . . . ,M, and xd has dimension NdM × 1. The

variance-covariance matrix of the vector of random variables under consideration is given in

this case by the following formula:

V(δδδ ) = diag
1⩽d⩽D

Vd = diag
1⩽d⩽D

(
σ

2
vd

xdxT
d +σ

2
e INdM×NdM

)
. (1.101)

Similarly, both models can be written, for example, for time- or profile-specific random effects,

thus vt or vi. This model, with modifications, has found applications in, for example, estimating
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students’ average grade points after the first year of law (Dempster et al., 1981) and glucose

tolerance (Reinsel, 1984).

Linear mixed models with two or more random effects also allow us to distinguish classes

of models that take into account the presence or lack of a correlation between random effects.

These models will be discussed in more detail in the next two subsections 1.2.2 and 1.2.3.

1.2.2. Special cases of linear mixed models with uncorrelated random effects

This subsection of the monograph will present selected special cases of linear mixed models

with two, three and four random effects. For models with two random effects, how Biecek (2012)

points out, we can consider cases where the random effects involve the same or different grouping

variables. For classes of models with more than two effects, we can also consider several grouping

variables.

The first model presented is the model with two uncorrelated random effects specific to the

two grouping variables. Following Stukel and Rao (1999) this model with domain-specific and

profile-specific random effects is given by the formula:

Yidt =
p

∑
k=1

βkxk,idt + vd + vid + eidt , (1.102)

where i = 1,2, . . . ,N, d = 1,2, . . . ,D, t = 1,2, . . . ,M, vd ∼ iid
(
0,σ2

vd

)
, vid ∼ iid

(
0,σ2

vid

)
, and

eidt ∼ iid
(
0,σ2

e
)
. Furthermore, for the above model, the following occurs:

Covξ (Yid ,Yi′d′) =



σ2
e +σ2

vd
+σ2

vid
when i = i′∧ d = d′∧ t = t ′,

σ2
vd
+σ2

vid
when i = i′∧ d = d′∧ t ̸= t ′,

σ2
vd

when i ̸= i′∧d = d′,

0 in other cases.

(1.103)

We can decompose the matrix of auxiliary variables Z for the above model into two component

matrices Z(D) and Z(ID):

Z =
[
Z(D) Z(ID)

]
NM×(N+D)

, (1.104)

where the component matrices are of the following form:

Z(D) =



1MN1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1MNd · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 1MND


NM×D

(1.105)
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and

Z(ID) =



1M · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1M · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 1M


NM×N

. (1.106)

The matrix V(δδδ ) in this case can be written as V(δδδ ) = diag
1⩽d⩽D

Vd , where the matrix Vd is of

the form:

Vd =



V11 · · · V1i · · · V1Nd

...
. . .

...
. . .

...

Vi1 · · · Vii · · · V1Nd

...
. . .

...
. . .

...

VNd1 · · · VNd i · · · VNdNd


MNd×MNd

. (1.107)

The variance-covariance matrix of the random variables for i-th element of the population at

different periods Vii is given by the formula:

Vii =



σ2
e +σ2

vd
+σ2

vid
· · · σ2

vd
+σ2

vid
· · · σ2

vd
+σ2

vid

...
. . .

...
. . .

...

σ2
vd
+σ2

vid
· · · σ2

e +σ2
vd
+σ2

vid
· · · σ2

vd
+σ2

id
...

. . .
...

. . .
...

σ2
vd
+σ2

vid
· · · σ2

vd
+σ2

vid
· · · σ2

e +σ2
vd
+σ2

vid


M×M

, (1.108)

and the variance-covariance matrix between the random variables for the i-th and i′-th elements

of the population at different periods has the form:

Vii′ = σ
2
id1M1T

M. (1.109)

Another of the cases considered is a model with two uncorrelated random effects specific to one

grouping variable – the domain. It is given by the following formula (Krzciuk, 2020, p. 20):

Yidt = (β1 + v2d)xidt +β0 + v1d + eidt , (1.110)

where i = 1,2, . . . ,N, d = 1,2, . . . ,D, t = 1,2, . . . ,M, v1d ∼ iid
(
0,σ2

v1d

)
, v2d ∼ iid

(
0,σ2

v2d

)
, and
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eidt ∼ iid
(
0,σ2

e
)
. For this model, the G(δδδ ) matrix is a block-diagonal matrix:

G(δδδ ) = D2



v11

v21
...

v1d

v2d
...

v1D

v2D



=


G1(δδδ ) 0 . . . 0

0 G2(δδδ ) . . . . . .

. . . . . . . . . . . .

0 . . . . . . GD(δδδ )


2D×2D

, (1.111)

where the submatrix of the G matrix for the domain can be written as:

Gd(δδδ ) =

σ2
v1d

0

0 σ2
v2d

 . (1.112)

The variance-covariance matrix R(δδδ ), in this and the next of the special cases presented, has the

form as in the previous models, i.e. given by the formula (1.96). When two random effects are

included in the model, the matrix Z has a slightly more complex form:

Z =


1N1 x1 0 0 · · · 0 0

0 0 1N2 x2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1ND xD


NM×2D

, (1.113)

where 1Nd and xd have dimension NdM×1. The matrix V in this case can be written as the sum

of the components of ZGZ−1 for models with a nested random component and a random slope

and the matrix R, thus as:

V(δδδ ) = diag
1⩽d⩽D

Vd = diag
1⩽d⩽D

(
σ

2
v1d

1NdM1T
NdM +σ

2
v2d

xdxT
d +σ

2
e INdM×NdM

)
. (1.114)

We can also consider more complex models containing three or more random effects. The

first model considered containing three random effects can be written as:

Yidt = (β1 + v2d)xidt +β0 + v1d + vt + eidt , (1.115)

where v1d ∼ iid
(
0,σ2

v1d

)
, v2d ∼ iid

(
0,σ2

v2d

)
, and eidt ∼ iid

(
0,σ2

e
)
. In addition to domain-specific

effects, a random effect for time vt is included in this model. The variance-covariance matrix of
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the random effects for the above model has the following form:

G(δδδ ) =



G1(δδδ ) 0 · · · 0 0

0 G2(δδδ ) · · · 0 0
...

...
. . .

...
...

0 0 · · · GD(δδδ ) 0

0 0 · · · 0 GT (δδδ )


(2D+M)×(2D+M)

, (1.116)

where the domain-specific random effects submatrix is given by the formula (1.112), and for

time we can write as:

GT (δδδ ) = σ
2
vt

IM×M. (1.117)

We can decompose the matrix of auxiliary variables Z for the above model into two component

matrices Z(D) and Z(T ):

Z =
[
Z(D) Z(T )

]
NM×(2D+M)

, (1.118)

the matrix associated with the domain-specific random effects Z(D) given by the formula (1.113)

and the matrix Z(T ), corresponding to the third random effect:

Z(T ) =


Z(T )

1

Z(T )
2
...

Z(T )
D


NM×M

, (1.119)

where

Z(T )
d =


1d1 0 · · · 0

0 1d2 · · · 0
...

...
. . .

...

0 0 · · · 1dM


NdM×M

, (1.120)

and 1dt has the dimension Nd ×1.

The second variant of this model considered is given by the following equation:

Yidt = (β1 + v2d + vt)xidt +β0 + v1d + eidt , (1.121)

where v1d ∼ iid
(
0,σ2

v1d

)
, v2d ∼ iid

(
0,σ2

v2d

)
, and eidt ∼ iid

(
0,σ2

e
)
. Again, it is possible to

decompose the matrix of auxiliary variables Z given by the formula (1.118) and the matrix

Z(T ) has the form (1.119), where the submatrices can be written as:

Z(T )
d =


x(T )d1 0 · · · 0

0 x(T )d2 · · · 0
...

...
. . .

...

0 0 · · · x(T )dM


NdM×M

, (1.122)
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where x(T )dt has the dimension Nd ×1. Then the matrix G(δδδ ) is given by the formula (1.116).

The last of the mixed models with uncorrelated random effects presented in this subsection

is the model with four random effects:

Yidt = (β1 + v2d + v2t)xidt +β0 + v1d + v1t + eidt , (1.123)

where v1d ∼ iid
(
0,σ2

v1d

)
, v2d ∼ iid

(
0,σ2

v2d

)
, and eidt ∼ iid

(
0,σ2

e
)
. The model (1.121) considered

in this paragraph is extended with a second time-specific effect. The variance-covariance matrix

of the random effects for this model is given by the formula:

G(δδδ ) =



G1(δδδ ) 0 · · · 0 0 0

0 G2(δδδ ) · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · GD(δδδ ) 0 0

0 0 · · · 0 GT (δδδ ) 0

0 0 · · · 0 0 GT (δδδ )


(2D+2M)×(2D+2M)

. (1.124)

The submatrix corresponding to domain-specific effects is of the same form as for the other

models, assuming a lack of correlation, and therefore follows the formula (1.112). The matrix

GT (δδδ ) has a form analogous to the submatrix for domain-specific effects:

GT (δδδ ) =

σ2
v1t

0

0 σ2
v2t

 . (1.125)

For this model, it is also possible to decompose the Z matrix according to the formula (1.118),

however, it has dimensions NM × (2D+ 2M). We can write the submatrix for time as (1.119),

where Z(T )
d has form:

Z(T )
d =


1(T )d1 x(T )d1 0 0 · · · 0 0

0 0 1(T )d2 x(T )d2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1(T )dM x(T )dM


NdM×2M

. (1.126)

1.2.3. Special cases of linear mixed models with correlated random effects

When discussing models belonging to the class of linear mixed models, we can also consider

the occurrence of correlations between random effects and between vectors of random effects in

the case of models including two or more random effects.

When considering models with correlated random effects, attention should be paid to models

in which the spatial correlation of random effects is assumed. In such a case, the vector of
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correlated random effects for the domains v, assuming a simultaneous spatial autoregressive

process (SAR process), is given by the following formula (Cressie, 1993):

v = (I−ρW)−1 u, (1.127)

where u is a D-element vector of independent random effects with variance σ2
u , and ρ is an

unknown parameter. The spatial weights matrix W is of dimension D×D, since correlation is

assumed between domains rather than between population elements. It should be noted that the

proximity of domains can be considered not only in a geographic sense, but also in an economic

sense, using variables such as the unemployment rate or the value of investments (Pietrzak,

2010). It should be added that the rows of the W matrix are usually standardised. The problem

of defining weight matrices has been widely presented in a book edited by Suchecki (2010).

The variance-covariance matrix of the random effects G is given in this case by the formula

(Molina et al., 2008, p. 444):

G = σ
2
u
[
(I−ρW)

(
I−ρWT )]−1

. (1.128)

The R matrix can be written as:

R = diag
(
σ

2
e
)
. (1.129)

By substituting (1.128) and (1.129) into (1.90), we obtain a matrix V which has the form (Pratesi

and Salvati, 2008, p. 116):

V = ZGZT +R = Zσ
2
u
[
(I−ρW)

(
I−ρWT )]−1 ZT +σ

2
e I. (1.130)

The problem of spatial correlation of random effects was considered, among others, in the studies

of Pratesi and Salvati (2008) and Petrucci and Savalati (2004), for type A and B models.

The first model proposed that takes into account the correlation of random effects vectors,

which is a special case of model (1.93), is a model containing two correlated domain-specific

random effects (Krzciuk, 2020, p. 20):

Yidt = (β1 + v∗2d)xidt +β0 + v∗1d + eidt , (1.131)

where v∗1d and v∗2d are domain-specific random effects, v∗1d ∼ iid
(

0,σ2
v∗1d

)
for d = 1,2, . . . ,D,

v∗2d ∼ iid
(

0,σ2
v∗2d

)
for d = 1,2, . . . ,D, cor

(
v∗1d ,v

∗
2d

)
= ρ for d = 1,2, . . . ,D, and eidt ∼ iid

(
0,σ2

e
)
.

The G(δδδ ) matrix is also in this case a block-diagonal matrix, as in the model with uncorrelated

random effects (1.111), however, the submatrix for the domain is given by the formula:

G∗
d =

 σ2
v∗1d

ρσv∗1d
σv∗2d

ρσv∗1d
σv∗2d

σ2
v∗2d

 . (1.132)
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The variance-covariance matrix Y can be written as:

V∗(δδδ ) = diag
1⩽d⩽D

Vd = (1.133)

= diag
1⩽d⩽D

(
σ

2
v∗1d

1NdM1T
NdM +σ

2
v∗2d

xdxT
d +ρσv∗1σv∗2

(
1NdMxT

d +xd1T
NdM
)
+σ

2
e INdM×NdM

)
,

where xd is a vector of auxiliary variable values of dimension NdM × 1. Compared to the

V(δδδ ) matrix for the (1.110) model, it has been supplemented with one additional component

containing the ρ parameter and taking into account the correlation between random effects.

We can also consider more complex models containing three or more random effects. In

these cases, it is also possible to take into account the correlation between the random effects. We

consider two variants of the model containing three random effects. The first of these proposals

can be written as:

Yidt = (β1 + v∗2d)xidt +β0 + v∗1d + vt + eidt , (1.134)

where vt ∼ iid
(
0,σ2

vt

)
, v∗1d ∼ iid

(
0,σ2

v∗1d

)
, v∗2d ∼ iid

(
0,σ2

v∗2d

)
, cor

(
v∗1d ,v

∗
2d

)
= ρ , and eidt ∼

iid
(
0,σ2

e
)

for d = 1,2, . . . ,D. The third random effect included in the model is the random

effect for time vt . The variance-covariance matrix of the random effects for this model has the

following form:

G∗∗(δδδ ) =



G∗
1(δδδ ) 0 · · · 0 0

0 G∗
2(δδδ ) · · · 0 0

...
...

. . .
...

...

0 0 · · · G∗
D(δδδ ) 0

0 0 · · · 0 GT (δδδ )


(2D+M)×(2D+M)

, (1.135)

where the domain-specific random effects submatrix is given by the formula (1.132), and for

time, we can write it as:

GT (δδδ ) = σ
2
vt

IM×M. (1.136)

The Z auxiliary variable matrix for the above model can be decomposed into two component

matrices. It thus has the form given by the formula (1.118), where the matrix associated with

the domain-specific random effects and the matrix Z(T ), which corresponds to the third random

effect, can be written with the formulas (1.113) and (1.119), respectively.

The second variant of this model considered is given by the following equation:

Yidt = (β1 + v∗2d + vt)xidt +β0 + v∗1d + eidt , (1.137)

where we make assumptions about the distributions of the random effects and the random

component as in the (1.134) model. Once again, it is possible to decompose the matrix of
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the auxiliary variables Z and the matrix Z(T ) has the form (1.119), where the submatrices are

given by the formula (1.122). The matrix G(δδδ ) is given by the formula (1.135).

The last of the special cases of the mixed model with correlated random effects vectors

presented in this subsection is the model with four random effects:

Yidt = (β1 + v∗2d + v∗2t)xidt +β0 + v∗1d + v∗1t + eidt , (1.138)

where v∗1d , v∗2d , v∗1t , and v∗2t are random effects specific to the domain and time, respectively.

In addition v∗1d ∼ iid
(

0,σ2
v∗1d

)
for d = 1,2, . . . ,D, v∗2d ∼ iid

(
0,σ2

v∗2d

)
for d = 1,2, . . . ,D, v∗1t ∼

iid
(

0,σ2
v∗1t

)
for t = 1,2, . . . ,M, v∗2t ∼ iid

(
0,σ2

v∗2t

)
for t = 1,2, . . . ,M, cor

(
v∗1d ,v

∗
2d

)
= ρ

for d = 1,2, . . . ,D, cor (v∗1t ,v
∗
2t) = ρ ′ for t = 1,2, . . . ,M, and eidt ∼ iid

(
0,σ2

e
)
. The models

considered in this paragraph have been supplemented with a second time-specific effect. In

addition, the correlation between both domain-specific and time-specific effects has been taken

into account. The variance-covariance matrix of the random effects for this case is given by the

formula (1.121). The submatrix corresponding to the domain-specific effects is of the same form

as for the other models assuming correlation, and therefore follows the formula (1.132). The

matrix GT is supplemented with off-major diagonal elements, taking correlation into account,

and thus has a form analogous to the submatrix of the matrix G∗
d given by the formula (1.132):

GT =

 σ2
v∗1t

ρ ′σv∗1t
σv∗2t

ρ ′σv∗1t
σv∗2t

σ2
v∗2t

 . (1.139)

For this model, it is also possible to decompose the Z matrix according to the formula (1.118)

but it has dimensions N × (2D+ 2M). We can write the submatrix for time as (1.119), where

the component matrices are given by the formula (1.126). The matrix corresponding to domain-

-specific effects remains consistent with the formula (1.132). Although some special cases of

mixed models with correlated random effects vectors have been considered in the work of

Dumont et al. (2014), Menec et al. (2004), and Ogungbenro et al. (2008), to the best of our

knowledge, the class of linear mixed models with correlated random effects (1.93) is a new

proposal, and its special cases have not been used in small area estimation to date.

1.2.4. Steps of model construction

One of the most important elements in the modelling approach is the process of model

building. This subsection will discuss the different steps in this process – model specification,

estimation and verification.

The first phase of model building is model specification. This phase consists primarily of

defining the purpose of building the model and determining the dependent and auxiliary variables.
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According to Pawłowski (1969), when selecting variables, indications of a theory concerning

the phenomenon under study may be helpful. When theory does not provide a sufficient basis

for determining the characteristics that should be included in the model, the author points to

basing the decision on empirical material, other studies and computational experiments. It is

also emphasised that the variables used in the model should be clearly defined and have an

economic interpretation (Sobczyk, 2012, p. 12). Numerous statistical and econometric methods

can be used in the selection of variables for the model. Among the classical methods, we can

distinguish: the Hellwig (1969) method (optimal choice of predictors), the method proposed by

Pawłowski (1981) (elimination of quasi-constant variables), and the graph method proposed by

Bartosiewicz (1973) (sequential methods of variable selection).

At this stage, the sources of data to be used in the model are also identified. These data,

depending on the problem under investigation, may take the form of cross-sectional data, time

series, or longitudinal data. It should be noted that the statistical material, i.e. the set of data

obtained by observation – one of the first steps of statistical investigation – can be divided

into two categories: primary and secondary. Primary data are data collected directly for the

implementation of a specific survey or statistical programme, e.g. data collected during the

National Census. Secondary data, however, can be referred to when data were collected for other

purposes, but were also used in a statistical survey (cf. Sobczyk, 2004, pp. 20–21). An example

of secondary data is data from official registers.

The next element in the specification of the model is the choice of its analytical form. In

the literature, we can find this step as a separate step in the model building process (cf. Strahl

et al., 2004, pp. 29–30). This choice is often made on the basis of the results of other studies,

computational experiments conducted, analysis of graphs of the study variable and explanatory

variables, or properties of mathematical functions (cf. Guzik, 2008, p. 25; Sobczyk, 2012,

p. 12). Non-statistical information on the phenomenon under study and the regularities that are

associated with it can also be of great importance in determining the analytical form of the model.

Verbecke and Molenberghs (2000), in the case of linear mixed models, thus the class of

models considered in this book, distinguish two steps of model specification. These are the

choice of the mean value structure (Xβββ ) and the covariance structure. It should be added

that the first of these stages is related to the selection of the auxiliary variables and thus the

determination of the fixed effects in the model, while the second is related to the specification of

the random effects to be included in the model. It is therefore related to the selection of grouping

variables. The authors point out that these stages are not independent of each other unless robust
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methods are used. Adequate identification of the covariance structure allows correct inference

of parameters for fixed effects.

When using computational experiments, therefore one of the heuristic methods, it is

important to select a criterion on the basis of which the goodness of fit of the selected model form

to the considered data set will be determined. Among these, we can distinguish the information

criteria of Akaike (1973) (AIC), Schwartz (1978) (BIC), Hannan and Quinn (1979) (HQIC), and

Bozdogan (1987) (CAIC), which are modifications of the AIC criterion. They are special cases

of the generalised information criterion (GIC) having the form (Biecek, 2012, p. 123):

GIC =−2lnL(M)+h|M|, (1.140)

where L is the reliability function for the model M and |M| is the number of model parameters.

For the most commonly used AIC and BIC criteria, the parameter h takes the value of 2 and

ln(n), respectively, where n denotes the number of observations. When comparing models based

on the GIC criterion and its special cases, we choose the model with the smallest value of the

measure (Biecek, 2012, p. 123). It should be added that these criteria can also be applied to the

mixed models considered in this monograph.

The next stage of model construction is the estimation of its parameters. The decision on

the method of parameter estimation results primarily from the choice of the analytical form

of the model made at the stage of its specification. This book will discuss selected methods of

estimating the parameters of the model, relevant in the context of the issues addressed in

this monograph.

Methods for estimating model parameters, important in the context of the class of models

analysed in this monograph, are the maximum likelihood method (ML) and the restricted

maximum likelihood method (REML). The maximum likelihood method, following Jiang (2007),

was first used in the 1920s by Fisher (1922). However, the method was only used to estimate the

parameters of mixed models in the late 1960s by Hartley and Rao (1967). Under the assumption

that the test variable Y has a multivariate normal distribution (Y ∼ N(Xβββ ,V)), the likelihood

function is given by the formula:

L =− 1√
(2π)n|Vss|

exp
(
−1

2
(Ys −Xsβββ )V−1

ss (Ys −Xsβββ )

)
, (1.141)

and its logarithm has the form:

l =−1
2
(Ys −Xsβββ )V−1

ss (Ys −Xsβββ )−
1
2

n ln(2π)− 1
2

ln(|Vss|) . (1.142)

In order to obtain an assessment of the vector δδδ , thus the vector of unknown parameters on

which the variance-covariance matrix depends, by means of the scoring algorithm, it is necessary
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to determine the vector of first derivatives of the logarithm of the l function and the matrix

of expected values of the −l function’s hessian. This procedure is outlined in more detail by

Rao and Molina (2015). This algorithm yields the maximum-likelihood estimators δ̂δδ ML and

β̂ββ ML = β̂ββ

(
δ̂δδ ML

)
. The asymptotic variance-covariance matrices of these estimators are given by

the following formulae:

D̆2
ξ

(
β̂ββ ML

)
=
(
XT V−1X

)−1
, (1.143)

δ̆δδ
2
ξ

(
δ̂δδ ML

)
= I−1(δδδ ). (1.144)

The Newthon–Raphson algorithm can also be used to determine the assessment of δδδ . In this

algorithm, however, negative values of s are possible, and it does not provide, as Biecek (2012)

points out, a guarantee of convergence to a local maximum. It should also be noted that the

estimator of the generalised least-squares method is used to assessment βββ in this method, which

is also a drawback of this approach. When discussing the above method, it can also be added

that the equivalent of maximising the likelihood function, or its logarithm, is to minimise the

deviance given by the following formula (Biecek, 2012, p. 150):

−2l =−2(lnL).

The origins of the restricted maximum-likelihood method date back to the early 1960s and

the work of Thompson (1962). In this method, we consider a transformation of the vector Y

such that:

Y∗
s = AT Ys, (1.145)

where A is an arbitrary matrix of order n− p, with n rows and n− p columns, orthogonal to the

matrix of auxiliary variables Xs
(
AT Xs = 0

)
. It should be added that when Ys has a multivariate

normal distribution, after transformation Y∗
s has an (n − p)-dimensional normal distribution,

with vector of expected values 0 and variance-covariance matrix AT VssA (Rao and Molina,

2015, pp. 102–103). The logarithm of the restricted likelihood function is given in this case by

the formula:

lnLR =−1
2

YT
s A
(
AT VssA

)−1 AT Ys −
1
2

ln(2π)− 1
2

lndet
(
AT VssA

)
. (1.146)

Analogously to the maximum likelihood method, the vector of first derivatives of lnLR is

determined as well as the expectation value of the − lnLR function. The subsequent steps of this

procedure are discussed in more detail in the works of Rao and Molina (2015). The asymptotic

variance-covariance matrices of the two above estimators have the following form (Rao and

Molina, 2015, p. 103):

D̆2
ξ

(
β̂ββ REML

)
≈ D̆2

ξ

(
β̂ββ ML

)
=
(
XT

s V−1
ss Xs

)−1
, (1.147)
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D̆2
ξ

(
δ̂δδ REML

)
≈ D̆2

ξ

(
δ̂δδ ML

)
= I−1(δ ). (1.148)

It should further be noted that they are approximately equal to the matrices determined using the

maximum likelihood method.

The third, and therefore final, phase of model building is model verification, where we

can distinguish tests concerning the distribution of the random component and random effects

and the model parameters. The assumption of normality of the random components and random

effects for empirical best linear unbiased predictors under the assumption of linear mixed models

is important due to:

– parameter estimation by the Gaussian maximum likelihood method (which, however, can be

replaced by a non-normality-proof restricted maximum likelihood method – cf. Jiang (1996)),

– testing the significance of the model parameters using classical tests (but these can be replaced

by permutation tests, where normality of the components and random effects is not required,

and which will be discussed later in this subsection),

– derivation of an approximation of the mean squared error (Kackar and Harville, 1984;

Robinson, 1991; Harville and Jeske, 1992),

– for assessing prediction accuracy using most methods except the naive Taylor series expansion

method (e.g. Datta and Lahiri, 2000, p. 623), the jackknife method (Jiang et al., 2002,

p. 1803), the weighted jackknife method (Chen and Lahiri, 2003, p. 908) and the parametric

bootstrap method (Butar and Lahiri, 2003, p. 66).

While for empirical best linear unbiased predictors the assumption of normality is not needed

at the stage of deriving the form of the predictor (and proving its ubiasedness), for empirical

best predictors it is necessary (at least for the post-transformation values of the random variable

under study).

Żądło (2020) points out that under the assumption of a linear mixed model, normality

of the distribution of the random effects vectors and random components, and when the Z

matrix is of full order, the random effects vectors and the random components have multivariate

normal distributions if and only if the Y vector has a multivariate normal distribution. Hence,

accepting the null hypothesis that the vector Y (or the random part of the model i.e. Zv+ e) has

a multivariate normal distribution is equivalent to accepting the null hypothesis that the vector

of random components and the vector of random effects have multivariate normal distributions.

The only remaining problem is that classical tests of normality are applied to independent

random variables, while the elements of the Y vector in the mixed model (and the residuals in the

mixed model) are correlated. However, this problem can be solved by applying a transformation

of the residuals of the mixed model using the Cholesky decomposition of the inverse of the

43



variance-covariance matrix estimate, as discussed by Jacqmin–Gadda et al. (2006). Classical

tests for the normality of the distribution of the random component include the Shapiro and

Wilk (1965) and Lilliefors (1967) tests.

Another important element of this stage is the verification of the significance of the model

parameters. In the context of the mixed models considered in this monograph, we can distinguish

significance tests for fixed effects and for variance components.

In the case of fixed effects tests, the hypothesis being verified is of the form H0 : βi = 0,

while the alternative is H1 : βi ̸= 0. Among the classical tests for fixed effects, we can mention,

among others, the likelihood quotient test, the Wald test and the conditional t-test and, in

the case of simultaneous testing of several parameters, the conditional F-test. It should be

emphasised that these tests require that the assumption regarding the normality of the distribution

of components and random effects is met. An additional condition that must be met for the

likelihood ratio test is the nesting of the models. This criterion is met by using the maximum

likelihood method in the model estimation process, with the result that the model containing the

selected effect and the model not containing it are nested (Biecek, 2012, p. 60). The statistics

of this test, discussed in more detail by Pinheiro and Bates (2000), are based on the value

of the likelihood function for the restricted model and the more general model, respectively.

When the hypothesis being tested is true, this statistic has a χ2 distribution with a number of

degrees of freedom equal to the difference in the number of parameters in the models used

to determine it (Pinheiro and Bates, 2000, p. 83). Thus, when testing for the significance

of a single parameter, quantiles of the distribution χ2 with one degree of freedom must be

used. An important drawback of this test, pointed out by Pinheiro and Bates (2000), is its

“anti-conservativeness”. This test is therefore not recommended for testing the significance of

fixed effects. As the simulation studies indicate, the actual p-values can be significantly higher

than assumed.

Another test considered is the Wald test, also known as the Z-test (Verbeke and Molenberghs,

2000, p. 56). This test should be used when the number of observations is large relative to the

number of model parameters. The Wald test is considered for hypotheses for a fixed matrix K

of the form H0 : Kβββ = 0 and H1 : Kβββ ̸= 0, obtained by approximating the distribution of

the statistic, more extensively presented in the work of Verbeke and Molenberghs (2000), by

a distribution χ2 with number of degrees of freedom equal to the order of the matrix K. In the

case where K is a vector with elements equal to 0 or 1 for j-th selected parameter, the hypothesis

under consideration simplifies to the form H0 : β j = 0, and the test and the associated confidence

intervals are obtained from an approximation of the corresponding distribution with a standard
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normal distribution. However, there is a rather significant problem associated with the use of the

Wald test to verify the significance of fixed effects. This test is based on standard error estimates

of the mean underestimating the actual βββ values. This is due to the non-accounting for the

variability implied by the estimation procedure. This problem was considered, among others,

by Dempster et al. (1981). A solution to this issue may be the approximation by Student’s

t-distribution and the use of conditional t-test and F-test statistics, as discussed more extensively

by Wolfinger (1993) and Littell et al. (2006). It should be noted that only in certain special

cases does the conditional t-test statistic have an exact t-distribution. Similarly, in the case of

the second statistic in question, in most cases it will have a distribution only approximating an

F distribution with the number of degrees of freedom depending on the order of the K matrix

(Frątczak, 2012, pp. 412–413).

In addition to classical tests, permutation tests can also be used to test the significance of

fixed effects. It should be noted that they can also be used when assumptions regarding the

normality of the distribution of effects and random components are not met. This represents

a major advantage of permutation tests. The significance verification procedure in this case can

be presented as three steps. It should be noted that the subsequent steps will be analogous for

both non-random effects and mixed models. In the first step, the value of the statistic, e.g. the

reliability function (L0), is calculated for the model under consideration and the original dataset.

The second step involves the B-fold permutation of the elements of the corresponding column

of the matrix X and the value of the statistic for the considered model and the data, taking the

permutation into account: L∗,b
0 (b = 1, . . . ,B). The number of iterations of B usually depends

on the level of significance adopted. The final step of the procedure is to determine the p-value,

based on the following formula (Biecek, 2012, p. 22):

p =
1+#{b : L∗,b

0 > L0}
1+B

, (1.149)

so we count the fraction of cases where L∗,b
0 > L0. It should be added that the likelihood function

in the above procedure can also be replaced by other test statistics, e.g. those used in classic

tests. The disadvantage of permutation tests is the time required for the whole procedure, which

is mainly due to the number of repetitions adopted and the complexity of the test statistic.

In the paper by Krzciuk and Żądło (2014a), a simulation study compared the properties of

the above classical tests and permutation tests, including permutation equivalents of classical

tests. Analyses were conducted based on data presented in Särndal et al. (1992) concerning

Swedish counties. The simulation study was divided into two parts. The first part examined the

probabilities of errors of the first type, while the second examined the power of the tests. The

study also considered the problem of not meeting the assumptions regarding the normality of the
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distribution of random effects and random components preventing the use of classical tests, by

also including a shifted exponential distribution in their generation. The results obtained in the

simulation study indicate good properties of permutation tests based on the likelihood function

and conditional t-test statistics.

The null hypothesis, when tested for variance components, is of the form H0 : σ2
v = 0. The

alternative hypothesis, however, following Biecek (2012), can be written as H1 : σ2
v > 0. Among

the classical tests that also find application in testing the significance of variance components

are the likelihood ratio test and the Wald test.

The likelihood ratio test statistic, more extensively discussed by Verbecke and Molenberghs

(2000), is based on the likelihood function for the model with and without the random effect

under consideration, respectively. It should also be noted that this statistic, under some additional

conditions, has an asymptotic distribution χ2 with a number of degrees of freedom equal to the

difference in dimensions of the parameter spaces under consideration. Similar to the form of

this test for fixed effects, this variant of the test is also counted among the “anti-conservative”

tests, as considered in their work by, among others, Stram and Lee (1994).

In the case of the latter test, i.e. the Wald test, the test statistic, following Verbecke and

Molenberghs (2000), is in the form of the ratio of the variance component score and the score

of its standard error. It should also be added that the distribution of the Wald test statistic for the

variance components can be approximated by a normal distribution. It can be added, following

Bishop et al. (1975), that for large samples and small deviations from the null hypothesis, both

of the above tests will give very similar results. In contrast, the results of analyses by Cox and

Hinkley (1974) and McCullagh and Nelder (1989) indicate that for small and medium samples,

the likelihood ratio test has better properties.

As in the case of fixed effects, it is also possible to verify the significance of variance

components using permutation tests, including permutation versions of classic tests. For tests of

variance components the procedure is analogous to that for fixed effects tests. It should be noted

that in this case, however, those rows of the Z matrix that relate to the random effect under test

are permuted.

The paper by Krzciuk and Żądło (2014b) addresses the problem of simulation-based

comparison of the properties of classical and permutation tests for variance components, in

the context of probabilities of errors of the first and second type. The authors considered the

likelihood ratio test and the Wald test, together with their permutation versions and a permutation

test based on the likelihood function. The dataset analysed was the data considered in Särndal

et al. (1992), concerning Swedish counties. In addition, the analysis addressed the issue of the
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distribution of effects and random components, relevant for classical tests, by including both

a normal distribution and a shifted exponential distribution in the data generation process. This

made it possible to show the effect of not satisfying the assumption regarding the normality of the

distribution, necessary for the use of classical tests, on the properties of the tests considered. The

results obtained suggest good properties of permutation versions of classical tests based on the

logarithm of the likelihood function, including in the case of non-fulfilment of the assumption

concerning the distribution of random components and effects.

In addition to the issue of the significance of random effects, attention should be paid to

the possibility of conducting analyses on, among other things, the existence of correlations of

random effects, as well as, in the case of models containing more than one random effect, the

possibility of testing the significance of correlations between random effects. The latter issue

was proposed by Krzciuk (2018).

When verifying the significance of correlations between random effects, the hypothesis

tested is of the form H0 : ρ = 0. The alternative hypothesis can be written as H1 : ρ ̸= 0. As

for fixed effects and variance components, it is possible to use classical tests, including the

likelihood ratio test, but the assumption regarding the distribution of random components and

effects must be taken into account. A test based on the parametric bootstrap method, proposed

by Krzciuk (2018), also makes it possible to verify the significance of correlations between

random effects when the assumption regarding the normality of the distribution is not met. The

procedure of this test can be divided into several steps. In the first step, the value of ρ0 for the

original dataset is determined as the correlation coefficient between the random effects scores.

The second step involves the B-fold generation of the dataset at the truth of the test hypothesis

and estimating from it the value of ρ∗b, where b = 1,2, . . . ,B. In the last step, the p-value is

determined as:

p =
1+#{b : |ρ∗b|> |ρ0|}

1+B
. (1.150)

In the paper by Krzciuk (2018), the properties of the two tests above were compared.

Analyses were conducted based on the tax revenue data of Swedish counties considered in

Särndal et al. (1992). The simulation study addressed both the problem of misspecification of

the model in terms of the presence of correlations between random effects and the failure to meet

the assumption of normality of the distribution of random effects. Normal distributions, shifted

exponential and gamma distributions as well as linking functions (copulas) were used in the data

generation process. The analysis was divided into two parts concerning probabilities of type I

and II. The results obtained in this paper show the good properties of the proposed test based

on the parametric bootstrap method in the context of both type I and II probabilities, as well as
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the robustness of both analysed tests to the failure of assumptions on the normality of random

components in the lack of correlation.

The issue of verifying the significance of both fixed effects and variance components was

also addressed in the article by Krzciuk and Żądło (2013). However, the issue was considered

in a slightly broader context – longitudinal studies. The analyses used data on own income

of Polish poviat budgets from the Local Data Bank (Statistics Poland). The article shows the

possibility of also using the discussed tests for longitudinal data using the R language.

1.3. Development of small area estimation

According to Wright (2001), the origins of the survey sampling, of which small area

estimation is a branch, date back to the 19th century. We can count the publication of Kiaer (1897)

among some of the earliest works on the design-based approach, while the model-based to

Cochran (1939). In Poland, however, it has been developed since the 1930s. Key publications

from that period include the works of Spława-Neyman (1933) and Piekałkiewicz (1934).

The limited resources allocated to surveys and the associated, also in many cases, inability

to increase sample sizes were some of the stimuli for attempts to develop new estimation methods,

methods that would allow reliable estimates to be obtained even with small sample sizes. The

solution to this problem was to be found in small area estimation methods. The first work in

this area was undertaken in the 1970s. Some of the most important publications on small area

estimation during this period were, according to Bracha (1996), the work of Gonzalez and

Hoza (1978) as well as Purcell and Kish (1979, 1980). The 1980s saw an increase in interest in

small area estimation issues and the publication that can be considered a landmark from this

period is the work of Särndal (1981).

Numerous scientific conferences and seminars have also contributed much to the

development of small area estimation. Among the first would be the international symposium

in Ottawa in 1985 (Płatek et al., 1987), as well as the international scientific conferences in

Warsaw (Kalton et al., 1993) and Riga, organised in 1992 and 1999, respectively. It should

be noted that the Warsaw conference resulted in increased interest in small area estimation in

many scientific centres in Poland, including Warsaw, Poznań, Łódź, and Katowice. Among the

publications written after the Warsaw conference, we can mention the works: Bracha (1994,

1996), Kordos (1992, 1997, 1999), Gołata (1996), Paradysz (1998), Domański and Pruska

(1996, 1997), and Kubacki (1997). Also of great importance was the organisation of the periodic

international conference Small Area Estimation. It was held for the first time in 2005 in Jyväskylä
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and was organised by the University of Jyväskylä, Statistics Finland and the EURAREA

Consortium. Each successive edition of this conference is held in a different location in the

world, among which can be mentioned: Pisa (Italy), Elche (Spain), Trier (Germany), Maastricht

(Netherlands), Shanghai (China), and Maryland (USA). It should be added that the fifth edition

taking place in 2014 was held in Poland (in Poznań). Also linked to the Small Area Estimation

conference are the meetings of the International Statistical Institiut – ISI Satellite Metting, held

in Thailand (2013), Chile (2015), France (2017), Malaysia (2019), and Italy (2021), among

others. The last meeting to date was combined with the 2020/2021 edition of the SAE Conference

held in Naples, Italy.

Among the more important handbooks and monographs on small area estimation, we can

include the works of Rao (2003), Longford (2005), Rao and Molina (2015), Pratesi (2016),

and Rahman and Harding (2016). The publications by Rao (2003) and Rao and Molina (2015)

address both direct and indirect estimation issues, as well as methods based on small area

models, including those on empirical best linear unbiased predictors. Some of the above work

was also focused on Bayesian methods. Pratesi (2016), however, provided an overview of small

area estimation methods for poverty estimation. Among the issues discussed are temporal-spatial

modelling of poverty, estimation of income and inequality distributions. The study also presents

examples of the application of small area estimation based on real data. Next authors Rahman

and Harding (2016), nevertheless, show the applicability of small area estimation methods to

spatial microsimulation modelling, which provide a new approach to creating synthetic spatial

microdata. The authors also demonstrate the practical application of the techniques discussed

to a range of substantive problems, including how to create models, organise and combine data,

and create synthetic microdata. In contrast, Longford’s (2005) work addresses the problem of

estimation for small areas in the context of the problem of missing data and inference from

subdomains poorly represented in the sample. Further works on small area estimation include

Dol (1991), Mukhopadhyay (1998), and the National Research Council (1980).

Polish handbooks and monographs on small area estimation include works by Domański

and Pruska (2001), Dehnel (2003, 2010), Gołata (2004), Żądło (2008, 2015), Bartosińska (2008),

Niemiro and Wesołowski (2010), and Szymkowiak (2020). Domański and Pruska (2001) in their

work discussed the basic concepts of both the survey sampling method and small area estimation.

The authors also presented the issue of inferring small area characteristics for three sampling

schemes – individual unconstrained sampling, stratified sampling and two-stage sampling. The

book by Dehnel (2003) deals with the problem of applying small area estimation to assess the

economic development of regions. The author’s second publication addresses the possibility of
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using small area estimation to assess micro-enterprise development from an industry-regional

perspective. Gołata (2004), however, addresses the issue of the method of estimating the size of

unemployment in local terms. The author presented the possibility of using indirect estimation

in this issue on the example of the Wielkopolska Voivodeship. Żądło (2008) presented basic

issues of the three main approaches in small area estimation – randomised, model-based and

model-assisted. The paper discusses both the most important concepts of SAE, as well as selected

estimators and predictors. The publication by Żądło (2015) discusses the issues of model-based

and model-assisted approaches more extensively. The book focuses a lot on empirical best linear

unbiased predictors in single-period and longitudinal studies. The author also presented his own

proposal of a super-population model assumed for profiles, taking into account, among other

things, the occurrence of correlations in time and space, as well as changes in the population

and the affiliation of population elements to subpopulations. Bartosińska (2008) presented the

possibility of using indirect estimation methods in representative agricultural research. Paper also

addressed the issue of the organisation of representative agricultural research in Poland and

the use of alternative sources of information in research conducted worldwide. Niemiro and

Wesołowski (2010) consider the use of a hierarchical Bayesian model in the context of

a simulation Gibbs sampler study. Kowalczyk (2013) addressed the issue of complex estimation

in sample surveys. It should be added that the author considered data from rotational samples in

her analyses. Szymkowiak (2020) considered the problem of applying the calibration approach

in socio-economic research in his thesis.

European grants have also been important for the development of small area estimation

through research projects like EURAREA, SAMPLE, and BIAS. The EURAREA project was

carried out for the first time in 2001, and was funded under the 5th EU Framework Programme

and by EUROSTAT. The project involved the empirical assessment of commonly used estimation

methods in the field of small area estimation and the improvement and extension of these

methods. The SAMPLE (Small Area Methods for Poverty and Living Condition Estimates)

project was carried out between 2008 and 2011 and was funded by the European Commission

under the 7th EU Framework Programme. The main objectives of the project were to develop

new indicators and models to better understand the phenomena of inequality and poverty, in

particular social exclusion and deprivation. The latter project – BIAS (Bayesian methods for

combining multiple Individual and Aggregate data Sources in observational studies) – which ran

from 2005 to 2011, was funded by the Economic and Social Research Council’s and the National

Centre for Research Methods. Its main objective was to develop a methodological framework

for dealing with combining data from multiple sources, including combining individual and
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aggregate data. Mention should also be made of projects such as AMELI and ESSnet-SAE.

The analyses carried out in the AMELI project (Advanced Methodology for European Laeken

Indicators) included, among other things, studies on data quality and the estimation of small area

characteristics and the measurement of change over time. The main objective of the ESSnet-SAE

project was to create common procedures and a methodological framework for statistical offices,

allowing the development of small area estimation and the sharing of knowledge held by

individual offices.

1.4. Applications of small area estimation

The growing demand for information of a local nature, as well as the need for low-cost

methods to quickly obtain reliable estimates of subpopulation characteristics, is one of the

reasons why small area estimation methods have found and continue to find applications in

so many areas. Also, the growing importance of regions – politics, or regional self-government

as well as national databases that take into account a very detailed territorial division – has

a significant impact on the multitude of areas in which small area estimation approaches can

be developed.

In this subsection, selected areas of application of small area estimation methods will be

presented together with examples of an economic nature. The following should be mentioned

first and foremost: market analyses, labour market analyses including the phenomenon of

unemployment, quality of life analyses including the phenomenon of poverty, regional policy,

economic aspects of health and environmental policy and agricultural economics.

In the area of market analysis, the approaches used in small area estimation have been

applied, among others, in the estimation of house prices. Pereira and Coelho (2013) included

both elements of randomised and model-based approaches in their analyses, conducting their

considerations using actual data from the Transaction House Prices Survey and the Bank

Evaluation of House Prices Survey. Goodman and Thibodeau (1998) addressed the issue of

housing market segmentation within metropolitan areas in their research. They used data on

single-family home sales transactions in their analyses. The methods of small area estimation

can also be used in business analyses. A paper by Nekrasaite-Liega et al. (2011) addressed the

problem of estimating corporate income using GREG-type estimators. The analyses were based

on data from a quarterly survey of short-term statistics of service enterprises. Dehnel (2018)

applied methods from the model-assisted approach to estimating the average revenue of small

businesses in the context of assessing the impact of model selection on the quality of estimates.
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The analyses used data extracted from administrative records. The market analysis problem was

also addressed in the work of Hermalin and Wallace (2001) in the context of estimating the

relationship between wages and productivity. The authors used unbalanced panel data on savings

and credit institutions in their analyses. Applications of small area estimation in market analyses

can also be found in a number of other publications, including Longford (2006), and Domański

and Pruska (1997).

Small area estimation methods are also used in labour market research. Molina et al. (2007)

addressed the problem of estimating the labour force participation rate using data from the

Office for National Statistics of the UK on the UK labour force stock. Longford’s (2004) paper

showed the feasibility of using the shrinkage estimator to estimate the unemployment rate and

the inactivity rate using UK Labour Force Survey data as an example. Ferrante and Pacei (2004)

showed the applicability of estimators that are a modification of the Fuller (1990) estimator to

estimate the labour force stock. The analyses used data from the Italian Labour Force Survey.

The paper by Ręklewski and Śliwicki (2016) considered the problem of estimating the number

of economically inactive in the districts of the Kujawsko-Pomorskie Voivodeship. The analyses

used data from the Labour Force Survey and the National Census. Analyses related to the

labour market in Poland can also be found in the work of Klimanek (2012). The problem

addressed in this publication is the estimation of the percentage of unemployed at a lower level

of aggregation than presented in Statistics Poland publications using the indirect estimation

method. Gołata (2004), nevertheless, concerned indirect estimation of unemployment on the

local labour market, estimation of the size of unemployment and estimation of the number of

unemployed and employed in poviats of the Wielkopolska Voivodeship. The analyses used data

from the micro-census, the Labour Force Survey conducted by Statistics Poland, and registers

of the unemployed maintained by labour offices. Applications of small area estimation to labour

market issues have also been considered by other authors, e.g. Falorsi et al. (1998), Pfeffermann

and Tiller (2006), López-Vizcaíno et al. (2015) or van den Brakel and Krieg (2016).

Small area estimation approaches also allow analyses to assess the quality of life, economic

and social situation of the population. Marchetti and Secondi (2017) show that these methods

can be used to estimate household consumption expenditure. The authors based their study on

information obtained from the Household Budget Survey conducted by ISTAT in Italy. Pratesi

and Salvati (2008) used a model-based approach in their analysis of this issue and data obtained

from several sources, including the Survey on Life Conditions, the databases of the Istituto

Regionale Programmazione Economica and administrative records. Another issue where the

methods of small area estimation can be applied is the problem of small area income prediction,
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as considered in their paper by Fay and Herriot (1979). They used census and household data in

their analysis. The methods of small area estimation as well as data from longitudinal surveys

are also used in poverty analyses. The paper by Molina and Rao (2010) considers the issue

of estimating measures to analyse this phenomenon. The analyses were based on real data

from the European Survey on Income and Living Conditions (EUSILC). This problem was

also addressed by Diallo and Rao (2018). In his research, Wawrowski (2012) discussed the

issue of estimating the poverty risk rate using direct and indirect estimation methods on the

example of the districts of the Wielkopolska Voivodeship. The data on which the study was

based came from the Statistics Poland’s Household Budget Survey and the National Census.

The problem of poverty estimation was also addressed by, among others, Graf et al. (2018), and

Tanton et al. (2011). The work of Kriegler and Berk (2010) demonstrates the feasibility of using

small area estimation methods to estimate the number of homeless people in Los Angeles. The

model-based approach can also be used to improve the accuracy of prediction of, for example,

the number of crimes per 100 inhabitants or the number of drug-related crimes, as addressed by

van den Brakel et al. (2016). This research was based on data from the Police Administration of

Reported Offences, the Dutch National Safety Monitor and the Integrated Safety Monitor.

The model-based approach is also applicable in regional analyses. The paper by Jędrzejczak

and Kubacki (2017) considers the application of the EBLUP and the multivariate model of Rao

and Yu (1994) to predict per capita income and expenditure in regions in Poland. The study used

data from administrative records as well as from the Household Budget Survey. The approaches

used in small area estimation are also applied in the assessment of the economic development of

regions, which was considered by Dehnel (2003). In her study, the author used data from four

sources: the monthly report on economic activity, the file of economic entities, compiled based

on the REGON system, the Local Data Bank of the Statistics Poland, and the National Census.

Jhun et al. (2003), however, considered the problem of predicting the Cobb–Douglas function

for panel data. The study used panel data from Munnell (1990).

Small area estimation methods also allow analyses to be carried out to investigate the

influence of specific factors on the incidence of selected diseases. In the work of Lawson et

al. (2012), analyses were carried out on the effect of PM2.5 concentrations on the incidence of

asthma, based on data considered by Fuentes et al. (2006) and Choi et al. (2009). The issue of

the influence of genetic, environmental and age factors on the incidence of respiratory diseases

was also considered by Torabi and Shokoohi (2015). In analyses of the economic aspects of

health policy, approaches used in small area estimation can be used to estimate the number of

people with disabilities, or the use of health services. Such studies are conducted in the United
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States under federal programmes. Analyses of people with disabilities are presented, among

others, in You et al. (2014).

In agricultural analyses, methods of small area estimation are used, among other things, to

predict the crop area in regions, as presented in the article by Battese et al. (1988). In this work,

sample survey data and satellite data were used. The issue was also considered in the work of

Militino et al. (2006) in the context of estimating the total area of olive trees in a region in Spain.

Considerations on the application of small area estimation to estimate the percentage of indebted

farms are presented in Chandra et al. (2018). The authors used data from the National Sample

Survey Office on agricultural areas of the state of Bihar in India. Applications of small area

estimation to agricultural economics problems were also considered in the papers of Lohr and

Prasad (2003), Torabi and Rao (2010), Rivest et al. (2016), and Fabrizi et al. (2014).

The methods of small area estimation are also used in analyses that may have implications

for environmental policy. These issues have been addressed in the work of Opsomer et al. (2008),

and Petrucci and Salvati (2006). The authors of the first paper applied the proposed estimation

methods to estimate the average acid neutralising capacity of lakes in the northern US states.

In the work of Petrucci and Salvati (2006), a simulation study was conducted to compare

the properties of the selected estimators and the authors’ proposed spatial EBLUP. Floodplain

erosion data for land located near the Rathbun Lake Watershed in Iowa were used in the

conducted considerations.

1.5. Summary

This chapter discussed the theoretical foundations of small area estimation. Subsection 1.1

is focused on the main approaches in small area estimation – the randomised, model-based and

model-assisted approaches. For each of these, the basic concepts and selected estimators or

predictors were presented. For selected predictors in the model-based approach, generalisations

to longitudinal data were shown.

In subsection 1.2, the problem of building a superpopulation model was discussed in more

detail. The first part of the subsection presented a classification of overpopulation models with

the greatest emphasis on linear mixed models. In the next part, special cases of this class of

models were discussed with a distinction between models with uncorrelated and correlated

random effects. Special attention should be paid to the proposed special cases of general mixed

models with correlated random effects vectors in longitudinal studies (cf. Krzciuk, 2020). The

remaining parts of this subsection dealt with the different steps of the process of building
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a superpopulation model, and therefore its specification, estimation and verification. For each

of these stages, most attention was paid to the methods used for linear mixed models. In the

section on the verification of the superpopulation model, a proposal was also made for a test

based on the parametric bootstrap method, which makes it possible to verify the presence

of dependencies between random effects. Attention was also drawn to the applicability of

permutation equivalents of classical tests and their good properties based on simulation analyses

conducted in this area.

Subchapter 1.3 was focused on the development of small area estimation, both worldwide

and in Poland. It discusses the reasons for the growing interest in small area estimation methods.

Selected conferences, projects and publications of key importance for the development of small

area estimation were also presented.

In subsection 1.4, selected areas of application of small area estimation methods were

discussed. Among them are analyses of, for example, the market, the labour market, poverty,

and regional policy. It should be added that numerous examples of analyses of an economic

nature were presented for each of the areas mentioned.

The author’s theoretical proposals presented in this chapter include applications of LMMs

with correlated random effects vectors in small area estimation, including longitudinal studies.

In addition, generalisations of selected predictors to the case of cross-sectional-temporal data

were presented. The chapter presented the possibility of using permutation tests in the verification

of the significance of the parameters of the proposed models, as well as the author’s test based on

the parametric bootstrap method to verify the presence of correlations between random effects.
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Chapter 2

Cross-sectional and longitudinal economic surveys

This chapter will be focused on the issues of cross-sectional surveys and repeated surveys

over time. In the following subsections, the essence of cross-sectional and longitudinal surveys

will be presented. A classification of repeated surveys over time with economic examples will

be presented. The advantages and disadvantages of longitudinal surveys will also be discussed.

2.1. Research conducted during one period

This subsection will discuss the concept of a statistical survey as well as the steps involved

in conducting one. A classification of statistical surveys and examples of their applications will

also be presented. A statistical survey should cover a specific statistical population. Its aim is

to determine the regularities occurring in the analysed community, based on the features that

characterise the units comprising it (Sobczyk, 2004, p. 16).

Among statistical surveys, we can distinguish between full surveys, also called complete

or exhaustive surveys, which cover all units belonging to a community, and partial (incomplete)

surveys, which involve only a certain subset of elements – a sample. In the class of full surveys,

we distinguish between statistical censuses, current registration and statistical reporting.

Examples of full surveys include The General Agricultural Census and the National Population

and Housing Census conducted by Statistics Poland, and current registrations of births, deaths as

well as marriages. Statistical reporting includes, inter alia, reports of enterprises or companies

(Starzyńska, 2005, pp. 23–24). Based on current registrations, administrative registers such as

REGON, PESEL and ZUS are created.

Within the framework of incomplete research, we can distinguish surveys, and monographic

and representative research (Sobczyk, 2004, p. 17). Following Mazurek-Łopacińska (2002) and

Kędzior (2005), we can classify survey research by a number of criteria, e.g: confidentiality

(open and anonymous research), the technique of filling in the questionnaire (traditional or

electronic), the method of delivering the questionnaire to the respondent (e.g. by post, electronic,
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telephone, distributed), the participation of the interviewer (with or without the participation of

the interviewer). Survey research in Poland is conducted by such institutions as TNS Polska

(formed by the merger of TNS OBOP and TNS Pentor), the Centre for Public Opinion Research,

and the Resort for Public Opinion Research. Monographic surveys are, as Sztumski (2004) notes,

surveys characterised by the focus of the analysis of a specific object – a statistical unit or

a small group of them, a high level of detail in the analysis of the researched phenomenon and

the interdisciplinarity of the conducted research process. Sobczyk (2004) also points out that

the unit which is the subject of the monographic study should be typical for the population from

which it was selected or, on the contrary, a unit setting the direction of development in the studied

population. Sample surveys are surveys conducted on the basis of sample data. The analyses

conducted for this type of research use the approaches discussed in the first chapter of this book.

It should be added that full surveys, especially in the case of very large populations, are

associated with high costs of carrying them out as well as the long time needed for their

implementation. In such cases, the decision is most often made to conduct a partial survey.

According to Sobczyk (2004), such a choice is also made in the case of surveys that are

destructive in nature.

Zeliaś et al. (2002) distinguish four steps in conducting a statistical survey. The first is

survey preparation. This should include defining the purpose and method of the survey. In this

step, the population and statistical unit as well as the characteristics to be analysed should also

be defined. The second phase is statistical observation. According to Sobczyk (2004), the result

of this stage is to obtain a set of data referred to as statistical material. The next step in the

process of conducting a statistical survey is to process the collected material. As a result of these

activities, statistical series are obtained for the surveyed variables. In addition, the collected

data can also be presented in the form of graphs at this stage (Sobczyk, 2004, pp. 21–23). The

last stage involves statistical analysis. Most often, in this phase, a statistical description of the

surveyed population or sample is made or a statistical inference is made, allowing the results

obtained on the basis of the sample to be generalised to the population. This phase is completed

by characterising the phenomenon under study and drawing conclusions based on the results

obtained. The above division of the process of conducting a statistical survey into phases also

applies to repeated surveys over time, which will be discussed in more detail in the following

subsections of the chapter.
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2.2. Essence of longitudinal surveys

There has been an increase in interest in longitudinal studies, according to Nathan (2009), in

recent decades. Previously, analyses in the social sciences were mainly based on cross-sectional

survey data. The reason why time-repeated studies were not often used was the cost of their

implementation as well as the operational and methodological complexity. In the earliest surveys,

the time over which an individual is observed was usually quite short, limiting the possibility of

using the data obtained at the micro or individual level. Initially, therefore, the repetition of

surveys over time served to increase efficiency, the effectiveness of cross-sectional surveys

and estimates of change at the macro level, rather than to analyse flows or gross changes and

therefore changes at the level of individuals. In recent decades, however, efforts have begun to

enable the introduction of advanced methods for the long-term analysis of social and economic

processes, resulting in a significant increase in the importance of longitudinal data as a basis for

empirical research in the social sciences, which includes economics (Nathan, 2009, p. 315).

Fitzmaurice et al. (2004) identify the characterisation of the change in the respondent’s

response and, consequently, the selected characteristic over time, as the main objective of

longitudinal surveys. It is also possible to identify factors influencing these changes. The work

of Duncan and Kalton (1987) sets out the aims of repeated surveys over time in somewhat more

detail. The authors listed seven basic objectives. Kalton (2009) points out that it is possible to

classify the above objectives and to assign types of research that implement them. The types of

research along with their characteristics and examples of application will be discussed further in

the next subsection of this book.

The first set of objectives identified by Kalton (2009) includes estimating population

characteristics at different times or periods if changes can be treated as insignificant. Another

objective is to enable the determination of the averaged estimates of population characteristics

for several periods. A third objective belonging to this group is to assess the net change in the

characteristics under study, and thus to assess the dynamics of change in characteristics between

periods at a higher level of aggregation. It should be noted that the above objectives do not

impose any conditions on the relationship between samples at different points in time. They

can therefore be met in surveys with complete rotation or surveys that minimise the overlap

of samples over time, including rotation panels. In particular, these objectives can be met by

collecting cross-sectional survey data from different moments in time (Kalton, 2009, p. 90).

The next group is also made up of three objectives. It is designed to assess the various

components of individual change, including the gross change, average change at unit level, and
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volatility (variance) for each unit. This class also includes the aggregation of data for individual

units over time, e.g. quarterly to annual data. Kalton (2009) cites as an objective belonging to

this class the measurement of the frequency of occurrence of the phenomenon under study or its

duration over the period under study. It should be added that this class of objectives can only be

realised through panel surveys, as it requires having data from the same subset of units (Kalton,

2009, p. 90).

The last objective mentioned in Duncan and Kalton’s (1987) work, i.e. the accumulation of

samples over time, particularly when studying rare phenomena, was assigned by Kalton (2009)

to a separate class. It should be noted that where a rare feature relates to an event, such as

divorce, this objective can be met using any type of longitudinal survey. However, if it is of

a fixed nature, such as racial group membership, the objective can only be met if the sample is

replaced in subsequent periods (Kalton, 2009, pp. 90–91).

Steel and McLaren (2009) also highlight key elements that should be considered when

designing longitudinal studies. The authors mention, among others, the frequency of sampling

and the schema for including new units in the survey. The decision regarding the intervals

between successive waves of the survey is primarily driven by the purpose of the analysis and the

characteristics under consideration. Most often, successive survey rounds are conducted annually,

quarterly or monthly. Also related to the issue of whether or not to include overlapping samples

is the determination of how long individual units remain in the sample. The problem of designing

longitudinal surveys has been considered by Binder and Hildegrou (1988), Kalton and Citro

(1993) and Steel (2004), among others.

2.3. Types of longitudinal surveys

In this subsection, a classification of longitudinal surveys will be introduced. For each type

of research, the manner in which it is conducted will be discussed and presented in the form

of a scheme. The description of research will also be supplemented by selected examples of its

implementation in Poland and worldwide, which are of an economic nature.

2.3.1. Panel studies

The first type of survey to be discussed is the panel. In panel studies, the same individuals

drawn from the population are analysed repeatedly, at different times. In a schematic way,

assuming for simplicity that the composition of the population does not change over time, this

type of survey is shown in Figure 2.1. The grey colour indicates the population elements that
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have been drawn for the sample. The following lines show the composition of the sample at

specific points in time. The origins of the use of panel data in research date back to the 1940s.

At that time, Paul F. Lazarsfeld (Lazarsfeld and Fiske, 1938; Lazarsfeld, 1940) attempted to

introduce this method into market research and public opinion analysis (Andreß et al., 2013,

p. 1). One of the earliest panel studies, known as the Erie County study, concerned the analysis

of voting behaviour during the 1940 presidential campaign. It was conducted by Columbia

University’s Bureau of Applied Social Research under the direction of Lazarsfeld (Lazarsfeld

et al., 1944).

Figure 2.1. Panel study scheme

Source: Own elaboration.

Figure 2.2. Scheme of a panel study without overlapping samples

Source: Own elaboration.

It should be noted that one can find a division of panel studies into balanced or unbalanced

in the literature. In the balanced panel, each unit is surveyed exactly the same number of times,

while in the unbalanced panel, the number of observations for each unit is not the same. Thus,

an unbalanced panel may occur when some respondents do not participate in all measurement

periods or leave the panel before completing it (Andreß et al., 2013, p. 62).
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In Kowalczyk’s (2001) study, surveys consisting of several panels were also distinguished,

among which one can distinguish between repetitive panel surveys without overlapping and

with overlapping samples, which are shown schematically in Figures 2.2 and 2.3, respectively.

To distinguish between the elements drawn in the first part of the survey, they are marked in

grey, while the second, with a pattern of white and grey stripes.

Figure 2.3. Scheme of a panel study with sample overlap

Source: Own elaboration.

Here, as in the case of subsequent schemes, the assumption is made that the composition of

the population is invariant over time. The author notes that formally, repeated panel surveys

with overlapping samples are often categorised as surveys with partial rotation, which will be

discussed later in this paper. However, in contrast, they are mainly used for analyses of the

duration of a given condition, e.g. use of social assistance benefits or being unemployed. They

are also characterised by a longer implementation period and fewer separate panels (Kowalczyk,

2001, p. 33).

Among panel studies, a group of cohort studies can also be distinguished. According to

Balicki (1986), a cohort is a group of individuals who experienced the same event at the same

time and place. In economic research, this concept can also be applied to other statistical units,

among others, enterprises. Cohort studies include the National Longitudinal Surveys, funded by

the U.S. Bureau of Labor Statistics, the Survey of Health, Ageing and Retirement in Europe

(SHARE Project) and the English Longitudinal Study of Ageing funded by the National Institute

on Aging in the US, and the Health and Retirement Study. In Poland, the issue of cohort

studies has also been addressed in the works of Gołata (1995), Balicki (1997), Jackowska (2015),

Markowicz (2012, 2016), and Mikulec (2017), among others.

In practice, due to the difficulties and certain drawbacks of this type of research, which

will be discussed in more detail later in this chapter, panel surveys more often than not take the
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form of an unbalanced panel. Their methodology is also subject to certain modifications, such

as supplementing and expanding the initial sample, among others. They therefore become closer

to rotational panels or surveys that are a combination with partially rotated surveys.

An example of a panel survey conducted in Poland is the POLPAN Polish Panel Survey.

It has been conducted since 1988, with successive editions conducted every five years. The

POLPAN survey is conducted by a research team working at the Institute of Philosophy and

Sociology of the Polish Academy of Sciences, under the direction of Kazimierz M. Słomczyński

(Słomczyński with the team, 2014, p. 11). As pointed out by Kiersztyn et al. (2017), POLPAN

is one of the longest-running panel surveys in Central and Eastern Europe. The questionnaire

used in the survey includes questions on, among other things, working life, education and views

on changes in the political and economic system. The main purpose of the POLPAN survey is

both to provide a comprehensive characterisation of the social structure in Poland and to enable

analyses from a dynamic perspective. In particular, the dynamic approach allows for analyses

concerning the adaptation of Polish society to the economic and political changes that took

place after 1988 (Słomczyński with the team, 2014, p. 2). In the first edition of POLPAN, in the

process of drawing units for the survey, the data available to the Public Opinion Research Centre

from the “micro-census” conducted in 1986 were used as the sampling frame. The sample in

this survey was furthermore a two-stage sample, where the units drawn in the first stage were

census districts and in the second stage were households. Starting from the third edition, the

survey was supplemented by a sample of young people aged 21–30, drawn on the basis of the

PESEL. (Słomczyński with the team, 2014, p. 5; POLPAN methodology).

Research of a panel nature can also include the Social Diagnosis project, which began in

2000 and was initiated by Wiesław Łagodziński. The main objective of the project carried out

by the Council for Social Monitoring is to obtain information on the most important aspects of

the life of households and the people who make them up. The survey covers both economic

and non-economic aspects related to living conditions, its quality and style, as well as the

demographic and social structure of households. Data are obtained, among others, on income

situation, material prosperity, housing conditions, participation in culture and recreation, use of

services of the health care system and social assistance received by the household. The survey

also provides information on the subjective assessment of the material standard of living, the

value system, attitudes and social behaviour of the individual members of these households.

The survey is conducted at two-year intervals, with the exception of 2003, when the interval

was three years from the previous edition (Czapiński and Panek, Eds., 2015, pp. 13–14). It

should be noted that two questionnaires are used in the Social Diagnosis. The first one concerns
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the household and is filled in by the interviewer, the second one is filled in individually by

all household members aged 16 and over. The survey is supervised by the Office for Statistical

Research and Analysis of the Polish Statistical Association. From the second edition onwards,

the survey includes persons who arrived in the surveyed households and households formed by

splitting the initial sample (Czapiński and Panek, Eds., 2015, pp. 25–26). It should be noted that

the initial sample of households was a two-stage sample, where the first-stage sampling units

were statistical districts or census tracts and the second-stage sampling units were dwellings.

In addition, prior to drawing the units for the survey, a stratification by place of residence –

provinces and class of locality – was made. The same number of households was drawn from

each voivodeship, and parameter estimates for Poland as a whole were obtained as weighted

averages of the data for the voivodeships (Czapiński and Panek, Eds., 2000, p. 9).

Figure 2.4. Scheme of the company panel survey

Source: Own elaboration based on Statistics Poland (2015, p. 15).

The panel survey of enterprises carried out by Statistics Poland since 2002 can be classified

as a survey conducted in the form of several parallel panels, shifted by one year. It produces

data on the conditions of establishment and development, the current situation, as well as the

survival rate of enterprises in the first years after registration. The condition of enterprises is

determined on the basis of, among other things, the extent of their activities, financial result,

number of employees, and sources of financing. The survey is conducted on a five-year cycle.

The enterprises surveyed in the first period include those that were established (registered) in

the year preceding the survey. In the following four years, enterprises are included in the survey

if they are still operational and active at the time of the survey (permanent or seasonal). After

this period, enterprises are considered stable and excluded from the panel (Statistics Poland,

2015, pp. 13–15). A scheme of the survey is presented in Figure 2.4. Surveyed (active) units

are marked in black, while inactive units, i.e. not participating in the survey, are marked in grey.

It should be noted that until 2005, only micro-enterprises (employing less than 10 persons)

were included in the survey. In the later surveys, small enterprises with up to 49 employees

were also included. In addition, the survey uses a sampling scheme based on sampling without
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replacement from strata with proportional allocation. The strata were distinguished on the

basis of the type of business conducted, legal form and size of the entity (Statistics Poland,

2012, pp. 16–17). The Survey of Income and Program Participation (SIPP) and the Survey

of Labour and Income Dynamics (SLID) conducted by the United States Census Bureau and

Statistics Canada, respectively, are also examples of surveys in the form of several parallel panels

staggered relative to each other.

One example of a panel survey conducted internationally is the British Household Panel

Survey (BHPS). This was conducted for 18 years until 2009, when it was included in UK

Households: a Longitudinal Study. The BHPS survey was funded by the Economic and Social

Research Council. The sampling used a cluster random sampling design and the postal address

register was used as the sampling frame. Before the introduction of the youth questionnaire, in

1994, respondents had to be at least 16 years old. In addition to the individual questionnaire,

a household questionnaire was also included in this study. In 1999 and 2001, the existing sample

was extended to include households from Wales and Scotland as well as Northern Ireland,

respectively. The BHPS questionnaire primarily covered issues such as household demographic

composition, housing, education, health and medical care, labour market, income and benefits

(Taylor et al., Eds., 2018).

The Panel Study of Income Dynamics (PSID) is a panel study that has been conducted in

the United States for nearly 50 years. The study was conceived by President Lyndon Johnson

and the results were intended to help fight poverty. The 1968 baseline sample was drawn from

two independent samples: a sample of low-income families from the Survey of Economic

Opportunity and a sample of families developed by the Research Center at the University of

Michigan. As in the other surveys, the sample was supplemented with new members of the drawn

households and persons co-forming new households with those drawn. In addition, attempts

were also made to supplement the baseline sample with a sample of immigrant families, while

in 1997 it had to be reduced due to the intensive natural increase in its size generated by the

division of households. In its initial editions, the survey focused on employment, income and

household demographics. In later years, however, it was expanded to include, among other

things, questions on health, religion, use of computers, Internet and other media, and expenditure

on education and medical care (Beaule et al., 2017, pp. 10–20).

Among the household panel surveys conducted worldwide, we can also mention, among

others, in Europe, the European Community Household Panel, the Panel Study on Belgian

Households, the Swedish Panel Study, and the German Socio-Economic Panel, and in Asia, the

Japan Household Panel Survey. In addition, we can also include the National Educational Panel
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Study conducted by the Leibniz Institute for Educational Trajectories as well as the Medical

Expenditures Panel Survey conducted in the United States.

2.3.2. Repeated time surveys with partial rotation

Surveys with partial rotation, also called rotational panel surveys or rotational surveys, are

also an important group of surveys that are repeated over time. In this type of survey, part of

the sample is replaced by newly added items after a certain period of time. An example of

a rotational survey scheme is shown in Figure 2.5. The units drawn in the first period are marked

in grey. In subsequent periods, half of the elements participating in the survey in the previous

period are replaced. New units drawn in the second and third periods are marked with a grey

striped pattern and a white and grey grid, respectively. Rotational panel surveys avoid many of

the problems that can arise with zero-rotation surveys. They can also be considered as a certain

compromise between panel and complete rotation surveys, which will be discussed in more

detail later in the monograph.

Figure 2.5. Partial rotation survey scheme

Source: Own elaboration.

An example of a survey with partial rotation carried out in Poland is the Labour Force

Survey (LFS). It has been carried out quarterly since 1992 by Statistics Poland. The main aim of

the LFS is to obtain information on the economic activity of the population, the phenomenon of

unemployment and professional inactivity and its causes. The survey covers members of house-

holds living in the drawn dwellings aged 15 and over (Statistics Poland, 2013, pp. 11–12). The

sample in the LFS is a two-stage sample. The first-stage sampling units are statistical districts or,

in the case of rural areas, census tracts, while the second-stage units are dwellings. The infor-

mation necessary to draw the sample is obtained from the Social Survey Operator, which contains

both the list of territorial statistical units and the addresses of dwellings (Statistics Poland, 2017a,

p. 13). The selection of the LFS quarterly samples follows the so-called rotation scheme. An ex-
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ample of an excerpt from the rotation chart is shown in Figure 2.6. The quarterly sample consists

of four elementary samples each time, divided into thirteen weekly samples. This maintains the

continuity of the survey. A partial exchange of elementary samples is carried out each quarter.

Two samples surveyed in the previous quarter, plus one newly introduced sample and one sample

not surveyed in the previous period, but introduced into the survey exactly one year before. It

should further be noted that the elementary samples are drawn independently. It follows from

the above scheme that each elementary sample takes part in the survey for four quarters, with

a six-month break after two quarters, and thus according to the so-called 2-(2)-2 rule (two

quarters in the survey, another two breaks, two quarters in the survey) (Statistics Poland, 2017a,

pp. 12–13).

Figure 2.6. Labour Force Survey scheme

Source: Own elaboration based on Statistics Poland (2013, p. 10).

Repeated surveys over time with partial rotation also include the Labour Force Survey

(LFS), conducted by the Australian Bureau of Statistics since 1960. Initially, this survey was

conducted quarterly and then, from February 1978, monthly. The main purpose of the survey

is to provide information on the labour market activity of the Australian population aged 15

years and over. For those who are employed, data are collected on, among other things, their

occupation, working hours, and employment status. When the person surveyed is unemployed,

the information extracted includes whether they are seeking employment, the length of time they

have been unemployed, and the occupation in which they last worked. The questionnaire also

includes questions on age, marital status, and education. It should be added that the LFS sample

consists of three segments. The first is private houses and flats. The second is hotels, hospitals,

homes for the elderly, universities, boarding houses, etc., and the third is flats and houses of

people belonging to the Aboriginal and Torres Strait Islander communities. Among others, data
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from the Geocoded National Address File (G-NAF) and the Australian Statistical Geography

Standard (ASGS) are used as the sampling frame in the LFS. A multistage sampling scheme

is used in the selection of the sample. Analysing the unit rotation scheme in the Labour Force

Survey, it can be seen that it is assumed that the sample is divided into eight sub-samples (or

rotation groups). Every month, one eighth of the sample and therefore one subsample is replaced

by a new one. The monthly replacement of subsamples ensures that no dwelling remains in the

sample for more than eight months. It is also important to note the changes in the way the

LFS is conducted. Until August 1996, respondents were interviewed in person. After this

period, the option of conducting the survey by telephone or online began to be introduced as

well. Rotational panel surveys conducted worldwide also include the Swedish Labor Force, the

Labour Force Survey UK or the US Current Population Survey.

2.3.3. Multi-period surveys with complete rotation

A separate type of longitudinal surveys are repeat surveys with complete rotation. In these

surveys, a new sample is analysed in each period, as schematically illustrated in Figure 2.7. The

units to be surveyed in successive periods are marked with grey, a white-grey striped pattern and

a white-grey grid, respectively.

Figure 2.7. Scheme of the survey with complete rotation

Source: Own elaboration.

In Poland, the complete rotation method is used in the household budget survey conducted

by Statistics Poland. In this survey, a monthly family exchange period is currently used. During

this period, households record their outgoings and incomes in notebooks specially prepared

for this purpose – budget books. The survey produces information on demographic and social

structure, durable goods owned by households, housing conditions, and material status (Statistics

Poland, 2011, pp. 11–15). The sample for this survey is selected using a two-stage sampling

scheme, in which the sampling frame is based on the list of statistical regions developed for the
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National Census and the register of the territorial division of the country – TERYT system. The

first-stage sampling units are statistical regions or groups of regions referred to as field survey

points. Second-degree units are individual dwellings. It should be noted that the first-degree

units also include stratification by class of locality (Statistics Poland, 2011, pp. 13–14; 2017b,

pp. 15–16).

This method is also used in the study, “Tourist activity of Polish residents on tourist trips”

(Łaciak, 2013). It is conducted on behalf of the Tourism Department of the Ministry of Sport and

Tourism. The main objective of this survey is to obtain information on the types of trips taken by

Poles, the directions of trips, both domestic and foreign, and the expenses incurred in connection

with trips. The questionnaire also includes questions on the time of travel, purpose, method of

organisation, accommodation used, and means of transport used (Łaciak, 2013, pp. 13–14). It

should be added that the sample drawn for this study is random-quota. This is to ensure both

a random selection of survey locations but also that the sample is in line with the structure

of the surveyed population in terms of age and gender. The selection procedure can therefore

be divided into two stages. In the first, 200 addresses – starting points – are drawn from the

Statistics Polands address database. In the second step, which takes place during the survey, five

interviews are carried out from one starting point and the respondents are selected by quota for

the characteristics mentioned above. The sampling also takes into account the stratification by

province and class of locality. The number of starting points for a stratum is proportional to the

number of population meeting the age criterion in this survey (Łaciak, 2013, p. 14).

Surveys with total sample rotation conducted worldwide include The British Social Attitudes

Survey conducted by NatCen Social Research. This survey has been conducted since 1983. The

main aim of the survey is to obtain information about people’s social, political and moral

attitudes and the changes in them. The postcode database – Postcode Address File – and a list of

addresses from post offices are used as the sampling frame in this survey. It should be added that

the sample drawn in The British Social Attitudes Survey is a multi-stage sample. The next steps

of sampling individuals are the selection of sectors defined by postcode, addresses and finally

respondents (Britsish Social Attitiudes Survey, 2016).

This method was also used in the National Health Interview Survey conducted since 1957

by the National Center for Health Statistics. This survey provides information to monitor the

health status of the US population, access to health care and progress towards health policy

goals. The information extracted from this survey is used by the Department of Health and Hu-

man Services as well as public health research organisations, among others (National Health

Interview Survey, 2019). Surveys with complete rotation can also include those conducted by the
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CSO on land use, sown area and livestock. Also, some editions of the General Household Sur-

vey and the US Health Interview Survey were conducted as rotational surveys.

In practice, surveys that are a combination of panel surveys and surveys with rotation,

complete or partial, are also used. Figures 2.8 and 2.9 show a schematic of how this type of

survey is carried out. In both cases, half of the elements drawn in the first period (marked in

grey) constitute the part that is a panel. In the survey presented in Figure 2.8, the remaining

elements are subject to complete rotation, while in Figure 2.9 only to partial rotation.

Figure 2.8. Scheme of combinations of panel survey with complete rotation

Source: Own elaboration.

Figure 2.9. Scheme of combination of panel survey with partial rotation

Source: Own elaboration.

2.4. Advantages and disadvantages of longitudinal surveys

When addressing the issue of conducting repeated surveys over time, it is also important

to mention the advantages of such surveys as well as their limitations. We should also consider

what benefits or difficulties the use of such acquired data will entail.

69



2.4.1. Advantages of time-repeated surveys

This subsection presents the advantages of longitudinal surveys, taking into account the

classification presented in the previous section. It will also discuss the advantages of being able

to use data obtained from not one but many periods.

Trivellato (1999) emphasises that panel data make it possible to identify both permanent and

temporary characteristics of the phenomenon under study. He also mentions that panel surveys

allow analysis of intergenerational behavioural patterns, such as the phenomenon of generational

poverty. These patterns are difficult to capture even in retrospective cross-sectional studies.

There is also a significant advantage in being able to make more accurate forecasts for individual

units by combining data rather than determining individual forecasts using only data for that

unit. Importantly, panel data provides the opportunity to learn about an individual’s behaviour

by observing others whose behaviour is similar. This provides a more accurate description of an

individual’s behaviour. This issue was considered, for example, by Hsiao et al. (1989; 1993).

Panel data are also important in analyses of micro-dynamic behaviour and micro-social

change. They allow the use of models appropriate for these analyses, which take into account

the order of events and aim to capture the dynamic relationships between events and behaviour.

Cross-sectional-temporal data thus make it possible, among other things, to analyse demographic

processes from the point of view of both the determinants and the choices that give rise to

certain behaviours, as considered by Courgeau and Lelievre (1988), among others. They also

provide a micro basis for analysing aggregate data. This is important if the micro-units are

heterogeneous and the time series properties for the aggregate data may differ significantly from

the disaggregated data (Hsiao, 2007, p. 5). This problem has been considered by, among others,

Granger (1990), Lewbel (1994), and Pesaran (2003). As Hsiao (2007) points out, panel data,

due to the fact that they contain observations in the form of time series for many individual units,

are ideal for studying issues of homogeneity and heterogeneity. Panel studies can not only be

a source of data for analyses of changes in the phenomenon under study over time at the level

of individuals, but they can also be used for analyses of dependency over time. An example of

this is the analysis given by Ashenfelter and Solon (1982) of the impact of work experience in

the labour market on earning capacity in later years, and participation in various government

programmes on later economic status. This is very relevant to research of an economic nature

because – as Nerlove (2002) points out – economic phenomena are inherently dynamic, and

consequently most econometrically interesting correlations are directly or indirectly dynamic.

Panel data also capture the complexity of human behaviour better than with cross-sectional

or time series data. Among other things, they allow more complex behavioural hypotheses to be
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constructed and verified. As Hsiao (2007) adds, they provide greater control of the influence of

omitted, unobservable variables. The last aspect, reported by Ashenfelter and Solon (1982), can

be of great importance in particular when studying relationships between traits. This problem

was considered, for example, in the work of Mellow (1981) and Mincer (1981). Panel studies

also provide data to measure gross changes and aggregate individual data (Kowalczyk, 2001,

p. 22). It should be noted, following Duncan and Kalton (1987), that it is possible to aggregate

the sample over time with panel data, but only when the object of analysis is not a characteristic

with static properties.

Sharot (1991), however, drew attention to the advantages that panel surveys have in terms

of organisation and the process of conducting them themselves. Among these, The author

mentioned the acquisition by the investigators of the ability to train respondents to perform

complex tasks as part of the data collection process, such as completing a special diary. He also

considered the possibility to collect more data than would be possible with a single interview to

be a positive aspect and pointed out that longitudinal surveys allow significant costs to be spread

over a longer period and a potentially large user base. Repeated contact between respondents

and the interviewer and questionnaire also increases the chances that respondents will better

understand the purpose of the survey, which may also translate into increased motivation to

participate in the study and reliably complete the questionnaire (Duncan et al., 1986, p. 103).

In some cases, the use of panel data can also simplify calculations and inference. Hsiao (2007)

mentions as examples: non-stationary time series analysis (Anderson, 1959; Dickey and Fuller,

1979; 1981; Phillips and Durlauf, 1986), the problem of measurement error in the context of

econometric model identification (Aigner et al., 1984; Biørn, 1992; Wansbeek and Koning, 1989)

and the use of dynamic tobit models (Arellano et al., 1999).

According to Hsiao (1999), one of the advantages of longitudinal surveys is also that they

provide a large number of observations, which allows for a reduction in collinearity between

explanatory variables and an increase in the number of degrees of freedom, resulting in improved

accuracy of estimates.

Surveys with complete rotation avoid some of the problems that arise with panel surveys.

In this type of survey, it is possible to eliminate, first of all, the effect of survey fatigue and

the suggestion of previous responses. The nature of this type of survey also avoids problems

arising from changes in the composition of the population. In each subsequent survey round,

the sample is drawn from the current population (Duncan and Kalton, 1987, p. 99). Kowalczyk

(2001) points out that, as a result, these surveys can perform well in the estimation of population
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characteristics in particular periods and in the estimation of total values of characteristics for

population, for all periods.

The complete replacement of sample elements in each survey also allows the sample to be

cumulative by combining samples from different periods. This represents a major advantage for

analyses involving rare events (Duncan and Kalton, 1987, p. 101).

2.4.2. Disadvantages and limitations of longitudinal surveys

A problem that may arise in the case of repeated surveys over time, which is of particular

importance in the case of panel surveys, is the phenomenon called sample “attrition”. This

phenomenon is associated with a reduction in the number of individuals from the original sample

participating in the survey. One reason for attrition, according to Trivellato (1999), may be the

refusal of an individual to participate in a subsequent survey. It therefore generates non-response

at the level of individuals. The author mentions that non-random “attrition” of the sample,

especially related to unobserved individual characteristics, may cause significant deviations in

the analysed variables and lead to erroneous conclusions about the studied population.

As reasons for the occurrence of non-response at the level of individuals for surveys conducted

among households, Kowalczyk (2001) mentions illness, death and change of residence. When

the units surveyed are businesses, these may include bankruptcy, merger and acquisition. The

problem of the changing composition of the population is one of the main difficulties,

or challenges, in conducting panel surveys. However, the problem of non-response can also arise

at the level of individual questions (Trivellato, 1999, p. 342).

One of the considered in practice solutions to the problem of the changing composition

of the population introduced in panel studies is the follow-up method. This method is used,

among others, in the Social Diagnosis project, the Panel Study of Income Dynamics, and the

German Socio-Economic Panel. In this method, when a person leaving a household in the

sample creates a new household or joins an existing one, such households are included in the

sample and all its members are surveyed. New members of households already in the survey are

also added to the sample. The continuation method therefore takes into account both changes in

the composition of households (changes in the relationships between household members), as

well as their formation and division. Figure 2.10 shows an example of the changes in households

that are taken into account by the above method (Ott, 1995, pp. 166–167). This solution allows,

as Ott (1995) points out, an even broader analysis of the changes that occur in households over

time, including, for example, the observation of the economic situation of both partners after

divorce or of adult children leaving the family household.
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Figure 2.10. Scheme of the follow-up method

Source: Own elaboration based on Ott (1995, p. 167).

These issues were considered by Witte (1987, 1988), Giesecke (1989), and Witte and Lahmann

(1988), among others. However, this method also has some disadvantages, it can lead, for

example, to a significant increase in the sample size during a period when an intensive division of

households takes place. Such a problem arose in the Panel Study of Income Dynamics conducted

by the Institute for Social Research (University of Michigan). In this cases, it is necessary to take

action to reduce the sample size. Its use also entails conducting the survey in a larger number

of locations, which also entails increasing financial costs in subsequent waves. Procedures for

‘tracking’ panel survey units, which include the continuation method, are presented, among

others, in the works of McAllister et al. (1973), Call et al. (1982), and Booth and Johnson (1985).

In practice, in order to counterbalance demographic inequalities arising during the “attrition”

of the sample, as well as the effect of fatigue, a forced rotation of individuals is also often

introduced (Sharot, 1991, p. 328). During rotation, respondents are discarded at a given maximum

time of participation in the survey. The introduction of rotation, however, entails some negative

consequences. These include, first and foremost, loss of sample continuity, which increases

sampling errors, and the increased costs resulting from additional sampling, interviewing,

recruitment, installation and removal of survey equipment. As Sharot (1991) adds, the associated

increased burden on the survey contractor may distract from ensuring the quality of the survey

being conducted.
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In order to mitigate the effect of sample “attrition”, a refreshing method is also used.

The “refreshing” sample contains new randomly selected respondents who will receive the

questionnaire at the same time as the second or subsequent waves of the panel. This method, as

reported in Deng et al. (2013), is used by the National Center for Education Statistics in studies

such as the Early Childhood Longitudinal Study and the National Educational Longitudinal

Study, among others. The authors add that a similar refreshing effect is obtained by using partial

rotation in panel studies.

Often, panel “attrition” is ignored and only data for those units that participated in all waves

of the survey are used in the analyses. This approach assumes that panel “attrition” is missing

completely at random (MCAR) and does not depend on either observed or unobserved variables.

Another approach assumes that “attrition” is random but depends on observed variables (missing

at random – MAR). One of the main methods in this approach is the reweighting method.

It assumes that propensity to drop out is taken into account by assigning weights. Participation

drop-out is therefore assumed to occur randomly in the weighting classes defined by the observed

variables (Deng et al., 2013, pp. 239–240). An alternative approach to re-weighting is the single

imputation method. In this method, each missing value is imputed according to a chosen

procedure, e.g. hot deck or nearest neighbour. Thus, following Duncan and Kalton (1987), the

weighting method is a global approach, whereas imputation treats each element individually.

The last approach, as presented by Deng et al. (2013), is the assumption that, “attrition” of

panels is not missing at random – NMAR) and depends on unobserved variables. In this case,

the only way to obtain unbiased parameter estimators is to model missing data. However,

model-based methods usually need to make strong assumptions about the “attrition” process,

because most often the original sample does not contain enough information about the missing

data mechanism.

Even when it is possible to obtain information from respondents, certain negative phenome-

na can occur that generate measurement errors and thus affect the quality of the data collected.

One such phenomenon is the formation of so-called memory effects (memory errors). These are

mainly due to the usually rather long period between successive rounds of surveys (Trivellato,

1990, p. 342). A phenomenon that may also affect the quality of the data obtained is the sugges-

tion of previous answers or a kind of routine in answering questions, which may result, among

other things, from survey fatigue. The length of time over which the survey is conducted can also

have a major impact (Kowalczyk, 2001, p. 23).

Ott (1995) also draws attention to the problem of left and right censoring of data. In the

first case, the event occurred or started before the study period, while in the second case it is
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known to occur or to end in the future but we do not know at what point. This problem occurs

particularly with rare events.

A difficulty that can arise in panel studies as well as retrospective studies is the so-called

“telescopic effect”. This effect consists of remembering recent events as older – backward

telescoping – or distant events as more recent – forward telescoping. In panel studies, however,

according to Neter and Waksberg (1964), it is possible to reduce the effects of this through

a method of tying events to the results of previous survey rounds, reminding subjects of their

responses in previous interviews. In surveys with complete rotation, a telescoping effect can

occur as in panel surveys, and in addition, data from this type of survey do not allow individual

change to be measured or individual data to be aggregated (Duncan and Kalton, 1987, p. 101).

Touching on the distortions of information that may arise in the process of conducting

longitudinal surveys, mention should be made of the initial interview. As Tanur (1981) points

out, this interview is not used for comparison purposes in some panel studies. This action is

to avoid the distortion of information that often occurs during the first interview. Sudman and

Ferber (1970) provided examples indicating the reporting of higher levels of study characteristics

at the beginning of the panel than in the second and subsequent periods.

Conducting studies that are repetitive over time also incurs greater financial costs.

Duncan et al. (1986) point out that a survey consisting of two waves is already more costly

than a cross-sectional survey extended with retrospective questions. The differences can reach

20 percent. Another important disadvantage pointed out by Sharot (1991) is the higher refusal

rate in the first wave of the survey than in cross-sectional surveys. In the case of surveys with

complete rotation, in addition to high costs, attention should be paid to their time-consuming

nature, which is primarily associated with the need to draw samples in successive editions of the

survey (Kowalczyk, 2001, p. 19).

2.5. Summary

This chapter discussed theoretical and practical aspects of single and longitudinal surveys.

Subchapter 2.1 was focused on cross-sectional surveys. It discussed the essence of a statistical

survey and the steps of its conduct. It also presented a classification of statistical surveys with

some examples.

The next subsections covered the topics of longitudinal surveys. In subsection 2.2, the main

reasons for the interest in longitudinal surveys and the development of this type of research were

presented. The objectives of recurrent research over time were also discussed, along with their
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classification. The next subsection 2.3 addressed the classification of longitudinal surveys. The

essence of balanced and unbalanced panel surveys, and partial and full rotation surveys was

discussed in more detail. Surveys that are a combination of panel surveys and surveys with

rotation were also presented. For each group, a scheme for carrying out this type of survey

was presented. Selected examples of studies conducted both in Poland and worldwide were also

described. Subchapter 2.4, however, dealt with the advantages and disadvantages of longitudinal

surveys, as well as individual subgroups of repeated surveys over time identified in the previous

subchapter. The benefits and limitations of conducting this type of research were also discussed.

Selected methods to avoid or mitigate problems that may arise when conducting surveys over

more than one period were also presented.
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Chapter 3

Empirical best linear unbiased predictors

This chapter will discuss the problem of prediction using BLU- and EBLU-type predictors.

The chapter will present the EBLU predictors proposed by Henderson (1950) and Royall (1976)

in the light of the classification of linear mixed models into type A and B models. The author’s

proposal to use the EBLUP under the assumption of a linear mixed model with correlated

random effects will also be presented. The chapter will also address the properties, possible

modifications as well as applications of the presented predictors.

3.1. Empirical best linear unbiased predictors of Royall and Henderson

In this subsection, the empirical best linear unbiased predictors proposed by Royall (1976)

and Henderson (1950) will be discussed. For both of the presented predictors, without loss of

generality of consideration, we adopt the following decomposition of Y:

Y =
[
YT

s YT
r

]T
, (3.1)

where Ys and Yr are vectors with n and N − n elements for sampled and out-of-sample units,

respectively. An analogous decomposition can be made of the matrix of auxiliary variables X:

X =
[
XT

s XT
r

]T
, (3.2)

where the matrices Xs and Xr have dimensions n× p and (N − n)× p, respectively, and the

matrix Z:

Z =
[
ZT

s ZT
r

]T
, (3.3)

where the matrices Zs and Zr have dimensions n×q and (N −n)×q. The variance-covariance

matrix Y can be written as:

V(δδδ ) = D2(Y) = D2

Ys

Yr

=

Vss(δδδ ) Vsr(δδδ )

Vrs(δδδ ) Vrr(δδδ )

 , (3.4)

where δδδ is a vector of unknown variational components. It should be added that the matrix

Vss(δδδ ) has dimensions n× n, Vrr(δδδ ) – dimensions (N − n)× (N − n), and the dimensions of

Vsr(δδδ ) and Vrs(δδδ ) are n× (N −n) and (N −n)×n, respectively.
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3.1.1. BLU predictor of Royall

When considering the BLUP proposed by Royall (1976), we make assumptions about the

general linear model. In addition, we assume that the matrix V(δδδ ) is known. The problem under

analysis is the prediction of a linear combination of the variable Y, denoted as θ = γγγT Y, which

can also be written as follows:

θ = γγγ
T Y = γγγ

T (Xβββ +Zv+ e) , (3.5)

where the vector γγγ has the following form:

γγγ =
[
γγγT

s γγγT
r

]T
. (3.6)

It should be added that when predicting the total value in the domain the k-th element of the

vector, γγγ takes the value 1 for k ∈ Ωd and 0 for k /∈ Ωd . When the characteristic of interest is the

mean value in the domain, the k-th element of the vector γγγ is N−1
d for k ∈ Ωd or 0 for k /∈ Ωd .

According to Royall’s (1976) theorem, the BLUP has the following form:

θ̂BLUP = γγγ
T
s Ys + γγγ

T
r

[
Xrβ̂ββ (δδδ )+Vrs (δδδ )V−1

ss (δδδ )
(

Ys −Xsβ̂ββ (δδδ )
)]

, (3.7)

where:

β̂ββ (δδδ ) =
(
XT

s V−1
ss (δδδ )Xs

)−1 XT
s V−1

ss (δδδ )Ys. (3.8)

This predictor is therefore ξ -unbiased and minimises the variance of the prediction error. If

Rsr ̸= 0, that is, in particular, if we assume the diagonal form of the matrix R(δδδ ), following

Żądło (2017), the predictor (3.7) simplifies to the following form:

θ̂BLUP = γγγ
T
s Ys + γγγ

T
r Xrβ̂ββ (δδδ )+ γγγ

T
r Zrv̂(δδδ ) , (3.9)

where β̂ββ (δδδ ) and v̂(δδδ ) are the vectors of fixed effects and random effects estimates, respectively,

with β̂ββ (δδδ ) being given by the formula (3.8) and v̂(δδδ ) being given by:

v̂(δδδ ) = G(δδδ )ZT
s V−1

ss (δδδ )
(

Ys −Xsβ̂ββ (δδδ )
)
. (3.10)

Substituting in (3.7) for the vector δδδ with its estimate, we obtain a two-stage predictor, called

the empirical best linear unbiased predictor – EBLUP:

θ̂EBLUP = γγγ
T
s Ys + γγγ

T
r

[
Xrβ̂ββ (δ̂δδ )+Vrs(δ̂δδ )V−1

ss (δ̂δδ )
(

Ys −Xsβ̂ββ (δ̂δδ )
)]

, (3.11)

where the vector β̂ββ (δ̂δδ ) is determined according to the formula (3.8), where δδδ is replaced by δ̂δδ .

Under certain conditions, including those concerning the properties of the estimator of δ̂δδ

and the symmetry of the distributions of the effect vectors and random components, the predictor
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(3.11) is ξ -unbiased. These conditions are presented more extensively in the work of Żądło

(2004), together with a proof that is a generalisation of the proof of Kackar and Harwill (1981)

for the predictor considered by Henderson (1950).

We can determine the mean squared error of a BLUP which has the form (3.7) based on the

following formula (Royall, 1976):

MSEξ

(
θ̂BLUP

)
=Varξ

(
θ̂BLU −θ

)
= g1 (δδδ )+g2 (δδδ ) , (3.12)

where

g1 (δδδ ) = γγγ
T
r
(
Vrr (δδδ )−Vrs (δδδ )V−1

ss (δδδ )Vsr (δδδ )
)

γγγr (3.13)

and

g2 (δδδ ) = γγγ
T
r
(
Xr −Vrs (δδδ )V−1

ss (δδδ )Xs
)(

XT
s V−1

ss (δδδ )Xs
)
×

×
(
Xr −Vrs (δδδ )V−1

ss (δδδ )Xs
)T

γγγ
T
r . (3.14)

For the empirical version of Royall’s (1976) predictor, given by the formula (3.11), the MSE,

with some additional assumptions presented by Żądło (2009), has the following form:

MSEξ

(
θ̂EBLUP

)
= g1 (δδδ )+g2 (δδδ )+g3 (δδδ )+o(D−1), (3.15)

where g1 (δδδ ) and g2 (δδδ ) are determined according to the formulas (3.13) and (3.14), respectively.

The last component of g3 (δδδ ), if the relevant assumptions are met, has the form (Żądło, 2009,

p. 109):

g3 (δδδ ) = tr
(

∂cT

∂δδδ
Vss (δδδ )

∂cT

∂δδδ
D̆2(δ̂δδ )

)
, (3.16)

where cT = γγγT
r Vrs (δδδ )V−1

ss (δδδ ), and D̆2(δ̂δδ ) is the asymptotic variance-covariance matrix of

the estimator of δ̂δδ . The estimation problem of MSEξ

(
θ̂EBLUP

)
will be discussed in the third

subsection of this chapter.

Royall’s (1976) predictor was considered in the work of Chandra and Chambers (2006),

among others, in the context of economic aspects of agriculture. The authors considered a dataset

presented in the work of Chandra and Chambers (2005). A population of farms of N = 81,982

was analysed, from which a sample size of n= 1,652 was drawn. The farms were further divided

into 29 domains defined by agricultural regions. Eight variables were included in the analyses,

including total farm operating costs, area under crops (in hectares), number of cattle on the farm,

number of sheep on the farm, total equity, and total farm debt. The mean value in the domain of

each variable was estimated. The area of the farm was used as an auxiliary variable. The sim-

ulation studies carried out compared the properties of the EBLUP and the direct predictor.

It should be added that the mean squared error estimator for the EBLUP and the direct predictor
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were determined based on the estimator proposed by Prasad and Rao (1990) and used the robust

method presented in the work of Chambers and Chandra (2006). For the rRMSE predictors of

the mean across domains and their median, the results obtained for the EBLUP were better or

close to those of the direct predictor.

3.1.2. Henderson’s best linear unbiased predictor

For the predictor proposed by Henderson (1950), we make assumptions about the general

linear mixed model given by the formula (1.89). In this case we consider the prediction of

a linear combination of βββ and v, which can be written as θ s = lT βββ (δδδ )+mT v(δδδ ), where lT and

mT are known. When the aim is to predict a linear combination of the variable Y , then lT = γγγT X

and mT = γγγT Z are assumed. It should be noted, however, that in this case, we do not predict

θ = γγγT Y, as is the case when using the predictor proposed by Royall (1976).

According to Henderson’s (1950) theorem, the best linear unbiased predictor is given by

the formula:

θ̂
s
BLUP = lT β̂ββ (δδδ )+mT v̂(δδδ ) , (3.17)

where β̂ββ and v̂ are given by the formulae (3.8) and (3.10). It should be added that the predictor

(3.17) is a special case of the predictor proposed by Royall (1976) because:

– Royall (1976) carries out his considerations under the assumption of a general linear model,

which is a generalisation of the general linear mixed model considered by Henderson (1950),

– Royall (1976) considers the prediction θ = γγγT Y, which is a generalisation of the characteristic

considered by Henderson (1950) θs, as:

θ = γγγ
T Y = γγγ

T Xβββ (δδδ )+ γγγ
T Zv(δδδ )+ γγγ

T e = θ
s + γγγ

T e, (3.18)

where γγγT X = lT and γγγT Z = mT .

As in the case of Royall’s (1976) predictor, by replacing the vector δδδ in (3.17) with its

estimate, we can obtain an empirical version of this predictor:

θ̂EBLUP = lT β̂ββ (δ̂δδ )+mT v̂(δ̂δδ ), (3.19)

where β̂ββ (δ̂δδ ) and v̂(δ̂δδ ) are determined based on the formulae (3.8) and (3.10) for δ̂δδ . According

to the theorem presented in the paper by Kackar and Harville (1981), the predictor given by the

formula (3.19) is ξ -unbiased when the assumptions of the general mixed model are satisfied and

when Eξ

(
θ̂EBLUP

)
is finite, δ̂δδ is an estimator having the evenness property δ̂δδ (Ys)= δ̂δδ (−Ys) and

invariability against displacement: δ̂δδ (Ys −Xsb) = δ̂δδ (Ys), and the distributions of the effects

and random components are symmetric with respect to zero. The above properties of the δ̂δδ
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estimator are ensured, among other things, by the use of the maximum likelihood method and

the restricted maximum likelihood method.

The mean squared error of the predictor proposed by Henderson (1950) is given by the

formula (cf. Rao and Molina, 2015, p. 101):

MSE
(
θ̂

s
BLUP

)
= gs

1(δ )+gs
2(δ ), (3.20)

where

gs
1 (δδδ ) = mT (G(δδδ )−G(δδδ )ZT

s V−1
ss (δδδ )ZsG(δδδ )

)
m (3.21)

and

gs
2 (δδδ ) =

(
l−mT G(δδδ )ZT

s V−1
ss (δδδ )Xs

)(
XT

s V−1
ss (δδδ )Xs

)−1×

×
(
l−mT G(δδδ )ZT

s V−1
ss (δδδ )Xs

)T
. (3.22)

The mean squared error of the empirical version of Henderson’s (1950) predictor, with some

additional assumptions presented in Datta and Lahiri (2000), is given by the formula:

MSEξ

(
θ̂

s
EBLUP

)
= gs

1 (δδδ )+gs
2 (δδδ )+gs

3 (δδδ )+o(D−1), (3.23)

where gs
1 (δδδ ) and gs

2 (δδδ ) are determined from (3.21) and (3.22), respectively. The value of the last

component, as shown by Datta and Lahiri (2000), can be determined by the following formula:

gs
3 (δδδ ) = tr

(
∂bT

∂δδδ
Vss (δδδ )

∂bT

∂δδδ
D̆2(δ̂δδ )

)
, (3.24)

where bT = mT G(δδδ )ZT
s V−1

ss (δδδ ) and D̆2
(

δ̂δδ

)
is the asymptotic variance-covariance matrix δ̂δδ .

The issue of the estimation of MSEξ

(
θ̂ s

EBLUP
)

is dedicated to the third subsection of this chapter.

The application of the EBLUP proposed by Henderson (1950) in the context of analyses of

an economic nature, more specifically analyses of firms, is presented in the paper by Ghosh and

Rao (1994), among others. The authors addressed the problem of prediction using the EBLUP

of corporate wages with gross business income as an auxiliary variable. They conducted their

considerations based on an artificial population designed to resemble the dataset in the work of

Särndal and Hidiroglou (1989). The authors considered dividing the population into 16 domains.

The population and sample sizes considered were N = 144 and n = 38, respectively. It should

be added that the analyses used a model with a nested random component. Their analyses com-

pared the properties of the EBLUP with, among others, a hierarchical Bayesian predictor and

a synthetic ratio estimator. Ghosh and Rao (1994) used the mean squared error, the relative root

of the mean squared error and the mean prediction error, among others. The authors noted that

the results for the EBLUP and the hierarchical Bayesian predictor were similar. Furthermore,

significantly better results for mean squared error were obtained for these predictors than for the

other predictors and estimators considered.
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3.2. Empirical best linear unbiased predictor and classification of linear mixed

models

In this subsection, the EBLUP will be discussed in the context of the division of linear

mixed models into type A and type B models, which were discussed more extensively in

subsection 1.2. For the former group of models, the EBLUP assuming the Fay–Herriot model

(Fay–Herriot, 1979) is presented, and for the latter, the model considered by Battese et al. (1988).

The subsection also presents the form of the mean squared error for the discussed predictors. The

considerations are carried out on models assumed for cross-sectional data.

3.2.1. EBLUP for type A models

Considering the classification of linear mixed models, the EBLUP can be divided into those

based on models belonging to type A as well as models of type B. For the first class of models,

one of the most commonly used is the model proposed by Fay and Herriot (1979) given by the

formula (1.92). This model is discussed further in subsection 1.2.

The EBLUP of the domain mean value assuming the Fay–Herriot model (FH-EBLUP), in

which the normality of the distribution of both components and random effects is assumed, can

be written as (cf. Rao and Molina, 2015, p. 126):

θ̂
FH
d
(
σ̂

2
v
)
= xT

d β̂ββ + γ̂d

(
θ̂d −xT

d β̂ββ

)
= γ̂d θ̂d +(1− γ̂d)xT

d β̂ββ , (3.25)

where:

γ̂d =
σ̂2

v

σ̂2
v + σ̂2

e
, (3.26)

and β̂ββ is an estimator of βββ obtained using a weighted least squares method with weights
(
σ̂2

v + σ̂2
e
)
.

This predictor is therefore the sum of θ̂d – the direct θ estimator and the synthetic model-based

regression estimator. Note that the FH-EBLUP gives more weight to the synthetic component

xT
d β̂ββ for high values of the variance of σ̂2

e or low values of the variance of random effects. This

predictor, like the Fay–Herriot model itself, allows data from different sources to be combined.

For domains not in the sample, the predictor is reduced to the synthetic regression estimator xT
d β̂ββ .

The information on the additional feature values for these domains is used for this purpose. This

makes it possible, among other things, to include geographical variables – the coordinates of the

centres of gravity – in the analysis.

The FH-EBLUP is effective under the assumption of normality in a linear mixed model.

However, it is possible to extend this predictor to cases where the dependence is not linear, as

was considered, among others, in the work of Giusti et al. (2012). It is also possible to include

82



correlations between random effects in this predictor, as was presented in the works of Petrucci

and Salvati (2006), and Pratesi and Salvati (2008, 2009). This predictor is also consistent after

the sampling design as Pratesi (2015) points out, however, it is not robust to the presence

of outliers.

The mean squared error of the above predictor is given by the formula (cf. Prasad and Rao,

1990, p. 165):

MSE (γ̂d) = g1d
(
σ

2
v
)
+g2d

(
σ

2
v
)
+g3d

(
σ

2
v
)
, (3.27)

where g1d
(
σ2

v
)
= γdσ2

v , g2d
(
σ2

v
)
= (1− γd)

2 xT
d Var

(
β̂ββ

)
xd , and g3d

(
σ2

v
)
= σ4

e

(σ̂2
v +σ2

e )
3 Var

(
σ2

v
)
.

The estimator proposed by Prasad and Rao (1990), estimators using the jackknife method, or the

parametric bootstrap method, discussed in more detail in the next subsection of this monograph,

can be used to estimate it.

The FH-EBLUP has found application in economic aspects of agriculture, among other

things. The work of Sud et al. (2011) used this predictor to estimate average rice yields at

the district level in Uttar Pradesh, India. The study used data from 2009/2010 for 58 districts.

Information on additional population variables came from the 2001 census. These variables were

average household size and female population.

3.2.2. EBLUP for type B models

One of the most commonly used models belonging to type B in prediction using BLUP is

that considered by Battese et al. (1988). This model is described in more detail in subsection 1.2

on the classification of overpopulation models. The BLUP of the domain mean value based on

this model is given by the following formula (Rao and Molina, 2015, pp. 174–177):

θ
BHF
d

(
σ

2
v
)
= γ̂d

[
ȳda +

(
X̄d − x̄da

)T
β̃ββ

]
+(1− γ̂d) X̄T

d β̂ββ , (3.28)

where

γ̂d =
σ2

v

σ2
v +σ2

e /ad·
, ȳda =

nd

∑
i=1

adiydi

ad·
, x̄da =

nd

∑
i=1

adixdi

ad·
, ad· =

nd

∑
i=1

adi,

β̃ββ =

(
D

∑
d=1

XT
d V−1

d (δδδ )Xd

)−1( D

∑
d=1

XT
d V−1

d (δδδ )Yd

)
,

and Xd is a vector of known mean values. It should be added that the weights γ̂d take values

in the interval (0,1) and measure the relative variation between domains, and the values of adi

are determined as adi = k2
di, where kdi are weights to allow for heteroscedasticity of the random

components. An empirical version of the predictor given by the formula (3.28) is obtained by

replacing σ2
v and σ2

e with their respective assessments.
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The mean squared error of the above predictor is determined based on the following formula

(Rao and Molina, 2015, pp. 175–176):

MSE
(
θ

BHF
d

(
σ

2
v
))

= gB
1 (σ

2
v )+gB

2 (σ
2
v ), (3.29)

where:

gB
1 (σ

2
v ) = γd

(
σ

2
e /ad·

)
, (3.30)

gB
2 (σ

2
v ) =

(
X̄d − γd x̄da

)T

(
D

∑
d=1

Ad

)−1(
X̄d − γd x̄da

)
, (3.31)

and:

Ad = XT
d VT

d Xd = σ
−2
e

(
nd

∑
i=1

adixdixT
di − γd

nd

∑
i=1

adix̄dax̄T
da

)
. (3.32)

A predictor of the BHF-EBLUP type is considered in the paper by Prasad and Rao (1990),

among others, which addresses a problem in the economic aspects of agriculture. In a simulation

study, the authors considered data generated from a maize crop dataset from the work of Battese

et al. (1988). The paper considers not only the problem of prediction using the EBLUP but also

the issue of estimating the mean squared error of the prediction. This issue will be discussed in

more detail in the next subsection of this paper.

3.3. EBLUP and the class of linear mixed models with correlated random effects

It should be added that it is also possible to apply the EBLUP having the form (3.11) in

the case of a linear mixed model with correlated random effects vectors given by the formula

(1.131). For the above proposal, this predictor has the form:

θ̂
∗
EBLUP = γγγ

T
s Ys + γγγ

T
r

[
Xrβ̂ββ

∗
(δ̂δδ )+V∗

rs(δ̂δδ )V
∗
ss
−1(δ̂δδ )

(
Ys −Xsβ̂ββ

∗
(δ̂δδ )
)]

, (3.33)

where V∗
ss(δ̂δδ ), V∗

rs(δ̂δδ ) and β̂ββ
∗
(δ̂δδ ) are determined according to the model (3.11), where the

variance-covariance matrix Y is given by the formula (1.133).

The above problem was considered in the work of Krzciuk (2020). The analyses studied

the properties of the EBLUP under the assumption of a model with correlated and uncorrelated

random effects vectors in the case of correct and incorrect model specification. Simulation studies

were conducted based on data presented in Särndal et al. (1992) about Swedish counties. The

results indicate good properties of the proposed EBLUP, assuming a model with correlated

random effects vectors. The simulation-derived relative bias values for this predictor did not

exceed 1%. When the data were generated according to the model with correlated random effects

vectors, the increase in accuracy for individual domains was between 4% and 39% compared
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to the non-correlated predictor. In the second part of the simulation study, when no correlation

between the random effects vectors was taken into account in the data generation process, the

loss of accuracy for the proposed predictor was no more than 5% relative to the case with the

correct model specification. The analyses also considered the problem of estimating the mean

squared error. The use of estimators based on the parametric bootstrap method was proposed.

3.4. Mean squared prediction error and its estimator

When considering the problem of predicting characteristics in the domain using the EBLUP,

it is also necessary to address the issue of estimating the mean squared error of this class of

predictors. Among the classical estimators of the mean squared error of the EBLUP, we can

mention the naive estimator, which is given by the following formula (Kackar and Harville,

1984, pp. 854–855):

MŜEN(θ̂
EBLUP) = g1(δ̂δδ )+g2(δ̂δδ ). (3.34)

It is therefore in the form of the BLUP mean squared error (cf. formulas (3.12) and (3.20)),

where the vector δδδ is replaced by its estimator. In this group, we can also distinguish the

estimator proposed by Datta and Lahiri (2000). Considering the case where the model parameters

were estimated using the REML method, this estimator has the following form:

MŜEDL(θ̂
EBLUP) = g1(δ̂δδ )+g2(δ̂δδ )+2g3(δ̂δδ ), (3.35)

where g1(δ̂δδ ), g2(δ̂δδ ) and g3(δ̂δδ ) are determined from the formulae (3.13), (3.14) and (3.16) for the

predictor of Royall (1976) and (3.21), (3.22) and (3.24) for the predictor of Henderson (1950).

Also in this case, the vector δδδ is replaced by its estimator. It should be added that the bias of

the naive estimator is of order O(D−1), while that of the estimator of Datta and Lahiri (2000)

is of order o(D−1). It should be added, following Fuller (1976), that for sequences of positive

numbers {rn} and {cn}, cn = O(rn) means that cn is of order rn if there exists a positive real

number M such that |cn| ⩽ Mrn for every n and cn = o(rn) means that cn is of an order lower

than rn when limn→∞
cn
rn
= 0

Among the estimators of the mean squared error of the EBLUP, there are also estimators

using the jackknife method. The estimator proposed by Jiang et al. (2002) is given by the

following formula:

MŜEJACK1(θ̂
EBLUP) = g1(δ̂δδ )−

D−1
D

D

∑
d=1

(
g1(δ̂δδ−d)−g1(δ̂δδ )

)
+

+
D

∑
d=1

(
θ̂EBLUP(δ̂δδ−d)− θ̂EBLUP(δ̂δδ )

)2
, (3.36)
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where δ̂δδ−d is estimated based on the out-of-sample data excluding the d-th domain, and g1(δ̂δδ )

is calculated analogously to the previously presented estimators. It should be added that this

estimator is asymptotically unbiased, and the order of its bias is equal to o(D−1−ε) (0< ε < 0.5).

Chen and Lahiri (2002, 2003) proposed a modification of the estimator of Jiang et al. (2002)

due to the potential for negative values of this estimator. The estimator considered by the authors

can be written as:

MŜEJACK2(θ̂
EBLUP) = g1(δ̂δδ )+g2(δ̂δδ )+

D

∑
d=1

wd

(
θ̂EBLUP(δ̂δδ−d)− θ̂EBLUP(δ̂δδ )

)2
−

− D−1
D

D

∑
d=1

wd

(
g1(δ̂δδ−d)+g2(δ̂δδ−d)−g1(δ̂δδ )−g2(δ̂δδ )

)
. (3.37)

Note that the choice of weights wd is not straightforward. Chen and Lahiri (2003) suggest

weights for the Fay–Herriot model of the form wd = D−1
D or wd = xT

d

(
∑

D
u=1 xuxT

u
)

xd . The bias

of this estimator, as given by Chen and Lahiri (2003), is of the order of O(D−1).

Another group of estimators presented in this paper are those based on the parametric

bootstrap method. These estimators are based on the following bootstrap model (cf. Chatterjee

et al., 2008, pp. 1229–1230):

Y∗ = Xβ̂ββ +Zv∗+ e∗, (3.38)

where: v∗ ∼ N(0,G(δ̂δδ )), e∗ ∼ N(0,R(δ̂δδ )); δ̂δδ is the δδδ estimator obtained by the REML or ML

method, and β̂ββ is the βββ estimator obtained by the least squares method. Among the estimators

using the parametric bootstrap method, we can distinguish, e.g., the estimator considered in the

work of González-Manteiga et al. (2008):

MŜE
boot

(θ̂ EBLUP) = E∗(θ̂
EBLUP(β̂ββ (δ̂δδ

∗
), δ̂δδ

∗
)−θ

∗)2

= B−1
B

∑
b=1

(θ̂ EBLUP(β̂ββ (δ̂δδ
∗(b)

), δ̂δδ
∗(b)

)−θ
∗(b))2, (3.39)

where δ̂δδ
∗(b)

is given by the same formula as δδδ , where Y is replaced by Y∗, δ̂δδ and β̂ββ are estimators

obtained by the REML method, θ ∗(b) is the value of the characteristic of interest θ obtained

in the b-th implementation of the model (3.38), E∗(.) is the expected value in the bootstrap

distribution. The second of the MSE estimators presented in this paper based on the parametric

bootstrap method is the estimator proposed in Butar and Lahiri (2003):

MŜE
boot−BL

(θ̂ EBLUP) = g1(δ̂δδ )+g2(δ̂δδ )+E∗(g1(δ̂δδ
∗
)+g2(δ̂δδ

∗
)− (g1(δ̂δδ )+g2(δ̂δδ )))+

+E∗(θ̂
EBLUP(β̂ββ (δ̂δδ

∗
), δ̂δδ

∗
)− θ̂

EBLUP(δ̂δδ ))2, (3.40)

where g1(δ̂δδ
∗
) and g2(δ̂δδ

∗
) are determined analogously to the other estimators. It should be added
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that this estimator is asymptotically unbiased:

Eξ (MŜEboot−BL(θ̂ EBLUP))−MSEξ (θ̂
EBLUP) = o(D−1). (3.41)

It is also possible to use mean squared error estimators using a non-parametric bootstrap method.

This problem was considered by Pfeffermann and Glickman (2004), among others. Hall and

Maiti (2006) proposed the use of a double parametric bootstrap method for estimating the mean

squared error (see Algorithm 1). Other MSE estimators derived by this method and allowing for

bias correction are also considered in the literature, e.g. Pfeffermann and Correa (2012).

It should be added that the mean squared error estimators discussed in this subsection can

also be used to assessment the MSE of the EBLUP, taking into account the correlation between

the random effects vectors, given by the formula (3.33).

Algorithm 1. Double parametric bootstrap method
1. Generate B1 new populations and samples according to the assumed model and determine

the value of the considered predictor. The MSE estimator at the first step of the procedure

has the form (Hall and Maiti, 2006, p. 226):

MŜE
dboot
1 (θ̂ EBLUP) = B−1

1

B1

∑
b1=1

(
θ̂

EBLUP
b1

− θ̂b1

)2
. (3.42)

2. For the samples generated in step one, the calculations performed in step one are repeated

B2 times. The MSE estimator from the second step is therefore of the form (Hall and Maiti,

2006, p. 226):

MŜE
dboot
2 (θ̂ EBLUP) = B−1

1

B1

∑
b1=1

B−1
2

B2

∑
b2=1

(
θ̂

EBLUP
b2

− θ̂b2

)2
. (3.43)

3. Calculation of the MSE estimator using the above bootstrap method procedure:

MŜE
dboot

(θ̂ EBLUP) = 2MŜE
dboot
1 (θ̂ EBLUP)−MŜE

dboot
2 (θ̂ EBLUP). (3.44)

However, it is necessary to consider the form of the variance-covariance matrix for the

aforementioned model, which has the form according to the formula (1.133). This necessitates

the estimation of the correlation coefficient ρ .

3.5. Selected EBLUP modifications and their applications

In addressing the issue of prediction using EBLUPs, it is important to mention the many

modifications of these predictors. Among the selected modifications presented in this subsection
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are the EBLU predictor taking into account the spatial correlation of random effects, the

geographically weighted EBLUP, the pseudo-EBLUP, and the non-parametric EBLUP. Robust

versions of some of the above predictors are also presented. The description of each of the

presented predictors is also supplemented with issues concerning the mean squared error of

the prediction.

3.5.1. SEBLUP

A modification of the empirical best linear unbiased predictor denoted as SEBLUP (Spatial

empirical best linear unbiased predictor) allows prediction when random effects correlations are

present. This predictor is presented, among others, in the work of Molina et al. (2009) and

Singh et al. (2005). This generalisation can be applied to type A as well as type B models.

Following Molina et al. (2009), a Simultaneous Spatial Autoregressive Process (SAR process)

is incorporated into the models.

For type A models, which include the Fay–Herriot model given by the formula (1.92), the

correlated random effects vector v is assumed to be of the form (Cressie, 1993):

v = (I−ρW)−1 u, (3.45)

where u is a D-element vector of independent random effects with variance σ2
u , and ρ is an

unknown parameter. The matrix of spatial weights W is of dimension D×D, since correlation

is assumed between domains rather than between population elements. It should be noted that

the proximity of domains can be considered not only in a geographical sense but also in an

economic sense. In a geographical sense, the creation of a weight matrix can take into account,

among other things, whether objects share a common boundary (Karpuk, 2015) or the length

of a common boundary (Dacey, 1968). In an economic sense, we can use variables such as the

unemployment rate or the value of investments (Pietrzak, 2010). The W weight matrix can also

be based on the values of mutual trade transactions, capital flows and migration between spatial

units (Conley, 1999). It should be added that the rows of the W matrix are usually standardised.

The problem of defining the weights matrix has been extensively presented in a book edited by

Suchecki (2010). The variance-covariance matrix of random effects G is given in this case by

the formula (Molina et al., 2008, p. 444):

G = σ
2
u
[
(I−ρW)

(
I−ρWT )]−1

. (3.46)

The R matrix can be written as:

R = σ
2
e I. (3.47)
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By substituting (3.46) and (3.47) into (1.89), we obtain a matrix V of the form (Pratesi and

Salvati, 2008, p. 116):

V = ZGZT +R = Zσ
2
u
[
(I−ρW)

(
I−ρWT )]−1 ZT +σ

2
e I. (3.48)

Taking into account the (3.45) in (1.92), the model used for prediction using the SEBLUP

can be written as (Pratesi and Salvati, 2008, p. 115):

θ̂θθ = Xβββ +Z(I−ρW)−1 u+ e, (3.49)

where θ̂θθ is the vector of direct estimators of the characteristic vector θθθ , X and Z are the matrices

of the auxiliary variables, βββ is the vector p of unknown parameters, and e is the vector of

random components.

The predictor of type Spatial EBLU for the model (3.49) can therefore be written as (Pratesi

and Salvati, 2008, p. 116):

θ̃
FH−SEBLUP
d

(
σ̂

2
u , ρ̂
)
= xd β̂ββ +bT

d ĜZT
{

R+Z
(
ĜZT )−1

(
θ̂θθ −Xβ̂ββ

)}
, (3.50)

where β̂ββ =
(
XT V−1X

)−1 XT V−1θ̂θθ , bT
d is a D-element vector containing D− 1 zeros and 1 as

the d-th element. In addition, the matrix R is given by the formula (3.47) and Ĝ = G
(
σ̂2

u , ρ̂
)
,

where G is determined according to the formula (3.46). Following Pratesi and Salvati (2008),

it should be added that, under the assumption of normality of random effects, the parameters

σ2
u and ρ can be estimated using either the maximum likelihood method (ML) or the restricted

maximum likelihood method (REML). However, only the REML method takes into account

the loss of degrees of freedom resulting from the estimation of βββ . The problem of estimating

random effects variance is addressed, among others, in Siswantining et al. (2020).

The SEBLUP for models belonging to type A are effective under the assumption of

normality and spatial correlation in a linear mixed model. The advantage of this predictor, as

with the EBLUP, is furthermore that it does not require access to microdata at the individual

level. It does, however, allow for the inclusion of random effects correlations. The disadvantages

of the SEBLUP are that it is not robust to outliers and post-design consistency and does not take

into account the possibility of spatial non-stationarity (Pratesi, 2015, pp. 42–43). A generalisa-

tion of this predictor that takes into account local non-stationarity of spatial dependence is con-

sidered in the work of Benedetti et al. (2012).

The mean squared error of the predictor (3.50) under the assumption of normality of random

effects is given by the following formula (Pratesi and Salvati, 2008, p. 117):

MSE
(
θ̃d
(
σ̂

2
u , ρ̂
))

= g1d
(
σ

2
u ,ρ
)
+g2d

(
σ

2
u ,ρ
)
+E

(
θ̃d
(
σ̂

2
u , ρ̂
)
− θ̃d

(
σ

2
u ,ρ
))2

, (3.51)
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where (Pratesi and Salvati, 2008, p. 136):

g1d
(
σ

2
u ,ρ
)
= bT

d
(
G−GZT (R+ZGZT )ZG

)
bd , (3.52)

g2d
(
σ

2
u ,ρ
)
=
(

xd −bT
d GZT (R+ZGZT )−1 X

)
×

×
(

XT (R+ZGZT )−1 X
)−1

×
(

xd −bT
d GZT (R+ZGZT )−1 X

)T
. (3.53)

The last component (3.51) can be approximated using Taylor expansion. It should be added

that this component, also denoted as g3d
(
σ2

u ,ρ
)
, results from the estimation of the variance

components. Following Rao (2003), however, the component g1
(
σ2

u ,ρ
)

results from the random

effects estimation, and the g2
(
σ2

u ,ρ
)

from estimation of βββ . These components are of order O(1)

and O(D−1), respectively.

Estimators based on parametric as well as non-parametric bootstrap methods, among others,

can be used to estimate the mean squared error for the SEBLUP. In their paper, Molina

et al. (2009) present the possibility of using the estimator considered by González-Manteiga

et al. (2008) for MSE estimation, which is discussed in more detail in subsection 3.4.

The applicability of the Spatial EBLUP under the assumption of the Fay–Herriot model in

small area estimation was presented by Petrucci et al. (2005). The authors used this predictor to

estimate average olive production on farms in Tuscany. The problem also addresses the economic

aspects of agriculture. The analyses used data from The Farm Structure Survey.

For the SEBLUP for type B models, which include the model of Battese et al. (1988),

given by the formula (1.94), the vector of correlated random effects v has the same form as

for type A models, and hence is given by the formula (3.46). It should be added, following

Pratesi (2015), that the matrix I − ρW should be positively defined in order to determine

the inverse matrix. This condition is fulfilled when ρ ∈
(

1
maxi(λi)

, 1
mini(λi)

)
, where λi are the

eigenvalues of the matrix W.

Similar to the Spatial EBLUP for type B models, it requires individual data for both the

study variable and auxiliary variables for the sampled elements and the values of the auxiliary

variables for the out-of-sample elements. A matrix of spatial weights for the drawn and out-of-

-sample domains is also required. Predictors of this class are also – like the EBLUP – sensitive

to outliers. This problem has been addressed by Schmid and Münnich (2014), among others.

3.5.2. REBLUP

The problem of sensitivity to outliers of model parameter estimators also used in prediction

using the EBLUP is an issue that has been frequently addressed in the literature. This topic in

the context of parameter estimations obtained using the generalised least squares method, the
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maximum likelihood method or the restricted maximum likelihood method was considered,

among others, in papers by Stahel and Welsh (1992), Huggins (1993), and Richardson (1997).

It should be added that in the papers, the considerations were based on linear mixed models.

Sinha and Rao (2009) proposed a generalisation of the EBLUP based on a general linear

mixed model with a block-diagonal covariance matrix to address the robustness of the EBLUP

to outliers (Robust EBLUP). In what follows, the authors also consider a special case of this

model, a model with a nested random component given by the formula (1.94) and belonging

to type B of models.

As emphasised in their paper by Schmid and Münnich (2014), in this case the modification

of the density function of the considered random variable due to βββ and δδδ is maximised. This

makes it possible to obtain the robust maximum-likelihood equation proposed by Richardson and

Welsh (1995), the solution of which is the robust estimators of the above quantities. It should

be added that the Newton-Raphson algorithm can be used to solve the maximum likelihood

equation. Parameter estimates are thus obtained based on the following equations (Sinha and

Rao, 2009, p. 384):

XT V−1U1/2
ψψψ(r) = 0, (3.54)

ψψψ(r)U1/2V−1 ∂V
∂Θl

V−1U1/2
ψψψ(r)− tr

[
V−1 ∂V

∂δl
K
]
= 0, (3.55)

where r = U1/2 (y−Xβββ ) is the unit-level vector of residuals, and U1/2 is the root of the diagonal

matrix containing the diagonal elements of the variance-covariance matrix V, the matrix K can

be written as:

K = E
[
ψψψ

2(r)
]
, (3.56)

where ψψψ is the Huber (1964) function. The l-th variance component is denoted by δl . In addition,

the authors proposed to use Fellner’s (1986) equation for the estimation of the random effects v:

ZT R−1/2
ψ

(
R−1/2 (y−Xβββ −Zv)

)
G−1/2

ψ

(
R−1/2v

)
= 0. (3.57)

It should be noted that it is necessary to determine the element of the R−1 matrix. As Sinha

and Sattar (2015) point out in their paper, the estimate of βββ is a consistent estimator and has an

asymptotic normal distribution. Furthermore, the authors add that the estimate of the variance

components of δδδ can be obtained using the REML method.

The robust domain mean value predictor for the model (1.89) obtained using (3.54), (3.55)

and (3.57) then has the following form (Sinha and Rao, 2009, p. 387):

Θ̂
REBLUP
i = N−1

d

(
∑
i∈sd

ydi + ∑
i∈Ωd

(
xT

diβ̂ββ M + v̂dM

))
, (3.58)
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where β̂ββ M and v̂dM denote robust fixed-effects and random-effects estimates. It should be noted,

however, that the predictor proposed by Sinha and Rao (2009) assumes a block-diagonal

variance-covariance matrix. Furthermore, as reported by Chambers et al. (2014), this predictor

is based on the assumption that the mean of the random components in the non-sampled units

in the study domain converges to 0. As given in Rao et al. (2014), however, it is also possible

to use the REBLUP under weaker fixed effects assumptions than linear regression. The authors

replaced this assumption with semiparametric regression.

Sinha and Rao (2009) also proposed an estimator of the mean squared error of the predictor

(3.58). This estimator is based on the parametric double bootstrap method considered in Hall

and Maiti (2006) and described in the fourth subsection of this paper. This method is discussed

in more detail in the third subsection of this chapter.

In their paper, Sinha and Rao (2009) also considered the use of the proposed REBLUP class

to predict the average area planted with corn and soybeans in twelve counties in Iowa. They used

a dataset from the work of Battese et al. (1988). Sinha and Rao (2009) compared the properties

of the EBLUP and a proposed robust modification of it.

3.5.3. SREBLUP

The Spatial Robust EBLUP (SREBLUP) proposed by Schmid and Münnich (2014) combines

the concepts of a robust predictor and one that takes into account the correlation of random

effects using an autoregressive SAR model. This predictor is a modification of the REBLUP

of Sinha and Rao (2009), and is therefore based on a type B model, which includes the model

of Battese et al. (1988) given by formula (1.94). It should be added that in their work, they

only considered a SAR-type model for reasons of practical applications. The random effects

vector v, as in the SEBLUP case, is given by the formula (3.45) and the matrix V by the formula

(3.48), where the matrices G and R are given by the formulas (3.47) and (3.46), respectively.

However, Schmid and Münnich (2014) following Sinha and Rao (2009) suggest determining

the estimates of βββ , ρ and the variance of both effects and random components using the robust

maximum likelihood method (Richardson and Welsh, 1995) and the Newton-Raphson algorithm.

This allows the estimation of random effects using the Fellner (1986) equation given by the

formula (3.57).

The robust EBLUP, taking into account the spatial correlation of random effects for the

domain mean value, is then of the form:

θ̂
SREBLUP
d = N−1

d

(
∑
i∈sd

ydi + ∑
j∈Ωrd

(
xT

d jβ̂ββ
SR

+ zd jv̂SR
d

))
, (3.59)
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where d = 1, . . . ,D, ydi are the values of the study variable for the d-th domain elements that

were sampled, and xT
d j and zd j are the values of the auxiliary variables for the elements that were

not drawn into the sample. The β̂ββ
SR

and v̂SR
d are denoted as fixed-effects and random-effects

estimates using the robust maximum-likelihood method.

Further modifications of this predictor can also be found in the literature, among others,

taking into account representative outliers. These are understood as outliers in the sample for

which it is assumed that they have been correctly observed and that the population contains

other values similar to them (cf. Schmid et al., 2016). As with the REBLUP for its spatial gen-

eralisation of (3.59), it is not possible, due to its high complexity, to write an explicit formula

for the mean squared error. Schmid and Münnich (2014) in their paper, however, presented the

possibility of estimating it using a parametric bootstrap method. This approach was also consid-

ered by Sinha and Rao (2009) for the REBLUP.

As Schmid and Münnich (2014) point out, the SREBLUP can find application for economic

data. In a simulation study based on artificial data, the authors compared the properties of the

proposed predictor with those of the EBLUP, REBLUP and GREG-type estimators, considering,

among other things, relative bias and relative RMSE.

3.5.4. GWEBLUP and RGWEBLUP

Both the EBLUP and SEBLUP assume that the regression coefficients are spatially invariant

(spatially stationary). The problem of spatial stationarity was addressed in the work of Beenstock

and Felsenstein (2008), among others. This means that the relationship between the study variable

and the auxiliary variables is the same for the entire target area. However, the assumption of

the same linear correlation across the entire population may not be met in practice, as was

considered, among others, in the work of Opsomer et al. (2008), Chandra et al. (2012b), Salvati

et al. (2012b), and Chambers et al. (2016). Following Baldermann et al. (2018), one solution

to this problem may be to assume local linear, space non-stationary models for the study variable.

Included in the prediction process is the Geographically Weighted Regression (GWR) considered

in Brunsdon et al. (1996). The GWR is one of the popular spatial interpolation methods designed

to spatially interpolate a single data set. These methods allow values of variables at unobserved

locations in geographic space to be predicted based on values from observed locations. In the

work of Chandra et al. (2012b) the authors extended this by combining the GWR and linear

mixed models in predicting characteristics for small areas.

Let u be the geographical coordinates of the location of any individual in the population.

A location-sensitive linear mixed model can be written as (cf. Baldermann et al., 2018, p. 141;
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Chandra et al., 2012b, p. 2877):

Y = Xβββ u +Zv+W− 1
2

u e, (3.60)

where X and Z are the auxiliary variable matrices, βββ u is the p-element vector of location-specific

regression parameters u, v and e are the vectors of random effects and random components,

respectively, and Wu is the diagonal matrix of geographic weights. The diagonal elements of

the Wu matrix, denoted by wi (u), are a function of the distance of the i-th population element

from location u. Their values decrease as the distance between the i-th population element and

location u increases. Chandra et al. (2012b) used the Euclidean weighting function in their anal-

ysis to define geographic weights. A comprehensive review of the different weighting functions

in the GWR can be found in Fotheringham et al. (2002). It should be noted that this approach

assumes that there are as many superpopulation models as there are individuals in the population

under study, due to the dependence of the model (3.60) on the location u.

A modification of the EBLUP assuming the model (3.60) is referred to in the literature as

the geographically weighted EBLUP – GWEBLUP. When the estimated parameter is the mean

value, it has the following form (Baldermann et al., 2018, p. 142):

θ̂
GWEBLUP
d = N−1

d

(
∑
i∈sd

ydi + ∑
i∈Ωrd

ŷgw
d j

)

= N−1
d

(
∑
i∈sd

ydi + ∑
j∈rd

(
xT

d j(β̂
gw
d j )

T +(v̂gw
d )T

))
, (3.61)

where d = 1, . . . ,D, i = 1, . . . ,nd and j = 1, . . . ,Nr, β̂d j, and v̂T
d are estimators obtained using

geographically weighted regression. The iterative algorithm that can be used to determine them

is discussed in more detail in Chandra et al. (2012). It should be noted that there are parameters

estimated for all in-sample and out-of-sample units. It implies large computational requirements.

The conditional MSE estimator of the predictor (3.61) uses the pseudolinearisation approach

proposed by Chambers et al. (2011). Chandra et al. (2012b) also proposed a modification of this

estimator based on an extension of the approach proposed in the work of Chambers et al. (2011).

When making predictions under the assumption of the model (3.60), it should be noted

that observations that are far away from location u are assigned smaller weights compared to

observations that are closer. The implication is that extreme observations have little impact

on the parameter estimates, compared to values that are at a short distance from location u.

As noted by Baldermann et al. (2018) in the first case, therefore, limiting the effect of outliers

on the estimates may not be necessary, as already taking geographical weights into account

may allow robust estimates to be obtained. In the second case, and therefore outliers close to
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the location of u, this limitation becomes crucial, as the inclusion of geographical weights may

amplify the effect of outliers. The authors proposed a modification to the GWEBLUP that takes

into account both geographic weights and an influence function to reduce the effect of outliers

on the parameter estimate.

The prediction procedure using the RGWEBLUP, and thus the Robust GWEBLUP, is based

on the work of Sinha and Rao (2009), who proposed a robust modification of the EBLUP. The

first step to derive a robust predictor is to maximise the reliability function of the variable under

test against δδδ and the local coefficients of βββ d j by solving the robust ML equations (Sinha and

Rao, 2009). In the next step, the robust estimators are used to estimate the random effects of v

according to the method proposed by Fellner (1986).

The robust GWEBLUP is obtained by substituting in (3.61) the estimators β̂ββ
gw
di and v̂gw

d

with their robust counterparts β̂ββ
ψ,gw
di and v̂ψ,gw

d . Following Baldermann et al. (2018), it should

be added that it is not possible to represent both β̂ββ
ψ,gw
di and v̂ψ,gw

d using an explicit formula.

The conditional MSE estimator for the RGWEBLUP can be obtained based on the full

linearisation approach proposed by Chambers et al. (2014). In determining the conditional mean

squared error, we treat the random effects as fixed but unknown. The idea of the linearisation

approach is to decompose the MSE into the variance of the forecast error and the bias quadratic.

Given this decomposition, the MSE estimator for the RGWEBLUP of the domain mean value

can be written as:

MŜE
(
θ̂

RGWEBLUP
d

)
= h1d

(
β̂ββ

ψ,gw
d j , v̂ψ,gw

d

)
+h2d

(
β̂ββ

ψ,gw
d j , v̂ψ,gw

d

)
+

+h3d

(
β̂ββ

ψ,gw
d j , v̂ψ,gw

d

)
+
[
Bîas

(
θ̂

RGWEBLUP
d

)]2
, (3.62)

where h1d is the component accounting for variation due to estimation of regression coefficients

and area-specific random effects, h2d is the residual variance, and h3d is the component account-

ing for variation due to estimation of variance components. The bias of the robust GWEBLUP

is Bîas
(
θ̂ RGWEBLUP

d

)
.

Chandra et al. (2012b) made a comparison in a simulation study of the properties of the

EBLUP and its modification – GWEBLUP. The data used in the analyses by the authors came

from the Australian Agricultural and Grazing Industries Survey (AAGIS) conducted by the

Australian Bureau of Agricultural and Resource Economics. The study addressed the problem

of estimating MSEs for prudent predictors, considering the estimators proposed by Chambers

et al. (2011) and based on the work of Prasad and Rao (1990).

In their paper, Baldermann et al. (2018) presented the applicability of the RGWEBLUP

and its modification incorporating some bias correction to estimate net rent per square metre for

95



residential areas in Berlin. In their analyses, the authors used data from the German real estate

market database provided by Empirica-Systeme GmbH from 2015. The authors compared the

properties of the considered predictors with the Horvitz-Thompson estimator.

3.5.5. Pseudo-EBLUP

When discussing the problem of prediction using the EBLUP, one should also mention

a class of predictors called pseudo empirical best linear unbiased predictors. Among the first

papers to consider predictors belonging to this class are the articles by Prasad and Rao (1999) and

You and Rao (2002). Pseudo-EBLUPs, following Graf et al. (2019), are one method that allows

the introduction of weights derived from the sampling method into the estimation procedure

based on a model-based approach.

Prasad and Rao (1999) in their paper proposed a pseudo-EBLUP for the mean value in

the domain θd , using the p-consistent estimator ȳdw. The proposed pseudo-EBLUP assumes an

aggregate type A model having the form (cf. You and Rao, 2002, p. 433):

ȳdw = x̄T
dwβ + vd + ēdw (3.63)

for d = 1, . . . ,D, where x̄dw = ∑
nd
i=1 wdixdi and ēdw = ∑

nd
i=1 wdiedi with an expected value of 0 and

a variance σ2
e ∑

nd
i=1 w2

di ≡ σ2
e δ 2

d . It should be added that the model (3.63) is formed by combining

the estimator given by the formula:

ȳdw =
∑

nd
i=1 w̃diydi

∑
nd
i=1 w̃di

=
nd

∑
i=1

wdiydi (3.64)

and a model with a nested random component (1.94). In addition, for unit-level weights w̃di,

there is wdi =
w̃di

∑
nd
i=1 w̃di

and ∑
nd
i=1 wdi = 1. The BLUP of the domain mean value is thus given by

the formula (cf. You and Rao, 2002, p. 434):

θ̃d,aw = γdwȳdw +(X̄d − γdwx̄dw)
T

β̃aw, (3.65)

where γdw = σ2
v

σ2
v +σ2

e δ 2
d

, β̃aw =
(
∑

D
d=1 γdwx̄dwx̄T

dw

)−1 (
∑

D
d=1 γdwx̄dwȳdw

)
, X̄d – vector of mean values

of auxiliary variables in the population, and ȳdw and x̄dw – mean values of the sampled and

auxiliary variables. You and Rao (2002) point out that the use of the β̃aw estimator based on

the aggregate model (3.63) may result in a loss of efficiency compared to estimates based on

the unit-level, type B model, and therefore also a loss of efficiency in estimating the analysed

characteristic in the domain.

Substituting in the (3.65) σ2
e and σ2

d their estimates obtained by the method considered in

Nair’s (1941) paper – methods of fitting-of-constants, which are given by formulae (You and
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Rao, 2002, p. 433):

σ̂
2
e =

1
n−D− p+1

D

∑
d=1

nd

∑
i=1

ε̂
2
di (3.66)

and

σ̂
2
v = max

(
σ̃

2
v ,0
)
, σ̃

2
v =

1
n∗

(
D

∑
d=1

nd

∑
i=1

û2
di − (n− p)σ̂2

e

)
(3.67)

we obtain a pseudo-EBLUP of the mean value in the domain. It is important to add that ε̂2
di

and û2
di are the residuals of the model estimated by the classical least squares method for the

considered variables and for the adjusted variables, for which the values are determined as the

differences of the original values and the mean value in the domain (e.g. yid − ŷd). In addition,

n∗ = n− tr
((

XT X
)−1

∑
D
d=1 n2

d x̄d x̄T
d

)
, and p denotes the number of auxiliary variables.

As described in Prasad and Rao (1990), the pseudo-EBLUP mean squared error can be

approximated by the following formula:

MSE
(
θ̃d,aw

)
≈ g1dw

(
σ

2
e ,σ

2
v
)
+g2dw

(
σ

2
e ,σ

2
v
)
+g3dw

(
σ

2
e ,σ

2
v
)
, (3.68)

where

g1dw
(
σ

2
e ,σ

2
v
)
= (1− γdw)σ

2
v ,

g2dw
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e ,σ

2
v
)
= (X̄d − γdwx̂dw)

T
Φaw (X̄d − γdwx̂dw) ,
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v h
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e σ
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v cov

(
σ̂
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e , σ̃

2
v
)
+σ

4
v var

(
σ̂

2
e
)
,

and Φaw denotes the covariance matrix Y. The following estimator can be used to estimate the

mean squared error of the predictor proposed by Prasad and Rao (1999):

MŜE
(
θ̃d,aw

)
= g1dw

(
σ̂

2
e , σ̂

2
v
)
+g2dw

(
σ̂

2
e , σ̂

2
v
)
+g3dw

(
σ̂

2
e , σ̂

2
v
)
, (3.69)

where g1dw
(
σ̂2

e , σ̂
2
v
)
, g2dw

(
σ̂2

e , σ̂
2
v
)
, and g3dw

(
σ̂2

e , σ̂
2
v
)

are determined as in the case of (3.68)

for σ̂2
e and σ̂2

v .

It should be added that the authors in their analyses used data considered also by Battese

et al. (1988). Jiang and Lahiri (2006) mention the problem of generalising this predictor to

models, such as the generalised linear mixed model (GLMM), as a drawback. The difficulty

of its generalisation, the authors state, is due to the very complex assumptions of this type of

model for estimators consistent after the sampling design. Furthermore, the model considered

by Prasad and Rao (1990), as reported by Jiang and Lahiri (2006), is clearly not suitable for

complex sampling designs, such as multi-stage stratified sampling.

In the case of the pseudo-BLUP proposed by You and Rao (2002), we also assume an

aggregate model (3.63). Furthermore, the authors assumed that the parameters of this model,
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i.e. βββ , σ2
e , and σ2

v , are known. In this case, the pseudo-BLUP of the domain mean value is given

by the formula (You and Rao, 2002, p. 435):

θ̃dw = γdwȳdw +(X̄d − γdwx̄dw)
T

βββ . (3.70)

The σ2
e and σ2

v estimates are obtained based on the type B model and, therefore, according to

the formulae (3.66) and (3.67). A previous estimator of the random effects estimator based on

the aggregate model (3.63) is required to determine the estimation of βββ (You and Rao, 2002,

p. 435):

ṽdw
(
βββ ,σ2

e ,σ
2
v
)
= γdw

(
ȳdw − x̄T

dwβββ
)

(3.71)

and solving the equation:

m

∑
d=1

nd

∑
i=1

w̃dixdi
(
ydi − xT

diβββ − ṽdw
(
βββ ,σ2

e ,σ
2
v
))

= 0. (3.72)

The resulting βββ estimator has the following form:

β̃ββ w =

(
m

∑
d=1

nd

∑
i=1

w̃dixdi (xdi − γdwx̄dw)
T

)−1( m

∑
d=1

nd

∑
i=1

w̃di (xdi − γdwx̄dw)ydi

)
. (3.73)

Thus, by substituting (3.66), (3.66), and (3.73) into (3.70) we obtain the pseudo-EBLUP given

by the formula (You and Rao, 2002, p. 436):

θ̂dw = γ̂dwȳdw +(X̄d − γ̂dwx̄dw)
T

β̂ββ w. (3.74)

Similar to the pseudo-EBLUP proposed by Prasad and Rao (1990), it is possible to approximate

the mean squared error according to the formula (3.68). The estimator presented in the paper by

Prasad and Rao (1990), given by the formula (3.69), can also be used to estimate the MSE. It

should be added that the bias of this estimator is of the order of o
(
D−1

)
. In Torabi and Rao

(2010), the authors also considered the possibility of using the double bootstrap method in MSE

estimation proposed by Hall and Maiti (2006).

The predictor proposed by You and Rao (2002) also allows for inter-domain borrowing of

power from the model as well as the inclusion of weights to preserve the p-consistency of the

predictor. It should be noted, however, that unlike the predictor considered by Prasad and Rao

(1999), the parameter estimation process takes into account not only the aggregate model (the

type A model) which is a combination of the model belonging to type B and the direct estimator.

The authors also include the type B model itself and the weights in the parameter estimation

process. The same set of variables is therefore required for the model and the direct estimator.

The predictor considered by You and Rao (2002) also has, unlike the pseudo-EBLUP proposed

by Prasad and Rao (1999), the property of self-benchmarking. That is, the sum of the estimates
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of the total value for small areas equals the direct estimate of the regression estimator of the total

value for the large domain.

In their paper, You and Rao (2002) also presented an example of the application of the

pseudo-EBLUP in small area estimation in an issue in agricultural economics. In their analyses,

the authors considered the prediction of average corn and soybean acreage per segment for

counties in north-central Iowa, based on data from the work of Battese et al. (1988). The authors

compared the properties of the proposed pseudo-EBLUP with the EBLUP and the pseudo-

-EBLUP presented in the paper by Prasad and Rao (1999).

3.5.6. NPEBLUP

The generalisation of the EBLUP proposed in the work of Opsomer et al. (2008) (Non-

-Parametric Empirical Best Linear Unbiased Predictor – NPEBLUP) allows prediction when

the dependence between the test variable and the auxiliary variables is more complex than in

the case of a linear model. It should be added that the authors included both random effects

and a smoothed non-parametric trend in the considered type B model. In the simplest case, the

model analysed has the following form (cf. Opsomer et al., 2008, p. 267):

Ydi = m(xdi)+ zdivd + edi (i = 1, . . . ,nd ; d = 1, . . . ,D) , (3.75)

where m(.) is the unknown smoothing function of the auxiliary variable xdi, and zdi is a constant

whose values are known for all individuals in the population. It should be added that we assume

that the function m(.) can be approximated sufficiently well by a P-spline function. In addition,

we assume that the effects and random components have a normal distribution with an expectation

value of 0 and a variance of σ2
v and σ2

e , respectively.

The nonparametric EBLUP of the mean value in the domain for the model (3.75) is given

by the formula (Pratesi, 2015, p. 64):

θ̂
NPEBLUP
i = N−1

d

(
∑
i∈sd

ydi + ∑
i∈Ωrd

ŷdi

)
, (3.76)

where ŷdi = m̂(xdi)+ zdiv̂di. It should be added that m̂ and v̂di are estimators obtained using the

smoothing function of the auxiliary variable and the estimate of random effects.

It should be noted that the NPEBLUP can allow spatial dependencies to be captured using

penalised spline functions. This can be important when the functional form of the dependence

between variables is not specified and the dataset under consideration is characterised by complex

patterns of spatial dependence (Pratesi, 2015, p. 86). When assessing the NPEBLUP mean

squared error, it is possible to use estimators based on both parametric and non-parametric

bootstrap methods, which are discussed in more detail in the previous section of this book.
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In the paper by Opsomer et al. (2008), the use of the proposed predictor in environmental

studies was also presented. The analyses considered data collected from the US Enviromental

Protection Agency’s Environmental Monitoring and Assessment Programme. The paper presents

the problem of predicting the average Acid Neutralising Capacity of lakes in the northeastern

US. The prediction problem using the NPEBLUP was also considered in the paper by Ugarte et

al. (2009).

3.6. EBLUP applications

This subsection will present selected applications of EBLUP in small area estimation of an

economic nature. The EBLUPs are used in many areas, including quality of life and poverty

analyses, corporate finance analyses, agricultural economics, economic aspects of health policy,

ecology and transport policy.

Issues in the area of quality of life and poverty have been considered, among others, by

Pratesi and Salvati (2008). This paper addresses the problem of predicting average income per

capita at the level of Tuscan sub-regions using the EBLUP and some modification of it. The re-

search used, among others, data from the Italian Decennial Census of Population, databases of

the Istituto Regionale Programmazione Economica and administrative records. In the paper by

Jędrzejczak and Kubacki (2016), the authors applied the EBLUP to predict the average value of

disposable income and self-employment income in Polish voivodeships based on the Fay–Herriot

model and the Rao–You model, 1992. The analyses used data from the Household Budget Sur-

vey and the Local Data Bank. Namazi-Rad and Steel (2015), in their paper, addressed the prob-

lem of model selection in the context of type A and B models. The analyses were conducted us-

ing artificial data generated from Australian Census information. Chandra et al. (2018) consid-

ered the EBLUP for the Fay–Herriot model and in their research compared its properties with

empirical plug-in predictors (EPPs), among others. The aim of the study was to apply the afore-

mentioned methods to predict the percentage of indebted households using data from investment

and debt surveys conducted in India. This issue was also addressed in the work of Chandra et

al. (2010). The authors used the EBLUP for data from the Debt-Investment Survey conducted by

the National Sample Survey Organisation. The authors considered the prediction of the average

amount of loans taken out by a household and outstanding.

Applications of the EBLUP in the field of agricultural economics can be found, among

others, in the paper by Esteban et al. (2012), which addresses the prediction of the percentage of

households in poverty. The data used in the analyses came from the Spanish Living Conditions
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Survey (SLCS). Rivest et al. (2016) also considered the problem of predicting crop area, but

based on data analysed by Battese et al. (1988). The authors made a comparison between the

properties of the EBLUP and Empirical Best Unbiased Predictors (EBUP). Millitino et al. (2006)

used the EBLUP to predict the total area occupied by olive trees in the Comarca IV area in

Spain. An article by Jiang and Nguyen (2012) addressed the problem of predicting the average

area planted with corn in counties in north-central Iowa using the EBLUP. The data considered

were presented in the paper by Battese et al. (1988). In their discussion, the authors compared

the properties of the EBLUP and some modification of it.

The application of the EBLUP in the context of corporate finance analysis is presented,

for example, in the work of Ghosh and Rao (1994). The authors addressed the problem of pre-

dicting corporate remuneration using the EBLUP. The authors conducted their considerations

based on an artificial population intended to resemble the dataset analyzed by Särndal and

Hidroglou (1989). In addition, Ghosh and Rao (1994) compared the properties of the EBLUP

with selected estimators and predictors.

The problem of applying the EBLUP in the area of health policy more precisely financing

of medical facilities, can be found in the work of Jiang and Tang (2011), among others. The au-

thors considered the EBLUP for the Fay–Herriot model. The study used data considered in the

work of Morris and Christiansen (1996). The issues were also addressed in the paper by Jiang

et al. (2011). However, the authors used artificial data. The paper compares the properties of the

EBLUP considering four different estimators of random effects variance.

Mauro et al. (2016) considered the problem of prediction using the EBLUP, in the context

of forest resources and environmental protection. The data concerned a pine forest located in the

Valle de las Caderechas, Spain. Chambers et al. (2014) also addressed an issue from the field of

ecology. The authors considered the problem of using the EBLUP to predict the acid neutralising

capacity of lakes. The data included in the analysis were obtained from the US Environmental

Protection Agency’s Environmental Monitoring and Assessment Program (EMAP). It should be

added that the authors compared the properties of the EBLUP with some modification in their

simulation studies. The paper by Petrucci and Salvati (2006), similarly to the paper by Pratesi

and Salvati (2008), considered a modification of the EBLUP taking into account spatial correla-

tion, however, this predictor was used to assess average erosion in the Rathbun Lake catchment

area in the southern part of Iowa.

Hall and Maiti (2006) considered an issue of potential relevance to transport policy in their

paper. The authors approached the problem of using the bootstrap method in the estimation of

101



EBLUP mean squared error and prediction intervals. The prediction procedure used data analysed

by Nusser and Goebel (1997) or Wang and Fuller (2003), among others.

3.7. Summary

In this chapter, the issues of prediction using BLUPs and EBLUPs were addressed. In the

first section, the predictors proposed by Henderson (1950) and Royall (1976) were discussed.

For each of these predictors, the assumptions that are made when predicting using them were

discussed, with particular reference to the prediction of characteristics in the domain. The form

of the mean squared error of the predictors considered are also presented in this subsection.

Selected applications of the predictors proposed by Henderson (1950) and Royall (1976) were

also discussed.

The second subsection was focused on the EBLUPs in the light of the classification of

linear mixed models into type A and B models. Again, the assumptions made for each of the

predictors considered and the form of the mean squared error of the prediction were presented.

Both sections of this subsection conclude with examples of the application of the predictors

discussed. The third subsection proposed the use of EBLUPs assuming the special case of

a linear mixed model with correlated random effects vectors.

The next section dealt with the issue of estimating the mean squared error of EBLUPs.

Among others, the classical estimator was presented, as well as estimators based on the paramet-

ric bootstrap method or the jackknife method. The subsection also presents the properties of the

presented estimators, and their advantages and disadvantages.

In the fifth subsection, selected modifications of the EBLUP were presented. Among the

discussed EBLU modifications are the robust predictor (REBLUP), the predictor taking into

account the spatial correlation of random effects (SEBLUP), and the combination of the two

mentioned modifications (SREBLUP). Among the presented EBLUP modifications, there was

also a geographically weighted predictor (GWEBLUP) with its robust variant (RGWEBLUP),

a pseudo-EBLUP, and a non-parametric EBLUP. It should be added that the advantages and

disadvantages of the presented predictors and examples of their application are also discussed in

this chapter.

The final subsection provides an overview of selected applications of the economic predic-

tors considered in this chapter. The presented possibilities for the use of EBLUPs include areas

such as quality of life and poverty analyses, corporate finance analyses, agricultural economics,

economic aspects of health policy, and transport and ecology.
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The author’s proposals presented in this chapter include applications of EBLUs assuming

linear mixed models with correlated random effects vectors in small area estimation with an

example. They also deal with modifications of known methods for estimating the mean squared

prediction error that allow estimating the accuracy of the proposed EBLUs.
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Chapter 4

Empirical best predictors and plug-in predictors

This chapter will discuss two further classes of predictors – empirical best predictors and

plug-in predictors. The problem of prediction using these two classes of predictors, assuming

the special cases of mixed models with correlated random effects presented in subsection 1.2.3,

will also be proposed. These issues will also be complemented by estimates of the mean squared

error of the empirical best predictors and plug-in predictors, as well as their application in studies

of an economic nature.

4.1. Empirical best predictor

When considering the problem of predicting any function of random variables Y , denoted

as θ , we assume the decompositions of the vector Y and the matrix of auxiliary variables X

given by the formulas (3.1) and (3.2). Among the predictors θ̂ of functions of random variables

θ , the best predictor (BP) is the one that minimises the mean squared error, thus (cf. Molina and

Rao, 2010, p. 372):

MSE(θ̂) = Eξ (θ̂ −θ)2. (4.1)

Hence, the best predictor is given by the formula:

θ̂BP = E(θ |Ys), (4.2)

meaning that it can be determined as the conditional expectation value of the function of the

random variables θ , assuming that the form of the conditional distribution Yr|Ys is known. This

distribution in practice depends on a vector of unknown parameters τττ . In the case of the general

mixed model given by the formula (1.89), it depends on the vectors βββ and δδδ , thus the vectors

of the fixed effects parameters and the variance components. If the vector τττ is replaced by its

estimator, we obtain the Empirical Best Predictor (EBP) denoted as θ̂EBP.

The value of the empirical best predictor of any function of random variables θ(Y) can be

obtained using Monte Carlo approximation. This procedure can be divided into four steps.
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Algorithm 2. Monte Carlo EBP approximation
1. Estimate the τττ vector of parameters of the distribution of the random variables Y using the

realisation of the Ys vector and obtain the τ̂ττ estimator.

2. Loop for l = 1 to L; assuming that the form of the distribution Yr|Ys is known:

2.1. generate vectors Yr (Y(l)
r , l = 1,2, . . . ,L), where the vector τττ is replaced by its estimator,

2.2. construct vectors such that Y(l) =
[
YT

s Y(l)T
r

]T
, where l = 1,2, . . . ,L.

2.3. End of loop.

3. Calculate the value of the empirical best predictor of the function of random variables θ(Y):

θ̂EBP = L−1
L

∑
l=1

θ(Y(l)). (4.3)

It should be added, following Molina and Rao (2010), that the realisations of the vector of

random variables Y need not be the values of the study variable, but the values of the study

variable after some transformation (Y = T(Y∗)), where Y∗ are the values before the analyzed

transformation. Then the assumptions about the distribution of ξ are made for the variable after

the transformation (e.g. logarithmisation) and it is necessary to take into account the inverse

transformation: θ̂EBP = L−1
∑

L
l=1 θ(T−1(Y(l))).

When addressing the issue of prediction using the EBP, it is important to note the problem

of determining the MSE. As reported by Diallo and Rao (2018), the explicit form of the mean

squared error of the EBP and its estimators does not exist. The problem of MSE estimation will

be discussed further in subsection 4.4.

4.2. Plug-in predictor

The empirical plug-in predictor (EPP) is based on observed values of the study variable for

each unit in the sample and estimates for units outside the sample using consistent estimators

(Boubeta et al., 2017, p. 37). Ing (2004) notes that this predictor is classified as a multivariate

predictor. A plug-in predictor for:

θ = θ(T−1(Y)) = θ

(
T−1

([
YT

s YT
r

]T
))

can therefore be written as (cf. Chwila and Żądło, 2019, p. 20):

θ̂PLUG−IN = θ

(
T−1

([
YT

s ŶT
r

]T
))

, (4.4)

where ŶT
r is a vector of values obtained based on the model assumed for unobserved random

variables, where the dependent variable is the post-transformed study variable.
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In their paper, Chandra et al. (2018) presented the possibility of using the plug-in method

in prediction due to the type of data available and their level of aggregation. The first case is an

analysis in which the values of the auxiliary variables are available for the units in the sample,

but they are unavailable for the units outside the sample. This is, as the authors point out, the

most common situation in many countries where censuses are not regular or censuses are regular

but unit-level information is not available. In such cases, Chandra et al. (2018) propose some

modification of the EPP for a small area. It uses a synthetic value of the variable of interest that

borrows power from the other domains and is therefore based on an increased effective sample

size. It is therefore expected to be more effective than a design-based direct estimator (DIR)

using only sample data. However, depending on the goodness of fit of the model to the data,

this estimator may have a higher bias than DIR. This modification is equivalent to replicating

according to the values of the weights (e.g. the inverses of the first-order inclusion probabilities)

to replicate the dataset of the auxiliary variables for the whole population. The second case

discussed is when the values of the auxiliary variables are available for the individuals in the

sample, as well as in aggregated form at the small area level for the population. The aggregated

values of auxiliary variables for individual areas are obtained from census or administrative

sources. In the last example considered, the values of the auxiliary variables are available as

aggregated domain-level values for the population, but are not available for the individuals in

the sample. In this case, the predictors of the considered parameter for the small area discussed

by the authors cannot be used.

Jiang (2003) points out that the empirical plug-in predictor (EPP) is widely used as an

alternative to EBP and GLMM-class models. Chandra et al. (2012b) further note that the EPP

predictor can be applied when information on auxiliary variables at the unit or domain level for

the population (unit level EPP, area level EPP) are available. It is also possible to apply it to

binary data and GLMMs with a logit link function, as considered by Chandra et al. (2012b),

Rao (2003), and Saei and Chambers (2003), among others. Morales et al. (2021) point out that

empirical best linear unbiased predictors (EBLUP) can be considered plug-in BLUP estimates,

which are obtained by replacing the parameters of the unknown variance component vector with

consistent estimators. These predictors can therefore asymptotically inherit the desirable good

properties of BLUPs.

Pinheiro and Bates (2000), however, discuss simple plug-in predictors. These have been

implemented by the authors in one of the “nlme” R software package. Predictors of this class

can also be used for probability estimation, as considered by Hall and Clutter (2004).
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Esteban et al. (2020) distinguish among the class of EPP estimates composite predictors

based, inter alia, on area-level compositional models – a transformation of the multivariate

Fay-Herriot model. These models are used in the analysis of compositional data, i.e. data that

are a quantitative description of parts of some whole, conveying relative information about the

variable under study. They can be expressed as proportions, percentages or probabilities. In la-

bour force analyses, the indicators under study are sums or proportions of categories of a classifi-

cation variable. They are therefore compositional parameters for domains that add up to one or

to a known integer. This problem is discussed more extensively in the works of Aitchison (1986),

edited by Pawlowsky-Glahn and Buccianti (2011). The authors proposed the use of predictors

obtained by applying an alogist transformation to predict proportions (fractions). This transfor-

mation is often used for compositional data and models.

When discussing the issue of prediction using plug-in class predictors, the problem of

calculating the MSE of these predictors should also be addressed. The analytical estimation of

the MSE of the EP predictor has been addressed in the works of González-Manteiga et al. (2007),

and Saei and Chambers (2003). In the remainder of this paper, we will consider MSE estimators

of plug-in predictors obtained using a parametric bootstrap method.

4.3. EBP and plug-in predictors, and linear mixed models with correlated random

effects vectors

This subsection is focused on the proposed use of EB and plug-in predictors under the

assumption of a linear mixed model with correlated random effects vectors, which is given by

the formula (1.131). In this case, we will denote the Best Predictor (BP) (4.2) by:

θ̂
ρ

BP = E(θ |Ys). (4.5)

It can therefore be determined analogously to the case where we assume a linear mixed model

with uncorrelated random effects, as the conditional expectation value of the function of the

random variables θ , assuming that the form of the conditional distribution Yr|Ys is known.

It should be noted that also in this case, the distribution depends in practice on the vector of

unknown parameters τττρ . However, in this case, the auxiliary parameter ρ – the correlation

coefficient between the random effects – needs to be included in this vector. By analogy with the

EBP for models with uncorrelated random effects, if the vector τττρ is replaced by its estimator,

we obtain the empirical best predictor θ̂
ρ

EBP.
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The plug-in predictor, assuming a linear model with correlated random effects vectors, will

be denoted as follows:

θ̂
ρ

PLUG−IN = θ
(
T−1([YT

s ŶT
r(ρ)

]T
)) , (4.6)

where ŶT
r(ρ) is the vector of values obtained based on the model with correlated random effects

vectors, which was assumed for the unobserved variables. It should be added that the use of the

above predictors allows prediction over a wider range, it makes it possible to take into account

the presence of correlations between random effects.

The problem of prediction using a predictor given by the formula (4.5) was considered in the

paper by Krzciuk (2019). In the conducted simulation study, the author used data on the number

of newly registered entities in the REGON register in 2017 in municipalities of south-western

Poland. The size of the population in 2016 was used as an auxiliary variable, the voivodeship

and type of municipality (urban, urban-rural and rural municipalities) were used as grouping

variables. The simulation studies carried out were divided into three parts. The first two were

based on a model-based approach. In the first part, data were generated based on a model with

correlated, and in the second, with uncorrelated random effects. This made it possible to inves-

tigate the impact of model misspecification on the properties of the resulting estimates. The last

part, on the other hand, was based on a design-based approach. In each part of the study, two

predictors of the total value in the domain were considered – the best predictor and the empirical

best predictor for each of the two models mentioned. It should be added that, in each part, the

relative bias and mean squared error of all predictors considered in the analyses were determined

by simulation. The results obtained in the simulation study suggest good properties of the pro-

posed EB predictor accounting for random effects correlation, even in the case of the model

misspecification considered in the second part – the average loss of accuracy was no more than

2%. In contrast, the first part of the study indicated the need to take into account the large number

of random effects realisations and the sample size, and to estimate the correlation coefficient ρ

with greater accuracy. On average, the decrease in accuracy resulting from the estimation of the

model parameters, however, did not exceed 20%. For the design-based approach, both empirical

versions of the considered predictors showed similar properties.

4.4. Estimation of the mean squared error of EBP and plug-in predictors

Following Diallo and Rao (2018), due to the lack of an explicit form of EBP mean squared

error estimators, their second-order analytical approximations have been widely presented in

the literature by Rao and Molina (2015), among others. It should be added, however, that it
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is not possible to use such approximations for complex non-linear parameters in the domain,

even when the assumption regarding the normality of the prediction error distribution is met.

Therefore, general-purpose methods, including bootstrap, are used for MSE estimation in this

case. Estimators based on the parametric bootstrap method are analoguous to the EBLUP mean

squared error estimators using the bootstrap model, which is given by the formula (3.38). One of

the estimators belonging to this class is the estimator proposed by González-Manteiga

et al. (2008). In this case, it will therefore have the following form:

MŜE
boot

(θ̂ EBP
ρ ) = B−1

B

∑
b=1

(
θ̂

EBP
ρ (β̂ββ (δ̂δδ

∗(b)
), δ̂δδ

∗(b)
)−θ

∗(b)
)2

, (4.7)

where, as in the case of the estimator given by formula (3.39), δ̂δδ
∗(b)

is given by the same formula

as δ̂δδ , where Y is replaced by Y∗. Nevertheless, β̂ββ is the estimator obtained by the REML method

and θ ∗(b) is the value of the characteristic of interest θ obtained in the b-th implementation of

the model (3.38) and E∗(.) is the expected value in the bootstrap distribution.

Molina and Rao (2010) also note the possibility of using the double bootstrap method

proposed in Hall and Maiti (2006) and described in the form of algorithm 1 where the MSE

estimators at successive steps of the procedure are given by formulae (3.42) and (3.43). Using

this method may provide better properties of the MSE estimator given the relative bias. However,

the authors emphasise the importance of population size, as the method can be very time-

-consuming for large populations.

It should also be noted that the parametric bootstrap method can also be used to determine

the mean squared error estimate of plug-in predictors. The estimator of the MSE discussed

above considered by González-Manteiga et al. (2008) for this class of predictors can be written

in the following form:

MŜE
boot

(θ̂ PLUG−IN
ρ ) = B−1

B

∑
b=1

(
θ̂

PLUG−IN
ρ (β̂ββ (δ̂δδ

∗(b)
), δ̂δδ

∗(b)
)−θ

∗(b)
)2

, (4.8)

where the notation is the same as in (4.7).

4.5. Applications of EB and plug-in predictors

In this subsection, selected areas of application of EBP and plug-in predictors in small area

estimation will be presented, together with examples of an economic nature. The above predic-

tors have been used in analyses concerning, among others, quality of life, unemployment, pov-

erty, corporate finance, agricultural economics, and environmental economics.

109



The application of EBP in quality of life analyses was addressed by Chen and Liu (2019).

The issue considered in the paper is the prediction of quantiles. In the analyses, the authors in-

cluded, among others, the EBP considered by Molina and Rao (2010). The research conducted

was based on data from the Survey of Labour and Income Dynamics conducted by Statistics

Canada (2014). Henry et al. (2009) addressed the problem of predicting the value of total income

for small areas. The analyses were conducted using data extracted by tax offices from tax returns

in the United States. Molina and Martin (2018) also addressed the problem of predicting per cap-

ita income and average income in municipalities. The data included in the analyses came from

the Mexican National Survey on Income and Expense of Households and the census. In addition,

the authors compared the estimates obtained using EBP and selected other predictors.

Prediction of poverty measures using EBP was considered, among others, in the work of

Krzciuk, Stachurski and Żądło (2017). The authors used data from Statistics Poland’s survey of

household budgets in their analysis. Among the characteristics of interest were the poverty rate

and the poverty gap indicator. It should be added that the authors proposed a certain modification

of the EBP. The properties of the aforementioned predictor were compared with the original

EB-type predictor and the Hàjek estimator. Molina and Rao (2010), however, addressed the

problem of predicting poverty rates as non-linear population parameters, using EBP. It should

be added that the authors used data from the EU–SILC survey in the example analysed and

the simulation studies carried out. The problem of predicting poverty rates using the EBP was

also addressed by Boubeta et al. (2016). The authors made a comparison between this method

and plug-in predictors. The issue of using the EBP to predict the percentage of people below

the poverty line was also addressed by Boubeta et al. (2017). The authors used data from the

Spanish Living Conditions Survey in their analysis. It should be added that Boubeta et al. (2017)

included plug-in predictors in addition to the EBP in their study. The work of Elbers and van der

Weide (2014) also addressed the problem of poverty prediction in the context of using the EBP

and some modification of it. The authors used data from the Integrated Public Use Microdata

Series (IPUMS) of the US population microcensus. The problem of prediction using plug-in

predictors and the EBP in quality of life and unemployment issues was also considered by

Hobza and Morales (2016). In their analyses, the authors used data from the Spanish Living

Conditions Survey (SLCS) and the Labour Force Survey (SLFS) for Valencia. The parameter

predicted by the authors was the unemployment rate. The possibility of using plug-in predictors

in predicting the unemployment rate or the percentage of people with a certain economic activity

status was also pointed out by Esteban et al. (2020). In their considerations, the authors used

data from a variety of sources, including the Quality of Life Survey and unemployment registers.
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The characteristics predicted by Esteban et al. (2020) included the proportions of people with

a specific labour force participation status.

Żądło (2017), however, addresses the issue of predicting population and sub-population

characteristics for future periods. In the simulation study carried out, the author used actual data

on businesses in Polish counties derived from the Local Data Bank of Statistics Poland. The

analyses considered, among other things, the EBP for parameters such as total value, median,

standard and quarter deviation, and the classic asymmetry coefficient, as well as the EBLUP for

total value.

Agricultural economics issues were addressed in the paper by Berg and Chandra (2014).

The authors considered EBP and some modifications of it, as well as the direct predictor and the

predictor considered by Karlberg (2000). The simulation study used artificial data analysed by

Fuller (1991). Chandra et al. (2012a) considered two issues in their study in terms of prediction

using EBPs of an economic nature. The first concerned the prediction of the percentage of farms

with zero debt. The data included in these analyses came from the Australian Agricultural

and Grazing Industries Survey. The second dataset considered was from the Albanian Living

Standards Measurement Study. For this dataset, predictions were made on the proportion of

households at risk of poverty and therefore with below-median incomes.

EBP and plug-in predictors have also found application in many other areas. In their paper

Li and Lahiri (2007) considered predictors using the EBP to predict on-farm livestock numbers

based on data from the Australian Agricultural and Grazing Industries Survey. Among the pre-

dictors considered by Li and Lahiri (2007) were, in addition to EBP, a predictor incorporating

a logarithmic transformation, and an approximated BP and EBP. Salvati et al. (2012a) addressed

the problem of predicting the proportion of lakes with low acid neutralisation rates. The analyses

were based on data collected by the Environmental Monitoring and Assessment Program and

concerned lakes in the northeastern US states.

4.6. Summary

This chapter focused on two classes of predictors – empirical best predictors and plug-in

predictors. Section 4.1 presented the theoretical basis of prediction using the EBP, including

a discussion of Monte Carlo approximation of predictors in this class.

The next subsection 4.2 dealt with plug-in predictors. In this section, the concept of

a plug-in predictor was discussed along with a classification of predictors belonging to this

class. The possibility of their application was also mentioned in theoretical terms.
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Subsection 4.3 proposed the use of EBP and plug-in predictors under the assumption of

linear mixed models with correlated random effects. An example of the application of the above

predictor in economic research is also discussed.

In subsection 4.4, the estimation of the mean squared error of the prediction is addressed.

Selected estimators for both EB and plug-in class predictors were presented.

The last subsection 4.5 showed selected applications of EB and plug-in predictors in studies

of an economic nature. The areas of use of these predictors that were presented in this book are

analyses of quality of life, poverty, unemployment, corporate finance, agricultural economics,

and environmental economics.

The author’s proposals presented in this chapter concern the use of EBP and plug-in

predictors in prediction based on models with correlated random effects vectors and the estimator

of MSEs for the classes of considered predictors.
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Chapter 5

Simulation studies

This chapter presents the assumptions and results of the simulation studies carried out. It

is also supplemented by a description of the considered dataset. The chapter will conclude with

a summary of the obtained results. The main aim of the conducted analyses is a simulation com-

parison of the properties of the author’s proposed predictors of some characteristics in domains,

discussed in previous chapters, with corresponding predictors that do not take into account

correlations between the random effects vectors and the selected estimators.

5.1. Dataset

The study variable for the analyses is the revenue of municipalities in million PLN. The data

comes from the Local Data Bank of Statistics Poland and covers a three-year period (2018–2020).

Total revenues of municipalities, in accordance with the Act of 13 November 2003 on revenues

of local government units, consist of own revenues, subsidies, general subvention and funds

for subsidising tasks. Municipalities’ own revenues include revenues from the following taxes:

real estate tax, agricultural tax, forest tax, vehicle tax, personal income tax, paid in the form of

a tax card, tax on inheritances and donations, tax on civil law transactions, and revenues from

additional tax liability related to tax avoidance. In addition, receipts from the following fees

are also included: stamp duty, market fee, local, spa and dog ownership fee, advertising fee,

mining fee (in the part specified in the Act of 9 June 2011. Geological and Mining Law) and

others constituting municipal revenue, paid pursuant to separate regulations. Municipal revenues

also include: income obtained by municipal budgetary units and payments from municipal

budgetary establishments, income from municipal assets, inheritances, bequests and donations

to the municipality, income from fines and penalties specified in separate regulations, income

obtained for the benefit of the state budget in connection with the performance of tasks in the

field of government administration and other tasks assigned by acts, unless separate regulations

provide otherwise, interest on loans granted by the municipality, unless otherwise provided for in
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separate regulations, interest on untimely payments of receivables constituting the municipality’s

revenue, interest on funds accumulated in the municipality’s bank accounts, unless otherwise

provided for in separate regulations, subsidies from the budgets of other local government units,

and other revenue due to the municipality under separate regulations. The general subsidy for

municipalities consists of a levelling and balancing part. In addition, there is also an educational

and development part for districts and provinces. The auxiliary variable, however, is the total

population in municipalities in thousands of people in 2017–2019.

Figure 5.1. Map of municipalities in Poland

Note: Urban municipalities in red, urban-rural municipalities in orange and rural municipalities

in yellow.

Source: Own elaboration.

The size of the population under consideration is N = 7,398 observations for three periods,

and the sample size was set at approximately 20% of the population size (n = 1,503). Such

a high ratio of the sample size to the population size was chosen to ensure high accuracy of

the model parameter estimation, and the time-consuming nature of the calculations made it

impossible to consider a population of a larger size. It should also be added that in one period,

the sample size was 501 observations. In addition, the sample in the first period was drawn as

a stratified sample, where the strata were defined on the basis of the affiliation of municipalities

to voivodeships. The division of municipalities into domains was made on the basis of their be-

longing to 16 voivodeships and to two types of municipalities – rural and other (the number of
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domains was D = 16×2 = 32). The whole sample, however, can be treated as a balanced panel

according to the definition presented in subsection 2.3.1. Figure 5.1 shows the classification of

the municipalities by type. Yellow colour represents rural municipalities, while the other colours

correspond to urban (red) and urban-rural (orange) municipalities. Due to the time-consuming

nature of the calculations in all the analyses presented in this book, only domains defined

as rural municipalities belonging to particular voivodeships (D = 16) were considered in the

prediction process. It is worth noting that the sample sizes of the domains were random. Figure

5.2 contains a map where the domains for rural municipalities are colour-coded. Each colour

represents a different voivodeship. It should be added that voivodeships are, in accordance with

the Regulation of the European Parliament and of the Council, level 2 units of the Classification

of Territorial Units for Statistics (NUTS) in Poland, while municipalities are counted as local

administrative units within this division.

Figure 5.2. Domain map for rural municipalities

Source: Own elaboration

The analysis of the considered dataset began with determining selected descriptive statistics

for the considered variables by domain. The median, mean value and coefficient of variation for

the 16 domains considered in the prediction process were determined for the study and auxiliary

variable, among others. It should be noted that in the case of the study variable, the coefficient
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of variation for each of the domains presented was significantly lower than for the population as

a whole, for which it was 4.80. When only the domains of the rural municipalities were consid-

ered, it was 0.7 and therefore also higher than in more than two-thirds of the rural municipalities.

This therefore suggests the use of a linear mixed model with domain-specific random effects.

5.2. Simulation study – variant I

The following subsection will present the assumptions and results obtained in the first of

the simulation studies carried out. This as well as the following subsections will conclude with

a brief summary of the most important results.

The study follows a model-based approach, hence the definitions used below such as bias,

precision, accuracy or mean squared error will mean predictor bias, predictor precision, predictor

accuracy and predictor mean squared error, respectively. The procedure for conducting the

simulation study is presented in Algorithm 3.

Algorithm 3. Monte Carlo simulation study of the properties of selected predictors of the

parameter θ in the domain

1. Estimation of the parameters of the model given by the formula (1.131) including

a logarithmic transformation of the variables based on real population data using the

REML method.

2. Drawing a sample according to the assumptions discussed in subsection 5.1.

3. Loop for k = 1 to K, where K = 3000:

3.1. generation of population data of the study variable based on the actual values of the

auxiliary variable and the estimated model parameters, including ρ =−0.83.

3.2. determination of the values of the considered domain characteristics based on the

generated data,

3.3. determination of the values of the considered predictors and estimators of the domain

characteristics based on the generated sample data.

3.4. End of loop.

4. Determination of simulation values of selected accuracy and precision measurers.

It should be added that, in the case of the considered EB- and EBP-class predictors, the number

of iterations L= 300 was assumed. For the considered statistics for the estimation of the selected
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domain characteristics, were determined, among others, simulations:

– relative bias of the predictor:

rB(θ̂d) =
1
K ∑

K
k=1(θ̂

k
d −θ k

d )∣∣ 1
K ∑

K
k=1 θ k

d

∣∣ ,

– relative mean prediction errors:

rD(θ̂d −θd) = rD(Ud) =

(
1
K ∑

K
k=1

(
Uk

d −
1
K ∑

K
j=1U j

d

)2
)0.5

∣∣ 1
K ∑

K
k=1 θ k

d

∣∣ ,

– relative values of the root mean squared error of the prediction:

rRMSE(θ̂d) =

(
1
K ∑

K
k=1
(
θ̂ k

d −θ k
d

)2
)0.5∣∣ 1

K ∑
K
k=1 θ k

d

∣∣ ,

where K is the number of Monte Carlo iterations, θ̂ k
d and θ k

d are the value of the predictor and

characteristics of the d-th domain in the k-th Monte Carlo iteration, respectively, and Uk
d =

= θ̂ k
d − θ k

d . However, the results obtained for simulation of the relative bias and relative root

mean squared error of prediction are discussed in more detail. The number of iterations adopted

in the simulation study was considered sufficient – in the case of the overpopulation model with

parameter values assumed to be at the level of estimates obtained from the full population data,

relative values of simulation bias of the unbiased predictor BP as to modulus no greater than

0.3% were obtained for all cases considered. It should be added that the following simulation

analyses presented include some modifications to Algorithm 3 and were preceded by preliminary

studies with a reduced number of iterations. The results obtained indicated that in cases where

the values of the parameter ρ were equal as to modulus, similar results were obtained. In the

remainder of this chapter, only negative values of the ρ parameter consistent with the correlation

between the random effects vectors for the considered actual population data are therefore

considered. The the second variant of study considered the case of a stronger negative correlation

(ρ = −0.95) and third a weaker negative correlation (ρ = −0.65), but the ρ = −0.83 from the

first variant is obtained as population-based estimated parameter. In addition, in the case of

the linear mixed model under consideration, a logarithmic transformation of the variables –

the study and auxiliary variables – was included. Model selection was based on the Akaike

(1973) information criterion (AIC). The significance of the parameters of the above model was

verified using the tests presented in subsection 1.2.4, which are discussed in more detail in the

works by Krzciuk and Żądło (2014a, 2014b), and Krzciuk (2018). Figure 5.3 presents a graph

for the analysed variables, where a single broken line represents data from three periods for

one municipality.
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Figure 5.3. Scatter plot between logy and logx

Source: Own elaboration.

This, as well as subsequent analyses, included the estimation of two characteristics – the

total value and the median income of municipalities for all D = 16 domains. The following pre-

dictors were considered for each:

– proposed best predictor, taking into account the correlation of the random effects BPρ given

by the formula (4.5) (denoted by BP_rho),

– proposed empirical best predictor, assuming a linear mixed model with correlated random

effects EBPρ (3.33) (denoted by EBP_rho),

– empirical best predictor, assuming a model with uncorrelated random effects EBP0 (denoted

by EBP_0),

– proposed plug-in predictor, based on a linear mixed model with correlated random effects

PLUGINρ given by the formula (4.6) (denoted by PLUGIN_rho),

– plug-in predictor, based on a linear mixed model with uncorrelated random effects PLUGIN0

(denoted by PLUGIN_0).

The Horvitz-Thompson estimator (1.7) for the stratified sample (denoted by HT), the synthetic

quotient estimator based on the HT estimator (Bracha 1996, p. 36) (SYNT) and the calibrated

estimator (1.66) (CALIB) were also used to estimate total values in the domain. Median domain

estimates, however, were also determined using the direct estimator considered by Särndal

et al. (1992, p. 200) (denoted by SARNDAL) and the synthetic quotient estimator of the domain

median proposed by Stachurski (2018, p. 511) (denoted by SYNT).
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The plots and tables obtained in the first of the simulation studies carried out are presented

below. Figure 5.4 shows box plots of the relative bias values rB(.) as percentages for the con-

sidered predictors and estimators of total values in the domains. Each of the plots presents 16

simulation relative bias values as percentages. It can be seen that for the BP, EBP and plug-in

predictors, the values of the above modulus are close to 0. They are clearly lower than the values

of the relative bias moduli for the HT and calibrated estimator, for which it takes values of the

order of several tens of percent.

Figure 5.4. Values of rB(.) of predictors and estimators of domain totals

Source: Own elaboration.

Figure 5.5. Selected rB(.) values of predictors and estimators of domain totals

Source: Own elaboration.

Figure 5.5 presents an excerpt from Figure 5.4 allowing a more detailed analysis of the

results for the BP, EBP and plug-in class predictors. It should be noted that the relative bias of

the EBPρ predictor as far as the module is concerned did not exceed a value of 0.2%. In the case
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of the predictor PLUGINρ , it is a value of 1.4%. It should be added, however, that only negative

values of relative bias were obtained for this predictor.

Figure 5.6 presents box plots of the relative values of the root mean squared error rRMSE(.)

as percentages for the predictors and estimators of total values in the domains considered in the

analysis. For all predictor proposals accounting for random effects correlation, the measure did

not exceed a value of 3.3%, and for at least 75% of the domains, the value of 2.6% was not

exceeded, as shown in Figure 5.7. In addition, the lowest median value of rRMSE(.) was ob-

tained for BPρ . This measure for at least 50% of the domains did not exceed 2%. The results

obtained are therefore clearly lower than for the calibrated, HT or synthetic estimator, for which

the median was over 5% and even in some cases over 9%.

Figure 5.6. Values of rRMSE(.) of predictors and estimators of domain totals

Source: Own elaboration.

Figure 5.7. Selected rRMSE(.) values of predictors and estimators of domain totals

Source: Own elaboration.
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As for the relative values of the prediction standard error rD(.), the lowest median value of

this measure was obtained for the proposed predictors, i.e. BPρ and PLUGINρ . In the case of

the third, EBPρ , it was slightly higher, not exceeding 2.2%. In contrast, the highest rD(.) results

were obtained for the synthetic estimator. For the HT and calibrated estimator, as in the other

cases, a significantly higher interquartile range was observed.

Table 5.1 presents the mean and median values of the ratio of accuracy measures of the BPρ

predictor and the considered predictors and estimators of domain totals. The average increase

in estimation accuracy resulting from the use of BPρ relative to EBP0 was approximately 12%.

Furthermore, for at least 50% of the domains, this gain is also 12%. In contrast, comparing BPρ

with PLUGIN0 and PLUGINρ , the average gain in accuracy is approximately 9%. Note also that

when comparing the proposed EBP-class predictor with the HT and calibrated estimators, the

median gain in accuracy is as high as 75%. In the case of estimation precision, the average in-

crease resulting from the use of BPρ over EBP0 was approximately 12%, while the largest in-

crease was observed over the synthetic estimator, over 50%.

Table 5.1. Mean and median values of the ratio of accuracy measures of BPρ and the considered

predictors and estimators of domain totals

MSE(BPρ )
MSE(.)

RMSE(BPρ )
RMSE(.)

rRMSE(BPρ )
rRMSE(.)

mean median mean median mean median

EBPρ 0.78 0.74 0.88 0.86 0.88 0.86

EBP0 0.78 0.77 0.88 0.88 0.88 0.88

PLUGINρ 0.83 0.82 0.91 0.91 0.91 0.91

PLUGIN0 0.84 0.83 0.91 0.91 0.91 0.91

HT 0.20 0.06 0.33 0.24 0.33 0.24

SY N 0.13 0.13 0.36 0.35 0.36 0.35

CALIB 0.17 0.06 0.31 0.25 0.31 0.25

Source: Own elaboration.

Table 5.2 shows the mean and median values of the ratio of accuracy measures of another

of the predictor proposals that takes into account the correlation of random effects, the empirical

version of BPρ (i.e. EBPρ ) and the considered predictors and estimators of domain totals. When

compared with EBP0 for at least 50% of the domains, a gain in both accuracy and precision is

observed. However, the largest average gain for both rRMSE(.) and D(.) is observed relative to

the synthetic estimator at the level of several tens of percent. For the HT and calibrated estimator,

however, a significant gain in precision of close to 60% is evident. For the precision of the esti-

mates, similar results were obtained.
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Table 5.2. Mean and median values of the ratio of accuracy measures of EBPρ and the considered

predictors and estimators of domain totals

MSE(EBPρ )
MSE(.)

RMSE(EBPρ )
RMSE(.)

rRMSE(EBPρ )
rRMSE(.)

mean median mean median mean median

EBP0 0.99 0.98 0.99 0.99 0.99 0.99

BPρ 1.30 1.35 1.14 1.16 1.14 1.16

PLUGINρ 1.07 1.05 1.03 1.03 1.03 1.03

PLUGIN0 1.07 1.06 1.03 1.03 1.03 1.03

HT 0.28 0.08 0.39 0.27 0.39 0.27

SY N 0.17 0.17 0.40 0.41 0.40 0.41

CALIB 0.23 0.08 0.36 0.29 0.36 0.29

Source: Own elaboration.

Table 5.3 presents the mean and median values of the ratio of accuracy measures of proposed

PLUGINρ and the considered predictors and estimators of the domain totals. In the case of com-

parison with the predictor EBP0, the average gain in accuracy is 4%. The largest gain of approx-

imately 60% is seen for the synthetic estimator. A comparable gain of the accuracy also applies

to the HT and the calibrated estimator. The gain of the precision when comparing with the EBP0

predictor was higher, at 20%, and when comparing with the estimators, about a dozen percent.

Table 5.3. Mean and median values of the ratio of accuracy measures of PLUGINρ and the considered

predictors and estimators of domain totals

MSE(PLUGINρ )
MSE(.)

RMSE(PLUGINρ )
RMSE(.)

rRMSE(PLUGINρ )
rRMSE(.)

mean median mean median mean median

EBPρ 0.94 0.95 0.97 0.98 0.97 0.98

EBP0 0.93 0.92 0.96 0.96 0.96 0.96

BPρ 1.23 1.22 1.11 1.10 1.10 1.10

PLUGIN0 1.00 1.00 1.00 1.00 1.00 1.00

HT 0.26 0.07 0.38 0.26 0.38 0.26

SY N 0.15 0.15 0.39 0.39 0.39 0.39

CALIB 0.22 0.08 0.35 0.28 0.35 0.28

Source: Own elaboration.

The second parameter considered in the simulation study is the median in domain. Figure

5.8 presents box plots of the relative bias values of the considered predictors and estimators of

the above parameter. For the BP- and EBP-class predictors, the lowest modulus results were
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obtained close to 0. The highest values were obtained for the estimator presented by Särndal

et al. (1992, p. 200). As for the modulus, values in the order of several percent were obtained.

In the case of the other statistics for estimating medians in the domain – plug-in predictors and

the synthetic estimator – the results obtained as to the modulus did not exceed 10%. Figure 5.9

shows an excerpt from a plot of rB(.) values allowing for a more detailed evaluation of the results

obtained for the BPρ and EBPρ predictors. It should be noted that for both of these predictors as

far as the module is concerned, the relative bias did not exceed the value of 0.3%.

Figure 5.8. Values of rB(.) of predictors and estimators of median in domain

Source: Own elaboration.

Figure 5.9. Selected rB(.) values of predictors and estimators of median in domain

Source: Own elaboration.

Figure 5.10 shows the relative values of the root mean squared error rRMSE(.). For the

proposed EBP and BP predictors, the value of this measure did not exceed 4.5%. For the

third proposed predictor accounting for correlated random effects, PLUGINρ , this value was
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not exceeded for the median. For the two estimators considered in this study, the synthetic

one and the one proposed by Särndal et al. (1992), the median relative RMSE(.) was 5% and

9.5%, respectively.

Figure 5.10. Values of rRMSE(.) of predictors and estimators of median in domain

Source: Own elaboration.

In the case of rD(.), the lowest median values for this measure were obtained for two of the

proposed predictors: BPρ and PLUGINρ . The highest values were obtained for the estimators

included in the study – synthetic and Särndal et al. (1992), at 3.85% and 4.66%, respectively.

The maximum value of rD(.) did not exceed 5% for any of the considered predictors.

Table 5.4. Mean and median values of the ratio of accuracy measures of BPρ and the considered

predictors and estimators of the median in domains

MSE(BPρ )
MSE(.)

RMSE(BPρ )
RMSE(.)

rRMSE(BPρ )
rRMSE(.)

mean median mean median mean median

EBPρ 0.80 0.80 0.89 0.89 0.89 0.89

EBP0 0.78 0.79 0.88 0.89 0.88 0.89

PLUGINρ 0.62 0.66 0.76 0.81 0.76 0.81

PLUGIN0 0.62 0.65 0.76 0.81 0.76 0.81

SARN 0.17 0.11 0.38 0.34 0.38 0.34

SY N 0.33 0.31 0.56 0.55 0.56 0.55

Source: Own elaboration.

Table 5.4 presents the mean values and median of the ratio of accuracy measures of the

predictor BPρ and the considered predictors and estimators of the median in domains. It should

be noted that when comparing the accuracy of BPρ with EBP0 and PLUGIN0, an average gain
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of at least several percent is apparent, at 12% and 24%, respectively. When making a compar-

ison with the considered estimators, however, this is a gain of several tens of percent. The aver-

age gain in precision, nevertheless, is as high as 60% when comparing against the considered

estimators and 11% when analysed against EBP0.

Table 5.5. Mean and median values of the ratio of accuracy measures of EBPρ and the considered

predictors and estimators of the median in domains

MSE(EBPρ )
MSE(.)

RMSE(EBPρ )
RMSE(.)

rRMSE(EBPρ )
rRMSE(.)

mean median mean median mean median

EBP0 0.97 0.97 0.98 0.98 0.98 0.98

BPρ 1.26 1.25 1.12 1.12 1.12 1.12

PLUGINρ 0.81 0.90 0.86 0.94 0.86 0.94

PLUGIN0 0.80 0.88 0.86 0.93 0.86 0.93

SARN 0.22 0.13 0.43 0.37 0.43 0.37

SY N 0.41 0.39 0.62 0.62 0.62 0.62

Source: Own elaboration.

Table 5.5 shows the mean values and the median of the ratio of the accuracy measures of

EBPρ and the considered predictors and estimators of the median in domains. When comparing

the accuracy of EBPρ and a predictor of this class that does not take into account random effects

correlations, an average gain of 2% is evident. However, making a comparison between the accu-

racy measure and the results for PLUGIN0, an average gain of 14% is observed. The largest gain

in accuracy is seen when comparing the results for the proposed EBP-class predictor with the

results obtained for the analysed median domain estimators. In this case, the average gain was

even 57%. For the precision of the estimates, similar results were obtained.

The last table shows the mean and median values of the ratio of the accuracy measures of

PLUGINρ and the considered the domains’ median predictors and estimators. The largest gain

in accuracy, but also in precision, was achieved when comparing PLUGINρ against the domain’s

median estimators considered in the study. Furthermore, in the case of precision, an average gain

of 1% can be observed when comparing with the predictor PLUGIN0 and 13% when comparing

with the predictor EBP0. When comparing with the synthetic estimator, the average gain is 43%

on precision and 24% on accuracy, and with the estimator of Särndal et al. (1992) in both cases

it is 43%.
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Table 5.6. Mean and median values of ratio of accuracy measures of PLUGINρ and the considered

predictors and estimators of the median in domains

MSE(PLUGINρ )
MSE(.)

RMSE(PLUGINρ )
RMSE(.)

rRMSE(PLUGINρ )
rRMSE(.)

mean median mean median mean median

EBPρ 1.96 1.15 1.31 1.07 1.31 1.07

EBP0 1.93 1.14 1.29 1.06 1.29 1.06

BPρ 2.39 1.51 1.45 1.23 1.45 1.23

PLUGIN0 0.99 1.00 1.00 1.00 1.00 1.00

SARN 0.46 0.23 0.57 0.48 0.57 0.48

SY N 0.60 0.63 0.76 0.79 0.76 0.79

Source: Own elaboration.

In summary, relative bias values of no more than 0.3% were obtained for the proposed

EBP- and BP-class predictors and 1.4% and 10% for the plug-in predictor when the total and

median values in the domains were predicted, respectively. The simulation-derived values of rel-

ative RMSE(.) these predictors were no higher than 3.3% when the characteristic of interest was

the total value and 4.5% – when the median in domain. Comparing the properties of the predictor

proposals with selected predictors that do not take correlated random effects into account, the

average gain in accuracy and precision ranged from a few to several percent. Compiled with the

considered estimators, gains of up to several tens of percent were noted. For selected domains,

the gain in accuracy was as high as 92% and in precision 66%.

5.3. Simulation study – variant II

This subsection will present the assumptions and results obtained in the second simulation

study carried out. It is a modification of the analyses discussed in the previous subsection.

In this study, the values of the study variable are generated according to Algorithm 3, where

ρ =−0.95 is assumed. Thus, the case of a stronger correlation between random effects than for

the original population data but with a direction according to the original value of this parameter

is considered. All other parameters for both fixed and random effects were assumed to be in

accordance with the estimates for the population data.

Figure 5.11 shows the relative biases of the statistics considered. Similar to Figure 5.4, ab-

solute values of rB(.) close to 0 were obtained in variant one for all the proposed predictors of

the total value in the domain considering random effects correlation. It should be noted that for

EBPρ , values of relative bias moduli not exceeding 0.08% were obtained. This can be seen more
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precisely in Figure 5.12 showing selected values of relative bias of the considered statistics. For

the considered estimators, again significantly higher values of rB(.) reaching as far as 40% in

modulus were obtained.

Figure 5.11. Values of rB(.) of predictors and estimators of domain totals (ρ =−0.95)

Source: Own elaboration.

Figure 5.12. Selected rB(.) of predictors and estimators of domain totals (ρ =−0.95)

Source: Own elaboration.

Figures 5.13 and 5.14 show the relative RMSE(.) values of the predictors and estimators

considered in the study. Comparing these with the plots presented in Figures 5.6 and 5.7, it can

be seen that significantly better results were obtained for the proposed predictors. The maximum

value of the relative root mean squared error of the prediction for none of them exceeded 2.9%.

In subsection 5.2.2, the value was approximately 0.4 percentage points higher. In addition, for

each of these predictors, the third quartile did not exceed a value of 2.25% (in the first study, it

was 2.6%). Comparing also the median values for each of the domain total value estimates in

127



this variant, the lowest result of just under 1.75% was obtained for BPρ . In contrast, the highest

values were obtained for the HT and calibrated estimators. In their case, in at least 50% of the

domains, the value of rRMSE(.) was more than 9%, as in subsection 5.2.2.

Figure 5.13. Values of rRMSE(.) of predictors and estimators of domain totals (ρ =−0.95)

Source: Own elaboration.

Figure 5.14. Selected rRMSE(.) values of predictors and estimators of domain totals (ρ =−0.95)

Source: Own elaboration.

In the case of the relative values of the standard error of estimates considered in the paper for

both predictors and estimators, it can be noted that for each of the analysed predictor proposals,

taking into account correlated random effects, the median rD(.) is lower than 2%. The highest

relative values of the estimation standard error were obtained for the synthetic estimator, for

which the minimum value was even more than 50% higher than the median value of the

proposed predictors.

Table 5.7 presents the mean values and the median of the ratio of the accuracy measures

of BPρ and the considered predictors and estimators of the domain totals. When comparing
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the accuracy of BPρ with the other predictors of the EBP and BP classes, an average gain in

accuracy of approximately 3–5% can be observed. In contrast, compared to plug-in predictors,

the average gain in accuracy can be close to 10%. The highest values for the average gain in

accuracy were obtained when comparing with the HT and calibrated estimator – they were over

70%. It should also be added that the median gain in accuracy in this case is close to 80%. As in

subsection 5.2.2, the largest average gain in precision was observed in relation to the synthetic

estimator and is of the order of several tens of percent.

Table 5.7. Mean and median values of the ratio of accuracy measures of BPρ and the considered

predictors and estimators of domain totals (ρ =−0.95)

MSE(BPρ )
MSE(.)

RMSE(BPρ )
RMSE(.)

rRMSE(BPρ )
rRMSE(.)

mean median mean median mean median

EBPρ 0.92 0.92 0.95 0.96 0.95 0.96

EBP0 0.94 0.96 0.97 0.98 0.97 0.98

PLUGINρ 0.81 0.81 0.90 0.90 0.90 0.90

PLUGIN0 0.80 0.80 0.89 0.89 0.89 0.89

HT 0.12 0.05 0.27 0.22 0.27 0.22

SY N 0.15 0.16 0.38 0.40 0.38 0.40

CALIB 0.11 0.05 0.26 0.23 0.26 0.23

Source: Own elaboration.

Table 5.8. Mean and median values of the ratio of accuracy measures of EBPρ and the considered

predictors and estimators of domain totals (ρ =−0.95)

MSE(EBPρ )
MSE(.)

RMSE(EBPρ )
RMSE(.)

rRMSE(EBPρ )
rRMSE(.)

mean median mean median mean median

EBP0 1.02 1.02 1.01 1.01 1.01 1.01

BPρ 1.11 1.08 1.05 1.04 1.05 1.04

PLUGINρ 0.88 0.90 0.94 0.95 0.94 0.95

PLUGIN0 0.87 0.89 0.93 0.94 0.93 0.94

HT 0.14 0.05 0.29 0.23 0.29 0.23

SY N 0.16 0.15 0.39 0.39 0.39 0.39

CALIB 0.12 0.06 0.28 0.24 0.28 0.24

Source: Own elaboration.

Table 5.8 shows the results of the analysis of the mean and median values of the ratio of

the accuracy measures of EBPρ and the analysed predictors and estimators of the domain totals.
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Comparing the accuracy of the EBP-class predictor proposal, which takes correlated random

effects into account, with plug-in predictors, it can be seen that for at least 50% of the domains,

the gain in accuracy is about 5%. However, making a comparison with the estimators, including

the HT estimator and the calibrated estimator, the average gain even reaches more than 70%. In

contrast, the largest gain in precision was observed with the synthetic estimator, amounting to

more than 40% for at least 50% of the domains.

Table 5.9 shows the mean and median values of the ratio of the accuracy measures of the

plug-in predictor proposal PLUGINρ and the included predictors and estimators of the domain

totals. When considering the accuracy of the PLUGINρ estimates and the estimators included

in the study, it can be seen that the median gain in accuracy ranges from 57% for the synthetic

estimator to as much as 76% for the HT estimator. In the case of precision, when comparing

the predictor PLUGINρ with the other predictors included in the analysis, an average gain of

up to several percent was noted. When it was compared with the analysed estimators, this gain

reached up to 50%.

Table 5.9. Mean and median values of the ratio of accuracy measures of PLUGINρ and the considered

predictors and estimators of the domain totals (ρ =−0.95)

MSE(PLUGINρ )
MSE(.)

RMSE(PLUGINρ )
RMSE(.)

rRMSE(PLUGINρ )
rRMSE(.)

mean median mean median mean median

EBPρ 1.14 1.11 1.07 1.05 1.07 1.05

EBP0 1.16 1.17 1.08 1.08 1.08 1.08

BPρ 1.27 1.24 1.12 1.11 1.12 1.11

PLUGIN0 0.99 0.98 0.99 0.99 0.99 0.99

HT 0.17 0.06 0.31 0.24 0.31 0.24

SY N 0.18 0.19 0.42 0.43 0.42 0.43

CALIB 0.14 0.07 0.30 0.26 0.30 0.26

Source: Own elaboration.

In this variant of the simulation study, the problem of estimating the median in domains is

also included. Figure 5.15 includes the results for the relative bias rB(.). For all predictors and

estimators except for plug-in predictors, the median value did not exceed 1% in modulus. For

the predictors of the mentioned class, it was about 1.3%. However, it should be noted that for

the estimators considered, the maximum value exceeded even more than a dozen percent. For

the plug-in predictors, it was less than 7.5%, and for the proposed EBP- and BP-class predictors,

it was 0.25%. The results for the latter two groups of predictors can be seen in more detail in

Figure 5.16.
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Figure 5.15. Values of rB(.) of predictors and estimators of median in domains (ρ =−0.95)

Source: Own elaboration.

Figure 5.16. Selected rB(.) values of predictors and estimators of median in domains (ρ =−0.95)

Source: Own elaboration.

Figure 5.17 shows plots of the relative values of the root MSE(.) of the analysed predictors

and estimators of the domain median. Comparing this and the first variant of the simulation

study, it should be noted that the maximum value of this measure for EBPρ and BPρ in this

variant did not exceed 4.1%, while in the previous variant, this value was 0.4 percentage points

higher. For PLUGINρ , the median value of rRMSE(.) in this part of the analyses is lower, at

around 3.7%. The highest results were again obtained for the estimator presented by Särndal

et al. (1992, p. 200), for which rRMSE(.) is even close to 14%.

In the case of rD(.) for the analysed predictors and estimators of the considered parameter

in the domains, comparing this variant of the simulation study with the results presented in

subsection 5.2.2, it can be observed that for all predictors, the maximum value is lower and

amounts to no more than 4.5%. Among the estimators, a value of rD(.) higher than 5% was
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obtained for the estimator of Särndal et al. (1992, p. 200). It even amounted to more than

9%. Note that for BPρ and PLUGINρ , the value of rD(.) was no higher than 2.5% for 50% of

the domains.

Figure 5.17. Values of rRMSE(.) of predictors and estimators of median in domains (ρ =−0.95)

Source: Own elaboration.

Table 5.10 presents the mean and median values of the ratio of the accuracy measure of BPρ

and the analysed predictors and estimators of the second parameter considered, i.e. the median

in domain. By analogy with subsection 5.2.2, when comparing the values of the prediction ac-

curacy measure for BPρ with PLUGIN0, one should notice an average gain in accuracy of even

more than 20%. Comparing with the estimators, it is again of the order of 40–60%. In the case

of precision, however, the gain was approx. 5% when comparing with EBP-class predictors and

even 56% with estimators.

Table 5.10. Mean and median values of the ratio of the accuracy measures of BPρ and the considered

predictors and estimators of the median in domains (ρ =−0.95)

MSE(BPρ )
MSE(.)

RMSE(BPρ )
RMSE(.)

rRMSE(BPρ )
rRMSE(.)

mean median mean median mean median

EBPρ 0.91 0.93 0.95 0.97 0.95 0.97

EBP0 0.90 0.92 0.95 0.96 0.95 0.96

PLUGINρ 0.63 0.68 0.77 0.83 0.77 0.83

PLUGIN0 0.62 0.66 0.76 0.81 0.76 0.81

SARN 0.17 0.11 0.37 0.33 0.37 0.33

SY N 0.39 0.34 0.61 0.58 0.61 0.58

Source: Own elaboration.
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Table 5.11. Mean and median values of the ratio of the accuracy measures of EBPρ and the considered

predictors and estimators of the median in domains (ρ =−0.95)

MSE(EBPρ )
MSE(.)

RMSE(EBPρ )
RMSE(.)

rRMSE(EBPρ )
rRMSE(.)

mean median mean median mean median

EBP0 0.99 0.99 0.99 0.99 0.99 0.99

BPρ 1.12 1.07 1.06 1.03 1.06 1.03

PLUGINρ 0.72 0.82 0.81 0.90 0.81 0.90

PLUGIN0 0.70 0.80 0.80 0.89 0.80 0.89

SARN 0.20 0.11 0.40 0.33 0.40 0.33

SY N 0.44 0.44 0.64 0.66 0.64 0.66

Source: Own elaboration.

Table 5.11 presents the results of the accuracy analysis of EBPρ and the other predictors and

estimators of the median in domains. When making a comparison of the RMSE(.) predictors

EBPρ and EBP0 similarly to subsection 5.2.2, an average increase in accuracy is observed.

When compared with the plug-in predictor, which does not take random effects correlation into

account, the average increase in accuracy is 20%, which is approximately six percentage points

higher than in the first variant of the analyses. The highest values of the average gain in accuracy

are observed when comparing with the estimators presented in the study. It can be of the order

of several tens of percent. Similar results were also obtained for the precision measures.

Table 5.12. Mean and median values of the ratio of the accuracy measures of PLUGINρ and the

considered predictors and estimators of the median in domains (ρ =−0.95)

MSE(PLUGINρ )
MSE(.)

RMSE(PLUGINρ )
RMSE(.)

rRMSE(PLUGINρ )
rRMSE(.)

mean median mean median mean median

EBPρ 2.26 1.25 1.39 1.11 1.39 1.11

EBP0 2.26 1.26 1.39 1.12 1.39 1.12

BPρ 2.44 1.47 1.46 1.21 1.46 1.21

PLUGIN0 0.98 0.99 0.99 1.00 0.99 1.00

SARN 0.45 0.22 0.56 0.47 0.56 0.47

SY N 0.69 0.78 0.82 0.88 0.82 0.88

Source: Own elaboration.

The last of the tables presented in this subsection, Table 5.12, shows the mean and median

values of the ratio of accuracy measures of PLUGINρ and the selected predictors and estimators

of the median in domains. Comparing PLUGINρ with a predictor of the same class, not taking
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random effects correlation into account, as in the first study, the average gain in accuracy is

1%. The highest values of the average gain in accuracy as well as precision are observed

when juxtaposed with the estimators under consideration and can be as high as more than 40%.

Furthermore, in the case of precision, the average gain, when compared with the EBP-class

predictors, is around 7–8%.

In summary, similar to the analyses in subsection 5.2, relative simulation biases close to

0 were obtained for the proposed EBP and BP predictors. The simulation-derived rRMSE(.)

values of the proposed predictors were no higher than 3.0% when the characteristic of interest

was the total value and 4.1% when the median in domain. It should be added that the above

maximum values are lower than in the first study variant. When compared with the considered

predictors, the average gain in accuracy and precision ranged from a few to even several percent.

When comparing the properties of the proposed predictors with the estimators considered in the

analyses, it was noted to be as high as several tens of percent. The maximum gain values were

94% and 65% on accuracy and precision, respectively.

5.4. Simulation study – variant III

The following subsection will present the assumptions and results obtained in the third

simulation study carried out. Like the second variant, it introduces some changes to the analyses

in subsection 5.2. This study was carried out according to Algorithm 3, presented in subsection

5.2.1, however, ρ = −0.65 was assumed. In this subsection, therefore, the case of a weaker

correlation between random effects than for the original data but with a direction according to

the original parameter value is analysed. It should be added that the values of the other model

parameters were assumed to be in accordance with the estimates obtained for the population.

Figure 5.18. Values of rB(.) of predictors and estimators of domain totals (ρ =−0.65)

Source: Own elaboration.
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Figure 5.18 presents box plots of rB(.) predictors and estimators of the total values in the

domains. As with the other two analyses, relative bias values as to modulus close to 0 were

obtained for all three proposed predictors. Analysing the plot in Figure 5.19, it can be seen

that for the EBPρ predictor, the modulus did not exceed 0.1%. In the case of the PLUGINρ ,

they were no higher than 1.43%. These values are therefore similar to the results obtained in

subsection 5.2.2. The highest relative values of prediction bias were obtained for the calibrated

and HT estimators, even on the order of several tens of percent.

Figure 5.19. Selected rB(.) values of predictors and estimators of domain totals (ρ =−0.65)

Source: Own elaboration.

Figure 5.20. Values of rRMSE(.) of predictors and estimators of domain totals (ρ =−0.65)

Source: Own elaboration.

Figures 5.20 and 5.21 show the results for rRMSE(.) predictors and estimators of the total

values in the domains in the form of box plots. For the proposed predictors that take into account

the correlation between random effects, the value of 4% was not exceeded. Despite accounting

for a weaker correlation in this study than for the original data, this value is only a few tenths
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of a percentage point higher than for the case considered in subsection 5.2.2. The median of

rRMSE(.) of these predictors, however, did not exceed 2.8%. For the considered estimators, i.e.

synthetic, HT and calibrated, the median of rRMSE(.) is 6%-9%. For the latter two estimators,

rRMSE(.) even reaches more than 39%, similar to the first variant of the study.

Figure 5.21. Selected rRMSE(.) values of predictors and estimators of domain totals (ρ =−0.65)

Source: Own elaboration.

In the case of the analysis of the relative D(.) values of the predictors and estimators of

the total values in the domains, however, it is possible to observe that for all statistics, the rD(.)

values did not exceed 4%, similarly to the analyses presented in subsection 5.2.2. The exception

is the synthetic estimator, for which the minimum value is about 4.1%. It should be added that in

the case of BPρ and PLUGINρ , the median relative values of the prediction standard error were

no higher than 2.2%.

Table 5.13 presents the mean and median values of the ratio of the accuracy measures of BPρ

and all considered predictors and estimators of the domain totals. When comparing BPρ with the

analysed predictors of the EBP class, it should be noted that the average gain in accuracy is about

20%. In subsection 5.2.2, this value was about 8 percentage points lower. It is furthermore twice

as high as the average gain in accuracy when comparing BPρ with plug-in predictors, a result

close to that obtained in the first variant of the study. However, the highest values of the average

gain in accuracy are seen in relation to the analysed estimators, amounting to more than 60%.

For precision, similar results were obtained.
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Table 5.13. Mean and median values of the ratio of accuracy measures of BPρ and the considered

predictors and estimators of the domain totals (ρ =−0.65)

MSE(BPρ )
MSE(.)

RMSE(BPρ )
RMSE(.)

rRMSE(BPρ )
rRMSE(.)

mean median mean median mean median

EBPρ 0.63 0.61 0.79 0.78 0.79 0.78

EBP0 0.64 0.60 0.80 0.77 0.80 0.77

PLUGINρ 0.80 0.79 0.89 0.89 0.89 0.89

PLUGIN0 0.81 0.80 0.90 0.90 0.90 0.90

HT 0.23 0.07 0.35 0.26 0.35 0.26

SY N 0.12 0.11 0.33 0.33 0.33 0.34

CALIB 0.19 0.08 0.33 0.27 0.33 0.27

Source: Own elaboration.

Table 5.14 shows the mean and median values of the ratio of the accuracy measures of

EBPρ and the considered predictors and estimators of the domain totals. In the case of precision,

the average gain relative to each of the estimators under consideration is similar, at more than

50%. In contrast, the largest average gain in precision was observed when comparing with the

synthetic predictor, at 47%.

Table 5.14. Mean and median values of the ratio of the accuracy measures of EBPρ and the considered

predictors and estimators of the domain totals (ρ =−0.65)

MSE(EBPρ )
MSE(.)

RMSE(EBPρ )
RMSE(.)

rRMSE(EBPρ )
rRMSE(.)

mean median mean median mean median

EBP0 1.01 1.02 1.00 1.01 1.00 1.01

BPρ 1.62 1.64 1.27 1.28 1.27 1.28

PLUGINρ 1.26 1.24 1.12 1.11 1.12 1.11

PLUGIN0 1.28 1.25 1.13 1.12 1.13 1.12

HT 0.39 0.10 0.46 0.32 0.46 0.32

SY N 0.18 0.18 0.42 0.43 0.42 0.43

CALIB 0.32 0.11 0.43 0.34 0.43 0.34

Source: Own elaboration.

Table 5.15 contains the average values and median of the ratio of the accuracy measures of

PLUGINρ and the other considered predictors and estimators of the domain totals. Comparing

PLUGINρ with the other predictors considered in the simulation study, the largest average gain

in accuracy was obtained relative to the predictors of the EBP class of approximately 10%.
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It should be added that the gain values relative to the predictor EBP0 are 5 percentage points

higher than the results obtained in section 5.2.2. However, the highest values of average gain

were observed when comparing the analysed estimators. For the synthetic estimator, this gain is

approximately 40%. In the case of precision, the maximum average gain when compared with

the estimators was close to the gain in precision, with a gain of approximately 25% when com-

pared with EBP.

Table 5.15. Mean and median values of the ratio of the accuracy measures of PLUGINρ and the

considered predictors and estimators of the domain totals (ρ =−0.65)

MSE(PLUGINρ )
MSE(.)

RMSE(PLUGINρ )
RMSE(.)

rRMSE(PLUGINρ )
rRMSE(.)

mean median mean median mean median

EBPρ 0.79 0.81 0.89 0.90 0.89 0.90

EBP0 0.80 0.79 0.89 0.89 0.89 0.89

BPρ 1.28 1.27 1.13 1.12 1.13 1.12

PLUGIN0 1.01 1.01 1.00 1.00 1.00 1.00

HT 0.30 0.08 0.41 0.29 0.41 0.29

SY N 0.14 0.14 0.37 0.38 0.37 0.38

CALIB 0.25 0.09 0.38 0.30 0.38 0.30

Source: Own elaboration.

Figure 5.22. Values of rB(.) of predictors and estimators of the median in domains (ρ =−0.65)

Source: Own elaboration.

Figures 5.22 and 5.23 show as box plots the relative bias values of the predictors and

estimators of the second parameter analysed – the median in domain. For the proposed predictors

BPρ and EBPρ , as in the other simulation analyses, including subsection 5.2.2, results as to the

modulus were obtained close to 0. For the last of the proposals, i.e. the plug-in class predictor
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that takes into account the correlation between random effects and the synthetic estimator of

the median in domain proposed by Stachurski (2018), the results are similar and their absolute

value does not exceed 7%. In contrast, the highest rB(.) modulus values were obtained for the

estimator proposed by Särndal et al. (1992). They amount to as much as several percent.

Figure 5.23. Selected rB(.) values of predictors and estimators of the median in domains (ρ =−0.65)

Source: Own elaboration.

Figure 5.24 presents the rRMSE(.) values of the predictors and estimators of the median in

domains. For the BP- and EBP-class predictors, the relative RMSE(.) values did not exceed 5%.

It should be added that the median rRMSE(.) for the proposed predictor BPρ was below 3%.

For plug-in predictors, however, the maximum value of this measure was 7.90%. These results

are therefore significantly similar to those obtained in the first variant of the study. The highest

rRMSE(.) values were obtained for the estimator presented by Särndal et al. (1992), for which

the median value is about 9.5% and the maximum value over 14%.

Figure 5.24. Values of rRMSE(.) of predictors and estimators of the domains median (ρ =−0.65)

Source: Own elaboration.
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For the relative D(.) values of the predictors and the median estimators in the domain,

the value of this measure did not exceed the level of 5% for all predictors, as in subsection

5.2.2. For the estimators, the maximum value of rD(.) was even over 9%. For two of the pro-

posed predictors, under the assumption of a model with correlated random effects (BPρ and

PLUGINρ ), the median rD(.) was below 3%.

Table 5.16 presents the mean and median values of the ratio of the accuracy measures of

BPρ and the domains’ median predictors and estimators considered in the simulation study. The

recorded average gain in accuracy for BPρ relative to the two EBP-class predictors analysed is

17−18%. For the predictors PLUGINρ and PLUGIN0, the median accuracy gain was less than

20%. The largest median accuracy gain was observed for the estimator of Särndal et al. (1992),

at 61%. These results are similar to those obtained in the first variant of the study. In the case of

precision, gains of a dozen and tens of percent were observed for the EBP and the estimators.

Table 5.16. Mean and median values of the ratio of the accuracy measures of BPρ and the considered

predictors and estimators of the median in domains (ρ =−0.65)

MSE(BPρ )
MSE(.)

RMSE(BPρ )
RMSE(.)

rRMSE(BPρ )
rRMSE(.)

mean median mean median mean median

EBPρ 0.69 0.71 0.83 0.84 0.83 0.84

EBP0 0.68 0.70 0.82 0.83 0.82 0.83

PLUGINρ 0.61 0.66 0.76 0.81 0.76 0.81

PLUGIN0 0.61 0.65 0.76 0.81 0.76 0.81

SARN 0.18 0.11 0.39 0.34 0.39 0.34

SY N 0.26 0.25 0.50 0.50 0.50 0.50

Source: Own elaboration.

Table 5.17 presents the mean and median values of the ratio of the accuracy measures of

EBPρ and the other predictors considered, as well as the median estimators in the domains.

As in subsection 5.2.2 comparing EBPρ with the EBP-class predictor, which does not take into

account correlations between random effects, an average gain in accuracy can be observed. By

comparing the results for the proposed EBP predictor and the plug-in predictors, an approx. 7%

average gain in accuracy can be noted. However, the highest values of median and average gain

can be observed for the analysed estimators – of the order of several tens of percent. Gains in

precision were also recorded.
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Table 5.17. Mean and median values of the ratio of the accuracy measures of EBPρ and the considered

predictors and estimators of the median in domains (ρ =−0.65)

MSE(EBPρ )
MSE(.)

RMSE(EBPρ )
RMSE(.)

rRMSE(EBPρ )
rRMSE(.)

mean median mean median mean median

EBP0 0.99 0.99 0.99 0.99 0.99 0.99

BPρ 1.48 1.41 1.21 1.19 1.21 1.19

PLUGINρ 0.94 0.99 0.93 0.99 0.93 0.99

PLUGIN0 0.94 0.97 0.93 0.98 0.93 0.98

SARN 0.27 0.16 0.47 0.40 0.47 0.40

SY N 0.38 0.38 0.60 0.62 0.60 0.62

Source: Own elaboration.

Table 5.18 shows the mean and median values of the ratio of the accuracy measures of

PLUGINρ and the considered predictors and estimators of the median in domains. The highest

accuracy gain values can be seen when comparing the predictor PLUGINρ with the considered

estimators. For both the estimator of Särndal et al. (1992) and the synthetic median-in-domain

estimator proposed by Stachurski (2018), the average gain is approximately 40%, which is

only three percentage points lower than in subsection 5.2.2. Similar results were also obtained

for precision. Furthermore, juxtaposing the proposed plug-in predictor with the EBP-class

predictors, an average gain of several percent was obtained.

Table 5.18. Mean and median values of the ratio of the accuracy measures of PLUGINρ and the

considered predictors and estimators of the median in domains (ρ =−0.65)

MSE(PLUGINρ )
MSE(.)

RMSE(PLUGINρ )
RMSE(.)

rRMSE(PLUGINρ )
rRMSE(.)

mean median mean median mean median

EBPρ 1.69 1.04 1.21 1.02 1.21 1.02

EBP0 1.69 1.05 1.21 1.02 1.21 1.02

BPρ 2.37 1.53 1.45 1.24 1.45 1.24

PLUGIN0 1.00 1.00 1.00 1.00 1.00 1.00

SARN 0.48 0.24 0.58 0.48 0.58 0.48

SY N 0.50 0.47 0.69 0.69 0.69 0.69

Source: Own elaboration.

In summary, as in the other variants of the study, for the proposed EBP- and BP-class

predictors, the relative values of the simulation bias were close to 0. The simulation-derived

rRMSE(.) values of these predictors were no higher than 4%, and for the plug-in predictor
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proposal, they did not exceed 8%. When comparing the properties of the predictor proposals

with the considered estimators, analogous to the other analyses, an average gain in accuracy and

precision of up to several tens of percent was noted. The maximum was over 90% in the case

of accuracy and about 70% in terms of precision for the selected domains. When set against the

selected predictors, the gain was lower.

5.5. Summary

This chapter was focused on the simulation studies carried out for the purpose of this book,

conducted according to the model-based approach. Section 5.1 presented the considered dataset.

The sampling assumptions and the considered division of the population into domains are

also presented.

The following three subsections showed the assumptions and results of the analyses carried

out. Subsection 5.2 was focused on the first variant of the simulation study. This section

presented the algorithm according to which the analyses were carried out in order to compare the

properties of selected statistics for assessing characteristics in domains. The predictors taken into

account in the study are also discussed, among which are the three authors’ proposed predictors,

taking into account the correlation between the random effects of the BP, EBP and plug-in

classes, respectively. In addition, selected predictors that assume a linear mixed model with

uncorrelated random effects are included in the analyses. The list was also supplemented with

some estimators of the considered characteristics belonging to the direct, indirect and calibrated

groups. It should be added that the paper addresses the problem of estimating two characteristics:

total values and medians in the domain. Among the quantities that allow an analysis of the

properties of the above methods of estimating domain characteristics were measures of prediction

precision, prediction accuracy and predictor bias.

The first variant of the simulation study assumed in the data generation process the use of

the actual values of the auxiliary variable and the population-based estimated parameters of the

random effects correlation model, including ρ = −0.83. The other two studies modified these

assumptions. The study presented in subsection 5.3 considered the case of a stronger negative

correlation (ρ = −0.95) and in 5.4 a weaker negative correlation (ρ = −0.65). Decisions

on the modifications considered were based on the preliminary studies conducted. For each

of the studies carried out, the simulation relative bias for the proposed BP- and EBP-class

predictors were close to 0. In the case of the third proposal – the plug-in predictor – they did not

exceed 10%, even assuming a weak correlation. The simulation-derived rRMSE(.) values of the
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predictors taking into account random effects correlation did not exceed the 4.5% level for the

estimated domain characteristics, except for the median prediction using the plug-in predictor,

where the values were no higher than 8%. Furthermore, in the case of relative D(.) values, the

simulation maximum value of this measure also did not exceed a few percent.

Comparing the accuracy and precision of the EBP predictor, which both does and does not

take into account correlations between random effects, the maximum average gain is 1% and 2%,

respectively, when the characteristics of interest are the total value and the median. However,

for individual domains, the maximum gain was as high as 5% and 7% for the above two

characteristics. Comparing the properties of the proposed BP predictor and the EBP predictors,

one can observe a maximum average gain in precision as well as accuracy of about 21% when the

total value was the analysed characteristic and 18% when the median in terms of domains. The

maximum gain in terms of domains, nevertheless, was even approximately 30% on accuracy and

34% on precision for the total value. When median prediction in domains was considered, the

maximum gain in both cases was 30%. Comparing the accuracy and precision measures for the

plug-in predictor proposal and the predictor of this class, assuming a model with uncorrelated

random effects, the maximum average gain was 1% for both the total and median value. By

contrast, when considering the problem in terms of domains, this maximum gain was twice as

high for the total value and four times as high for the median across domains.

The results obtained may suggest a significant impact of the accuracy of parameter

estimation, including the ρ parameter, on the results obtained. This is indicated, among other

things, by comparing the gains in accuracy and precision of the proposed BP predictor and EBP

against its counterpart, which does not take into account correlations between random effects.

A possible solution to this problem in future studies is to include other iterative algorithms

in the REML method used in the model estimation process or other methods for determining

model parameter estimates. For the considered overpopulation model, the correlation between

domain-specific random effects was taken into account – considering a larger number of domains

into which the population is divided in future simulation studies could also significantly improve

the accuracy of model parameter estimates (including the correlation coefficient). In the case of

the plug-in predictor proposal, on the other hand, some modifications to reduce the bias on this

predictor could also be considered in future analyses. However, a significant advantage of this

statistic over EBP-class predictors is that it is less time-consuming to calculate.

It should be noted that when comparing the properties of the predictor proposals with the

estimators considered in the study, one can see an average gain in accuracy and precision of up

to several tens of percent regardless of the value of the ρ parameter. In contrast, for the selected
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domains, the maximum gain in precision reached up to 94% when the prediction of the total

value was considered, and 84% when the median in domains was considered. The maximum

gain in precision that was observed was 70% when the characteristic of interest was the total

value, and 57% when the median in domains.

The chapter used the author’s sections of code written in R to calculate the BP and EBP

predictors of the total value and the median in domain under the assumption of a linear mixed

model with correlated random effects. In addition, the author prepared code for conducting

simulation studies.
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Conclusions

The book presented the model-based approach in small area estimation and its applications

in economic research, including the author’s prediction methods. The monograph consisted of

a theoretical and cognitive part – the first four chapters – and an empirical part (results of

simulation studies – chapter 5).

Chapter one discussed the main approaches in small area estimation and their applications

in research of an economic nature. Particular attention was given to the model-based approach,

including the process of constructing overpopulation models and their classification. As part of

this, generalisations of selected predictors to cross-sectional-temporal analyses were proposed.

In addition, the author’s proposals for some special cases of linear mixed models taking into

account the correlation between random effects vectors and examples of applications in small

area estimation are presented. For the above class of models, the use of permutation tests and

permutation versions of classical tests in the verification of parameter significance was proposed.

The problem was also supplemented with an author’s proposal of a test allowing verification

of the presence of correlations between vectors of random effects, based on the parametric

bootstrap method.

Chapter two presented the issue of single and longitudinal surveys, their classification and

applications. However, the issue of repeated surveys over time, including panel surveys, is

discussed in more detail. Presented were, i.a., schemes of conducting them, advantages and

disadvantages, as well as examples of research conducted in multiple periods in Poland

and worldwide.

Chapter three was dedicated to the BLUPs and EBLUPs classes. The topics were presented

in the light of the classification of linear mixed models. The author’s proposal for the use of

an empirical best linear unbiased predictor under the assumption of a linear mixed model with

correlated random effects vectors is also presented. The chapter also addressed the problem of

estimating the mean squared error of EBLUPs class, including a proposed modification of known

methods for the above predictor proposal. In addition, selected modifications of the presented

classes of predictors and their applications in economic research were discussed.
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Chapter four presented the theoretical aspects of two classes of predictors – EBP and plug-in.

The author’s proposal to use these predictors in economic research assuming linear mixed models

with correlated random effects vectors was also presented. The problem of estimating the mean

squared errors of the EBP and plug-in class predictors is also addressed, including suggestions

for modifying known methods for assessment the MSE of the proposed predictors. The chapter

also discussed selected applications of the statistics considered.

The first four chapters provided answers to the first two research questions posed in this

book. Chapter five, however, answered the third and fourth questions. It also made it possible to

achieve the practical objectives of the monograph.

Chapter five contains a description of the dataset analysed, the assumptions, and the results

of the simulation studies, conducted according to the model-based approach. The analyses were

aimed at a simulation comparison of the properties of the author’s proposed predictors of

characteristics in domains, discussed in chapters three and four, with corresponding predictors

that do not take into account correlations between the random effects vectors and the selected

estimators. The characteristics considered in the prediction process were the total value and the

median in the domain. Three variants of the simulation study were considered in this chapter,

which took into account the different strength of the correlation between the random effects

vectors at the population data generation stage. It should be added that the first variant assumed

the original parameter values obtained from the real dataset considered. Comparisons of the

properties of the above statistics for assessing characteristics in domains were made using

measures of predictor accuracy and precision and predictor bias. The study was conducted

using the R language (R Core Team, 2022) and custom-written functions. The results obtained

suggest good properties of the author’s considered predictor proposals, as indicated by the low

simulated relative values of prediction standard error and root mean square error of prediction.

The juxtaposition of the results obtained for the considered selected statistics for assessment

characteristics in domains (predictors and estimators) suggests a gain in prediction accuracy and

precision resulting from the application of the presented predictor proposals.

It should be emphasised that the results obtained in this study may be useful in practice

for institutions conducting research as well as for the users of the data obtained as a result, e.g.

state administration agencies at both the central and local levels. The analyses carried out in this

study may form the basis for further research. These considerations may include the problem

of the influence of the accuracy of the estimation of the parameters of the proposed models on

the prediction process and the use of methods and algorithms other than those presented for

estimating the parameters of the overpopulation model. The issue of the influence of the number
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of domains on the properties of the predictor proposals may also be included. It is also possible

to expand the considered variants of simulation studies to include other models and distributions

of effects and random components in the process of generating population data. The topics of

this paper dealt with the model-based approach in small area estimation, but in further research,

it would be possible to broaden the considerations to include an analysis of the properties of the

proposed predictors conducted according to the design-based approach.
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