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Abstract 
 

In the paper we consider a bi-criteria version of the Stochastic General-
ized Transportation Problem, where one goal is the minimization of the  
expected total cost, and the second one is the minimization of the risk. We 
present a model and a solution method for this problem. 
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1 Introduction 
 

The Generalized Transportation Problem (GTP) and its generalizations can be 
used in many real-life applications, in particular in modeling of transportation of 
perishable products, see e.g. Nagurney et al. (2013). One can look at the GTP as 
a special kind of the Generalized Minimum Cost Flow Problem or as a generali-
zation of the ordinary Transportation Problem. The generalized flows, as well as 
some solution methods, can be found e.g. in Ahuja et al. (1993). The generalized 
flows were also studied by Glover et al. (1972), Goldberg et al. (1988), and 
Wayne (2002), among others. The particular case of the GTP was studied in par-
ticular by Balas (1966), Balas and Ivanescu (1964), and Lourie (1964). Anholcer 
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and Kawa (2012) considered the two-stage GTP and its application in the supply 
chain in which complaints are involved. 

The transportation of perishable goods is not the only application of general-
ized flows. In Ahuja et al. (1993) several others have been discussed. In particu-
lar, they may be used in the modeling of conversions of physical entities in fi-
nancial, mineral and energy networks or machine loading. Nagurney et al. 
(2013) discuss, in turn, the application of generalized flows in the modeling of 
selected kinds of logistic chains, in particular in the distribution process of medi-
cal materials, food, pharmaceuticals and clothes. 

Very often (also in the above mentioned papers) it is assumed that the demand is 
fixed. In fact, it is usually impossible to predict a priori the exact values of demand. 
However, in many cases it is possible to estimate its probability distribution. 

The Stochastic Generalized Transportation Problem (SGTP) is the general-
ized version of the GTP, where one assumes that the values of demand are given 
as random variables. At least two approaches can be applied to transform this 
kind of problem into an equivalent, deterministic form. One could assume that 
the probability of satisfying the demand constraints has to be not less than some 
fixed value. This, together with the demand distribution, allows to transform the 
constraints (and hence the problem) into a deterministic form. However, in the 
case of transportation problems, another approach is more common. In this ap-
proach we remove the demand constraints and use them to introduce a new cost 
function, including the expected extra cost, increasing with the discrepancy be-
tween the actual value of the demand and the size of delivery. This approach has 
been used in such classic papers as Williams (1963), Cooper and LeBlanc 
(1977), but also in more recent ones, such as Holmberg and Jörnsten (1984), 
Holmberg (1995), Qi (1985, 1987) and Anholcer (2012, 2015). It is also worth 
mentioning that this approach is related to the classical Newsvendor Problem 
which has been known at least from the moment of the publication of Edgeworth 
(1888), and then analyzed and generalized by numerous authors, see e.g. Khouja 
et al. (1996), Şen and Zhang (1999), Chen and Chuang (2000), Yang et al. (2007), 
Goto (2013) (in fact, the Newsvendor Problem can be considered as an instance of 
the Stochastic Transportation Problem with one source and one destination). 

A more general version of the Nonlinear Transportation Problem (where any 
convex costs at the destination points are applicable) was discussed by Anholcer 
(2005, 2008a, 2008b), Sikora (1993) and Sikora et al. (1991), among others. In those 
papers the Equalization Method was considered and it was proved to be convergent 
in Anholcer (2005, 2008a). The convergence of the general versions for the Nonlin-
ear and Stochastic GTP was also proved by Anholcer (2012, 2015). 

In all the above papers only the expected costs were taken under considera-
tion. It can be useful, however, to involve also the risk, measured by variance. 
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This makes the problem bi-criterial. The problem of stochastic programming involv-
ing both expected cost and variance has been recently studied by Li et al. (2014) 
who transformed this problem into a quasi-linear form and applied it to the Trans-
portation Problem. A version of the bi-criteria SGTP, this time with expected cost 
and time criteria, has been studied by Anholcer (2013). Also Nagurney et al. (2013) 
studied the generalized flows where two criteria (expected cost and risk) were in-
volved (the authors assumed that the risk can be represented by a function convex 
with respect to the flow, which is, however, not always true; see below). Bi- and 
Multi-criteria Transportation Problems were discussed also e.g. by Aneja and Nair 
(1979), Gupta and Gupta (1983), Shi (1995), Li (2000), Basu and Acharya (2002), 
Khurana and Arora (2011), Kesavarz and Khorram (2011) and Kumar et al. (2012). 
The (linear) Generalized Transportation Problem in the multi-criteria version was 
studied by Gen et al. (1999), among others. 

In this paper we present a method for finding efficient solutions of the Bi-
criteria Stochastic Generalized Transportation Problem with two criteria: ex-
pected cost and variance. In Section 2 the problem is formulated. In Sections 3 and 4 
the algorithm, together with its theoretical justification, is presented. Section 5 
contains an illustrative example. The results of computational experiments are 
presented in Section 6. Section 7 contains final remarks. 
 
2 Problem formulation 
 

In the Generalized Transportation Problem, the goal is to minimize the transpor-
tation costs of a uniform good delivered from m supply points to n destination 
points. The amount of the transported good changes during the transportation 
process. More precisely, the amount delivered to demand point j from supply 
point i is equal to ݎ௜௝ݔ௜௝, where ݔ௜௝ is the amount of the good that leaves supply 
point i and ݎ௜௝ is the reduction ratio. The unit transportation costs ܿ௜௝ are con-
stant, the demand ௝ܾ of every demand point j has to be satisfied and the supply ܽ௜ of any supply point i cannot be exceeded. The model looks as follows: min ቐ݂(ݔ) ൌ ෍ ෍ ܿ௜௝ݔ௜௝௡

௝ୀଵ
௠

௜ୀଵ ቑ , 
s. t.  ෍ ௜௝ݔ௜௝ݎ ൌ ௝ܾ, ݆ ൌ 1, … , ݊,௠
௜ୀଵ  

෍ ௜௝ݔ ൑ ܽ௜, ݅ ൌ 1, … , ݉,௡
௝ୀଵ ௜௝ݔ  ൒ 0, ݅ ൌ 1, … , ݉, ݆ ൌ 1, … , ݊. 
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In the Stochastic GTP (SGTP), the demands ௝ܾ are independent continuous 
random variables ௝ܺ with density functions ߮௝. We will assume that for every ݆ ൌ 1, … , ݊ and for every ݔ ൐ 0, ߮௝(ݔ) ൐ 0. 

The unit surplus cost ݏ௝(ଵ) and the unit shortage cost ݏ௝(ଶ) are defined for every 
destination point j. This implies that the expected extra cost at the destination j is 
equal to: 

௝݂൫ݔ௝൯ ൌ ௝(ଵ)ݏ න ൫ݔ௝ െ ௫ೕ଴ݐ݀(ݐ)൯߮௝ݐ ൅ ௝(ଶ)ݏ න ൫ݐ െ ∞ݐ݀(ݐ)௝൯߮௝ݔ

௫ೕ . 
Using elementary transformations and integrating by parts, we obtain that: ௝݂൫ݔ௝൯ ൌ ௝(ଶ)ݏ ׬ ൫ݐ െ ଴∞ݐ݀(ݐ)௝൯߮௝ݔ ൅ ቀݏ௝(ଵ) ൅ ௝(ଶ)ቁݏ ׬ ൫ݔ௝ െ ௫ೕ଴ݐ݀(ݐ)൯߮௝ݐ  = ൌ ׬௝(ଶ)൫ݏ ଴∞ݐ݀(ݐ)௝߮ݐ െ ௝ݔ ׬ ߮௝(ݐ)݀ݐ∞଴ ൯ + ൅ ቀݏ௝(ଵ) ൅ ௝(ଶ)ቁݏ ቀൣ൫ݔ௝ െ ൧଴௫ೕ(ݐ)൯Φ௝ݐ ൅ ׬ Φ௝(ݐ)݀ݐ௫ೕ଴ ቁ = ൌ ൫ܧ௝(ଶ)൫ݏ ௝ܺ൯ െ ௝൯ݔ ൅ ቀݏ௝(ଵ) ൅ ௝(ଶ)ቁݏ න Φ௝(ݐ)݀ݐ,௫ೕ଴  

where Φ௝ is the cumulative distribution function of the demand at destination j 
(the last equality uses the fact that Φ௝(0) ൌ 0). 

Finally, the SGTP takes the form: min ቐ݂(ݔ) ൌ ෍ ෍ ܿ௜௝ݔ௜௝௡
௝ୀଵ

௠
௜ୀଵ ൅ ෍ ௝݂൫ݔ௝൯௡

௝ୀଵ ቑ , 
s. t. ෍ ௜௝ݔ௜௝ݎ ൌ ,௝ݔ ݆ ൌ 1, … , ݊,௠
௜ୀଵ  

෍ ௜௝ݔ ൑ ܽ௜, ݅ ൌ 1, … , ݉,௡
௝ୀଵ ௜௝ݔ  ൒ 0, ݅ ൌ 1, … , ݉, ݆ ൌ 1, … , ݊. 
The first derivative of the expected cost function has the form: ௝݂′൫ݔ௝൯ ൌ െݏ௝(ଶ) ൅ ቀݏ௝(ଵ) ൅  ,(ݐ)௝(ଶ)ቁΦ௝ݏ
while the second derivative is equal to: ௝݂′′൫ݔ௝൯ ൌ ቀݏ௝(ଵ) ൅ ௝(ଶ)ቁݏ ߮௝(ݐ). 
This means that each function ௝݂ is twice differentiable and strictly convex on 
the interval where ߮௝(ݐ) ൐ 0. This allows to use the corresponding version of 
the Equalization Method (Anholcer, 2012 and 2015) to solve this problem. 
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Of course it may happen that a Decision Maker considers the transportation 
costs, shortage costs and surplus costs as not equally important. In such a situa-
tion one could use three criteria instead of one, or even when using one objec-
tive, one could still introduce weights, reflecting the Decision Maker’s prefer-
ences. However, this would not change the structure or the general form of the 
resulting weighting problem, discussed in Section 3 (Observation 1). 

The second criterion of interest is variance. The formula for variance for des-
tination j is: ݃௝൫ݔ௝൯ ൌ ௝൯ݔ௝൫݌ െ  ,(௝ݔ)௝ݍ
where: ݌௝൫ݔ௝൯ ൌ ቀݏ௝(ଵ)ቁଶ න ൫ݔ௝ െ ௫ೕ଴ݐ݀(ݐ)൯ଶ߮௝ݐ ൅ ቀݏ௝(ଶ)ቁଶ න ൫ݐ െ ∞ݐ݀(ݐ)௝൯ଶ߮௝ݔ

௫ೕ  

and: ݍ௝൫ݔ௝൯ ൌ ቀ ௝݂൫ݔ௝൯ቁଶ. 
One can see that: ݌௝′ ൫ݔ௝൯ ൌ 2 ቀݏ௝(ଵ)ቁଶ න ൫ݔ௝ െ ௫ೕ଴ݐ݀(ݐ)൯߮௝ݐ ൅ 2 ቀݏ௝(ଶ)ቁଶ න ൫ݔ௝ െ ∞ݐ݀(ݐ)൯߮௝ݐ

௫ೕ  

and: ݌௝′′൫ݔ௝൯ ൌ 2 ቀݏ௝(ଵ)ቁଶ න ߮௝(ݐ)݀ݐ௫ೕ଴ ൅ 2 ቀݏ௝(ଶ)ቁଶ න ߮௝(ݐ)݀ݐ∞

௫ೕ . 
Moreover: ݍ௝′ ൫ݔ௝൯ ൌ 2 ௝݂൫ݔ௝൯ ௝݂′൫ݔ௝൯ 
and: ݍ௝′′(ݔ௝) ൌ 2ൣ ௝݂′൫ݔ௝൯൧ଶ ൅ 2 ௝݂൫ݔ௝൯ ௝݂′′൫ݔ௝൯. 

This means that each of the functions ݃௝(ݔ௝) is a twice differentiable  
DC-function. Namely, it is the difference of two convex functions, which are 
strictly convex if ߮௝൫ݔ௝൯ ൐ 0. However, in general, the functions ݃௝ do not need 
to be convex. 

As the demands are independent random variables, the variance of total extra 
cost is equal to the sum of the variances at the destination points. Thus the bi-
criteria problem (BSGTP) takes the form: min ቐ݂(ݔ) ൌ ෍ ෍ ܿ௜௝ݔ௜௝௡

௝ୀଵ
௠

௜ୀଵ ൅ ෍ ௝݂൫ݔ௝൯௡
௝ୀଵ ቑ , 

min ቐ݃(ݔ) ൌ ෍ ݃௝൫ݔ௝൯௡
௝ୀଵ ቑ , 
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s. t. ෍ ௜௝ݔ௜௝ݎ ൌ ,௝ݔ ݆ ൌ 1, … , ݊,௠
௜ୀଵ  

෍ ௜௝ݔ ൑ ܽ௜, ݅ ൌ 1, … , ݉,௡
௝ୀଵ ௜௝ݔ  ൒ 0, ݅ ൌ 1, … , ݉, ݆ ൌ 1, … , ݊. 

Usually the two objective functions have different minima. Our goal is to find 
a solution method that finds the efficient (Pareto-optimal) solutions. 
 
3 Algorithm – the main idea 
 

Let S denote the set of all feasible solutions of the BSGTP. The problem may be 
rewritten as: min min ,(ݔ)݂  ,(ݔ)݃
s. t. ݔ א ܵ. 
The following observation is a corollary from the well-known result about the 
efficiency of the solution to the weighting problem (see e.g. Miettinen, 1998,  
p. 78, Theorem 3.1.2). 
 

Observation 1 
If څݔ is, for some ߣ ൐ 0, an optimal solution to the problem: min (ݔ)݄ ൌ (ݔ)݂ ൅  (ݔ)݃ߣ
s. t. ݔ א ܵ, 
then it is a Pareto-optimal solution of the BSGTP. 
 

Minimizing ݄(ݔ) on S always leads to an efficient solution. The problem ob-
tains then the form of a GTP with a nonlinear objective function. The function ݄(ݔ) is not necessarily convex, but it is a separable function in which each 
summand is a DC-function. Thus one can use a branch-and-bound method to de-
termine an exact solution. We will discuss such a method in the next section. 
 
4 Algorithm – the details 
 

The method that we are going to present uses the ideas discussed by Falk and 
Soland (1969), as well as by Holmberg and Tuy (1999). Assume that the variable ݔ௝ is bounded from below and from above: ௝݈ ൑ ௝ݔ ൑  :௝൯ is convex, we haveݔ௝൫ݍ ௝. Since the functionݑ
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௝൯ݔ௝൫ݍ ൑ ;௝ݔ௝൫ݎ ௝݈,  ௝൯ݑ
for ௝݈ ൑ ௝ݔ ൑ ;௝ݔ௝൫ݎ :௝, whereݑ ௝݈, ௝൯ݑ ൌ ௝൫ݍ ௝݈൯ ൅ ௝ݔ െ ௝݈ݑ௝ െ ௝݈ ቀݍ௝൫ݑ௝൯ െ ௝൫ݍ ௝݈൯ቁ 

is a linear function such that: ݎ௝൫ ௝݈; ௝݈ , ௝൯ݑ ൌ ௝൫ݍ ௝݈൯ 
and: ݎ௝൫ݑ௝; ௝݈, ௝൯ݑ ൌ  .௝൯ݑ௝൫ݍ
 

This means that for each index ݆ we have: 
 ݃௝൫ݔ௝൯ ൌ ௝൯ݔ௝൫݌ െ ௝൯ݔ௝൫ݍ ൒ ௝൯ݔ௝൫݌ െ ;௝ݔ௝൫ݎ ௝݈, ௝൯ݑ ൌ ݃௝څ൫ݔ௝; ௝݈;  .௝൯ݑ
 

One can see that ݃௝څ൫ݔ௝; ௝݈; ൣ ௝൯ on the intervalݔ௝൯ is a lower estimate of ݃௝൫ݑ ௝݈,  the vector of the upper ݑ ௝൧. Let ݈ be the vector of the lower bounds andݑ
bounds. Let: ݄ݔ)څ; ݈; (ݑ ൌ ෍ ቀ ௝݂൫ݔ௝൯ ൅ ;௝ݔ൫څ௝݃ߣ ௝݈; ௝൯ቁ௡ݑ

௝ୀଵ . 
Of course, ݄ݔ)څ; ݈;  on the generalized rectangle (ݔ)݄ is a lower estimate of (ݑ
defined by the inequalities ݈ ൑ ݔ ൑ This means that the new problem: min .ݑ ;ݔ)څ݄ ݈;  (ݑ
s. t. ݔ א ܵ, 
has the form of an SGTP and can be solved using the Equalization Method (see 
Anholcer, 2012 and 2015). Note that no additional constraints are introduced, so 
the set of feasible solutions does not change. 

The rule of branching is as follows. After solving the problem with function ݄ݔ)څ; ݈;  we check whether the solution is satisfactory for some predefined ,(ݑ
accuracy level ߝ. If it is not, we choose ݆ for which the difference ݎ௝൫ݔ௝; ௝݈; ௝൯ݑ െെ ݍ௝൫ݔ௝൯ is the largest and define two child problems by setting ௝݈ ؔ ௝ݑ ௝ andݔ ؔ  ௝, respectively, for the new problems (recall that we do not change the setݔ
of feasible solutions; those values are used only to find the formula of the lower 
estimate function). 

Finally, we can write the algorithm as follows (ܷ௛ and ܷ௫ denote the upper 
bound on the optimal value of the objective and the point at which this value is 
reached, respectively; for a given node ݒ of the solution tree, (ݒ)ܮ and ܲ(ݒ) de-
note the lower bound on the optimal value of the objective and the correspond-
ing convex problem). 
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Algorithm 1: The Branch and Bound Method for BSGTP 
Input: initial problem, the value of ߣ ൐ 0, accuracy level ߝ. 
Output: Pareto-optimal solution څݔ. 
1. Initial solution. Let the initial bounds for each ݔ௝ be:  

௝݈ ൌ 0, ௝ݑ ൌ ෍ ௜௝ܽ௜௠ݎ
௜ୀଵ . 

Solve (using the Equalization Method) the corresponding problem ܲ(ݒ଴): min ;ݔ)څ݄ ݈;  (ݑ
s. t. ݔ א ܵ. 
Assume that the obtained optimum is څݔ. Set ܷ௫ ൌ ௛ܷ ,څݔ ൌ (଴ݒ)ܮ and ,(څݔ)݄ ൌ ;څݔ)څ݄ ݈;  .଴ is the root of the solution treeݒ where ,(ݑ
Go to step 2. 

2. Checking the optimality. Find an active node څݒ, for which (ݒ)ܮ has the 
minimum value. If:  |ܷ௛ െ |(څݒ)ܮ ൏  ,ߝ
then STOP. The solution ܷ௫ is satisfactory. Otherwise go to step 3. 

3. Branching and bounding. Consider the problem ܲ(څݒ). Let ݆څ be an index ݆ 
for which the difference ݎ௝൫ݔ௝; ௝݈; ௝൯ݑ െ  ௝൯ is the largest. Remove theݔ௝൫ݍ
node څݒ from the set of active nodes. Add two new active nodes ݒ ′ and ݒ ′′ 
and define the corresponding convex problems. To obtain ܲ൫ݒ ′൯, set ݑ௝څ ൌ څڅ௝ݔ  
in ܲ(څݒ). To obtain ܲ൫ݒ ′′൯, set ௝݈څ ൌ څڅ௝ݔ  in ܲ(څݒ). Let us denote the new 
bounding vectors by ݈′, ,′ݑ ݈′′,  .respectively ,′′ݑ
Solve ܲ൫ݒ ′൯ and ܲ൫ݒ ′′൯ using the Equalization Method. Assume that the ob-
tained optima are ݔ ′ and ݔ ′′, respectively. If ܷ௛ ൐ ݄൫ݔ ′൯, then set ܷ௫ ൌ ݔ ′ and ܷ௛ ൌ ݄൫ݔ ′൯. Set ܮ൫ݒ ′൯ ൌ ݔ൫څ݄ ′; ݈′; ൯. If ܷ௛′ݑ ൐ ݄൫ݔ ′′൯, then set ܷ௫ ൌ ݔ ′′ and ܷ௛ ൌ ݄൫ݔ ′′൯. Set ܮ൫ݒ ′′൯ ൌ ݔ൫څ݄ ′′; ݈′′;  .൯′′ݑ
Close all the active nodes ݒ for which (ݒ)ܮ ൐ ܷ௛ െ  .ߝ
Go back to step 2. 

 
5 Illustrative example 
 

Let us analyze a simple example that illustrates the algorithm. Assume that there 
are two supply points with the supply equal to ܽଵ ൌ  ܽଶ ൌ 15 and three destina-
tions, with uniform demand distribution given by the density functions: ߮ଵ(ݔଵ) ൌ ൝ 110 , ݔ א ሾ0,10ሿ,0, ݔ ב ሾ0,10ሿ,  
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߮ଶ(ݔଶ) ൌ ൝ 112 , ݔ א ሾ0,12ሿ,0, ݔ ב ሾ0,12ሿ,  

 ߮ଷ(ݔଷ) ൌ ൝ 114 , ݔ א ሾ0,14ሿ,0, ݔ ב ሾ0,14ሿ.  

The unit transportation costs ܿ௜௝, the reduction ratios ݎ௜௝, the surplus costs ݏ௝(ଵ) and the shortage costs ݏ௝(ଶ) are given in the Table 1. 
 

Table 1: Problem parameters 
 

Parameter ࢐ ൌ ૚ ࢐ ൌ ૛ ࢐ ൌ ૜ Parameter ࢐ ൌ ૚ ࢐ ൌ ૛ ࢐ ൌ ૜ ܿଵ௝ 5 3 2 ݎଵ௝ 0.92 0.95 0.93 ܿଶ௝ 2 1 4 ݎଶ௝ 0.91 0.87 0.92 ݏ௝(ଵ) 1 4 5 ݏ௝(ଶ) 4 6 10 

 
Assume that we are interested in finding the solution for ߣ ൌ 0.5 and ߝ ൌ 0.01. The functions of expected costs are given by: 

ଵ݂(ݔଵ) ൌ ൝14 ଶݔ െ ݔ4 ൅ 20, ݔ א ሾ0,10ሿ,ݔ െ 5, ݔ ൐ 10,  

ଶ݂(ݔଶ) ൌ ൝ 512 ଶݔ െ ݔ6 ൅ 36, ݔ א ሾ0,12ሿ,4ݔ െ 24, ݔ ൐ 12,  

ଷ݂(ݔଷ) ൌ ൝1528 ଶݔ െ ݔ10 ൅ 70, ݔ א ሾ0,14ሿ,5ݔ െ 35, ݔ ൐ 14.  

The functions ݌௝ have the form: 

(ଵݔ)ଵ݌ ൌ ൞െ 12 ଷݔ ൅ ଶݔ16 െ ݔ160 ൅ 16003 , ݔ א ሾ0,10ሿ,ݔଶ െ ݔ10 ൅ 1003 , ݔ ൐ 10,  

(ଶݔ)ଶ݌ ൌ ቐെ 59 ଷݔ ൅ ଶݔ36 െ ݔ432 ൅ 1728, ݔ א ሾ0,12ሿ,16ݔଶ െ ݔ192 ൅ 768, ݔ ൐ 12,  

(ଷݔ)ଷ݌ ൌ ൞െ 2514 ଷݔ ൅ ଶݔ100 െ ݔ1400 ൅ 196003 , ݔ א ሾ0,14ሿ,25ݔଶ െ ݔ350 ൅ 49003 , ݔ ൐ 14.  
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The first bounds on the variables (corresponding to the node ݒ଴) are defined by 0 ൑ ଵݔ ൑ 27.45, 0 ൑ ଶݔ ൑ 27.3 and 0 ൑ ଷݔ ൑ 27.75. The respective linear es-
timates of ݍ௝ are equal to: ݎଵ(ݔଵ) ൌ 400 ൅ ଵݔ െ 027.45 െ 0 (504.0025 െ (ଶݔ)ଶݎ (400 ൌ 1296 ൅ ଶݔ െ 027.3 െ 0 (7259.04 െ (ଷݔ)ଷݎ (1296 ൌ 4900 ൅ ଷݔ െ 027.75 െ 0 (10764.0625 െ 4900) 

The solution of the problem ܲ(ݒ଴) is as follows:  
 

Table 2: Solution 
 

Value ࢐ ൌ ૚ ࢐ ൌ ૛ ࢐ ൌ ૜ Value ࢐ ൌ ૚ ࢐ ൌ ૛ ࢐ ൌ ૜ ݔଵ௝ 0.00 3.02 11.98 ݌௝൫ݔ௝൯ 74.03 628.64 878.24 ݔଶ௝ 5.40 9.60 0.00 ݍ௝൫ݔ௝൯ 40.67 446.96 628.89 ݔ௝ 4.92 11.22 11.14 ݎ௝൫ݔ௝൯ 418.63 3747.27 7253.62 ௝݂൫ݔ௝൯ 6.38 21.14 25.08 ݎ௝൫ݔ௝൯ െ  ௝൯ 377.96 3300.30 6624.73ݔ௝൫ݍ

 
The objectives of the initial problem and of the convex problem are ݄(څݔ) ൌൌ 338.215 and ݄(څݔ)څ ൌ െ4813.279. This means that ܮ(ݒ଴) ൌ െ4813.279 and ܷ௛ ൌ (଴ݒ)ܷ ൌ 338.215. Since ݒ଴ is the only (active) node and |ܷ௛ െ |(଴ݒ)ܮ ൐  ,ߝ

we perform branching with respect to the variable ݔଷ (the maximum difference ݎ௝൫ݔ௝൯ െ (ଷݔ)ଷݎ ௝൯ isݔ௝൫ݍ െ ଷݔ Since .((ଷݔ)ଷݍ ൌ 11.138, the new nodes ݒଵ and ݒଶ will correspond to the additional constraints ݔଷ ൑ 11.138 and ݔଷ ൒ 11.138, 
respectively. After defining the functions ݎ௝൫ݔ௝൯ and solving the new problems, 
we obtain ܮ(ݒଵ) ൌ െ2289.611, ܷ(ݒଵ) ൌ (ଶݒ)ܮ ,448.384 ൌ െ1995.718 and ܷ(ݒଶ) ൌ (ଵݒ)ܷ .489.812 ൐ ܷ௛ ܷ(ݒଶ) ൐ ܷ௛, so ܷ௛ does not change (and ܷ௫ 
remains the optimal solution of ܲ(ݒ଴)). Now the two active nodes are ݒଵ and ݒଶ. 
The function ܮ is minimized at ݒଵ and |ܷ௛ െ |(ଵݒ)ܮ ൐ -so we perform branch ,ߝ
ing and continue in this way. At some moment we obtain ܷ(଼ݒ) ൌ 224.145, 
which means that starting from this moment ܷ௛ ൌ 224.145 and ܷ௫ becomes the 
optimal solution of ܲ(଼ݒ). After a few more iterations, after branching at ݒଵଷ, we 
obtain, in particular, that at ݒଶଶ we have ܮ(ݒଶଶ) ൌ 259.418, which means that ܮ(ݒଶଶ) ൐ ܷ௛ െ  ଶଶ. The details for the first 51 nodes haveݒ and we close node ߝ
been collected in Table 3 below. In each row, the label of node ݒ௝ is followed by 
the label of the parent node; two child nodes, order of branching, branching vari-
able and its value (if the branching was performed at ݒ௝); the values of both ob-
jectives: ܷ൫ݒ௝൯ and ܮ൫ݒ௝൯; and the actual value of ܷ௛. At the stage presented in 
the table, 25 nodes are still active (A), four have been closed (C), and the 
branching has been performed at the other nodes. 
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Table 3: Beginning of the algorithm 
 

Node 
(v) 

Parent 
node 

Child 
nodes 

Checking 
order 

Branching 
variable 

Branching 
value 

U(v) L(v) Uh 

1 2 3 4 5 6 7 8 9 

v0 
none 
(root) 

v1, v2 1 x3 11.138 338.215 – 4813.279 338.215 

v1 v0 v3, v4 2 x2 12.393 448.384 – 2289.611 338.215 
v2 v0 v5, v6 3 x2 9.393 489.812 – 1995.718 338.215 
v3 v1 v7, v8 4 x3 6.089 367.325 – 1080.794 338.215 
v4 v1 v9, v10 5 x3 5.672 541.545 – 936.929 338.215 
v5 v2 v11, v12 6 x3 18.044 445.815 – 892.492 338.215 
v6 v2 v13, v14 7 x3 15.495 558.560 – 587.665 338.215 
v7 v3 v17, v18 9 x2 6.072 580.604 – 357.557 224.145 
v8 v3 v15, v16 8 x2 6.072 224.145 – 447.747 224.145 
v9 v4 v25, v26 13 x2 18.395 762.404 – 194.699 224.145 

v10 v4 v23, v24 12 x2 16.601 387.967 – 222.306 224.145 
v11 v5 v19, v20 10 x2 5.100 375.752 – 271.061 224.145 
v12 v5 v31, v32 16 x2 3.641 523.392 – 128.550 224.145 
v13 v6 v21, v22 11 x2 14.436 411.793 – 249.963 224.145 
v14 v6 A A A A 551.582 110.603 224.145 
v15 v8 v29, v30 15 x1 7.933 281.030 – 134.819 224.145 
v16 v8 v27, v28 14 x1 7.933 240.024 – 134.905 224.145 
v17 v7 v39, v40 20 x3 4.163 637.550 – 44.627 224.145 
v18 v7 v37, v38 19 x3 4.161 590.147 – 49.242 224.145 
v19 v11 v35, v36 18 x1 8.462 429.345 – 67.279 224.145 
v20 v11 v33, v34 17 x1 6.805 345.258 – 85.043 224.145 
v21 v13 v49, v50 25 x1 5.181 344.501 56.284 224.145 
v22 v13 C C C C 445.887 259.418 224.145 
v23 v10 v41, v42 21 x1 5.625 321.107 – 3.570 224.145 
v24 v10 A A A A 445.700 115.497 224.145 
v25 v9 A A A A 708.643 120.357 224.145 
v26 v9 A A A A 819.072 186.977 224.145 
v27 v16 v43, v44 22 x3 8.893 245.454 9.312 224.145 
v28 v16 A A A A 246.101 57.107 224.145 
v29 v15 v45, v46 23 x2 3.950 296.393 19.732 224.145 
v30 v15 v47, v48 24 x2 3.884 303.556 55.917 224.145 
v31 v12 A A A A 583.376 65.850 224.145 
v32 v12 A A A A 499.660 102.411 224.145 
v33 v20 A A A A 368.272 80.426 224.145 
v34 v20 A A A A 340.735 115.675 224.145 
v35 v19 A A A A 441.503 76.627 224.145 
v36 v19 A A A A 440.998 126.633 224.145 
v37 v18 C C C C 721.613 259.574 224.145 
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Table 3 cont. 
 

1 2 3 4 5 6 7 8 9 
v38 v18 A A A A 325.146 77.547 224.145 
v39 v17 C C C C 768.302 263.785 224.145 
v40 v17 A A A A 372.663 82.115 224.145 
v41 v23 A A A A 342.190 160.389 224.145 
v42 v23 A A A A 319.241 190.339 224.145 
v43 v27 A A A A 255.496 87.144 224.145 
v44 v27 A A A A 245.696 81.619 224.145 
v45 v29 A A A A 336.275 126.426 224.145 
v46 v29 A A A A 241.175 85.048 224.145 
v47 v30 A A A A 343.076 163.929 224.145 
v48 v30 A A A A 251.624 125.184 224.145 
v49 v21 A A A A 404.270 214.555 224.145 
v50 v21 C C C C 329.764 246.344 224.145 

 
6 Computational experiments 
 

Test problems were randomly generated and solved with the proposed method. 
Two types of demand distributions were considered: uniform ܷ(0, -and expo (ݑ 
nential ݌ݔܧ(λ), where ݑ and λ were chosen uniformly at random from the inter-
vals ሾ15,  20) and ሾ0.5,  0.6), respectively. In both cases unit transportation costs 
were chosen from the interval ሾ5,  10), surplus costs from the interval ሾ1,  2), 
shortage costs from the interval ሾ5,  10), reduction ratios from the interval ሾ0.8,  0.9) and the supply from each source point from the interval ሾ10,  20). The 
algorithm was implemented in Java SE and run on a personal computer with  
Intel(R) Core(TM) i7-2670 QM CPU @2.20 GHz. For both types of distributions, 
100 randomly generated problems of four sizes were solved: (m, n) = (10, 10), 
(10, 20), (10, 50) and (20, 50), that is, 800 test problems in total. The running 
times in seconds (average, standard deviation, minimum and maximum) are pre-
sented in Table 4: 
 

Table 4: Running times in seconds 
 

Problem 
type 

U(0, u) 
10×10 

U(0, u) 
10×20 

U(0, u) 
10×50 

U(0, u) 
20×50 

Exp(λ) 
10×10 

Exp(λ) 
10×20 

Exp(λ) 
10×50 

Exp(λ) 
20×50 

AVG 0.16 0.95 159.79 2316.95 2.35 8.10 1039.79 5445.41 
ST DEV 0.45 2.72 181.66 1255.08 10.82 45.34 1183.32 3449.44 

MIN 0.02 0.12 16.40 289.35 0.12 0.52 96.99 718.73 
MAX 6.64 37.41 1538.15 10128.26 207.66 1204.13 9029.58 29031.47 
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As we can see, the algorithm can be regarded as fast: the running times are 
less than a second or a few seconds in the case of the smaller problems and 
about one hour in the case of the bigger problems (up to 1000 variables). How-
ever, one needs to remember that the branch and bound methods are super-
polynomial, which means that the solution times may grow very rapidly with the 
increasing size of the problem. 
 
7 Final remarks 
 

The algorithm presented above allows to find the Pareto-optimal solutions of the 
Bi-criteria Stochastic Generalized Transportation Problem. In this type of prob-
lem we assume that one of the criteria is the sum of the transportation cost and 
the expected total extra cost of all the deliveries. The second criterion is the risk 
measured by the variance of the expected extra cost. The resulting problem, 
which allows to find the efficient solutions, is a non-convex optimization prob-
lem that can be solved with a branch-and-bound method described in the paper. 
The subproblems solved in the nodes of the solution tree are of SGTP form and 
therefore can be solved using the Equalization Method. The numerical evidence 
shows that the presented algorithm allows to solve problems of average size in  
a reasonable time. 
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