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Agata Berdowska

Gabriela Górecka-Berdowska

BLENDED LEARNING

A NAUCZANIE MATEMATYKI

NA STUDIACH EKONOMICZNYCH

Wstęp

Podobnie jak wicie uczelni na całym świccie, polskie szkolnictwo wyższe 
stoi przed obliczem nowych zagrożeń i wyzwań, jakie niesie ciągle zmieniający 
się świat (np. niż demograficzny, emigracja zarobkowa). Stąd polskie uczelnie 
powinny podjąć starania w celu rozszerzenia swojej oferty edukacyjnej o nowe 
rozwiązania. W dzisiejszym święcie nie wystarcza jakość kształcenia oraz zakres 
dziedzinowy oferowany przez instytucje edukacyjne. Młodzi ludzie coraz czę­
ściej starają się godzić pozyskanie dobrego wykształcenia z pracą zarobkową. 
Wielu Polaków decyduje się na studia w trybie zaocznym, jednocześnie pracując 
w innym kraju na terenie Unii Europejskiej. Zatem ogromne znaczenie mają dla 
nich ułatwienia w pozyskiwaniu wiedzy oraz koszty nauki. Nauczanie elektro­
niczne (na odległość) wydajc się być szansą dla polskiego szkolnictwa wyższego 
na przezwyciężenie trudności oraz możliwością jego rozwoju. Takie nauczanie 
umożliwia naukę zarówno osobom przebywającym poza granicami kraju, jak 
i tym, którzy chcą się przekwalifikować. Szkolenia elektroniczne są idealnym 
rozwiązaniem dla osób niepełnosprawnych, co tym samym, z perspektywy uczel­
ni, powoduje dotarcie oferty edukacyjnej do nowej grupy odbiorców.

W celu wzbogacenia oferty dydaktycznej uczelni oraz zachowania wyso­
kich standardów kształcenia można, np. na studiach zaocznych, wprowadzić 
szkolenia elektroniczne jako uzupełnienie nauczania w formie tradycyjnej.
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Jednym z podstawowych przedmiotów wykładanych na uczelniach ekono­
micznych jest matematyka. Realizacja elektronicznych materiałów dydaktycz­
nych z tego przedmiotu przysparza ich wykonawcom sporo trudności. Dzieje się 
tak, ponieważ matematyka nic jest łatwym przedmiotem do nauczania nawet 
w formie tradycyjnej. Istotny jest zatem sposób opracowywania tych materiałów 
i realizacja całego szkolenia.

Poniżej zaprezentowano przykład przygotowania takich materiałów. Prezen­
tację poprzedzono omówieniem pewnych niezbędnych zagadnień, takich jak: 
kształcenie na odległość, szkolenia elektroniczne, szkolenia mieszane, podsta­
wowe zagadnienia dydaktyki matematyki i psychologii istotne dla opracowywa­
nia elektronicznych materiałów dydaktycznych.

1. Kształcenie na odległość - szkolenia 
elektroniczne i mieszane

Za początki kształcenia na odległość można uznać publikację na szeroką 
skalę książki Platona („Dialogi” Sokratesa). Ogromny wpływ na rozwój naucza­
nia na odległość miało rozpowszechnianie się religii chrześcijańskiej. Wyznaw­
cy wiary przekazywali sobie przemyślenia i „odkrycia” w tej dziedzinie drogą li­
stowną. W XIX wieku szkolenie ludzi na odległość odbywało się poprzez 
dostarczanie materiałów dydaktycznych za pośrednictwem poczty. Kolejnym 
sposobem kształcenia dystansowego stały się w 1925 roku szkolenia drogą ra­
diową, a następnie w 1940 roku - uruchomienie transmisji programów eduka­
cyjnych w telewizji. Dalszy rozwój szkoleń na odległość to lata 80. ubiegłego 
wieku, kiedy to powstała technologia tclekonferencji. Natomiast lata 90. to roz­
wój Internetu i zaawansowanej technologii informatycznej, wpływających na te­
raźniejszą formę szkoleń na odległość [4; 7].

W chwili obecnej popularnymi formami nauczania na odległość na świecie 
są: e-learning, blendcd learning oraz m-learning. E-learning, czyli szkolenia 
elektroniczne, to kształcenie na odległość z wykorzystaniem komputerów lub 
sieci Internet. Zajęcia mogą się odbywać całkowicie za pośrednictwem sieci 
w czasie rzeczywistym (on line) lub off line, jeśli elektroniczne materiały dydak­
tyczne zostały dostarczone uczestnikom np. na płytach CD lub DVD. Komuni­
kacja pomiędzy uczestnikami kursu oraz z prowadzącym szkolenie odbywa się 
przez Internet (czaty lub e-mail). Udział osoby prowadzącej proces dydaktyczny 
jest tutaj ograniczony do przygotowania treści dydaktycznych oraz do spora­
dycznego komunikowania się z osobami szkolonymi. Blended learning - w tłu­
maczeniu szkolenie mieszane - charakteryzuje się tym, iż część zajęć jest pro­
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wadzona „na żywo” przez nauczyciela w rzeczywistych salach, a pozostała 
część w formie wirtualnej. M-lcarning to szkolenia mobilne, czyli realizowane 
za pomocą telefonów komórkowych (nie zostały one tutaj szerzej omówione, 
ponieważ nic będą rozważane w dalszej części tego opracowania).

Nauczanie na odległość w formie e-learning jest trudnym wyzwaniem dla 
osób tworzących materiały dydaktyczne, ponieważ, jak już wspomniano, udział 
osoby prowadzącej w tych szkoleniach jest znikomy. W szkolen.ach typu blended 
learning osoby szkolone mają większy kontakt z prowadzącym, niemniej ze 
względu na to, iż pewne partie materiału muszą oni przyswoić samodzielnie, 
elektroniczne materiały dydaktyczne powinny być tworzone w podobny lub 
identyczny sposób, w jaki tworzy się je do nauczania w formie e-lcarning. Mate­
riały te mają najczęściej formę multimedii ilnych prezentacji (tekst, rysunki, wzory, 
filmy, dźwięk) lub dokumentów tekstowych dostarczanych uczestnikom kursów. 
Wynika to ze zróżnicowanych potrzeb użytkowników (np. różne wymagania 
i nawyki uczenia się) [10],

Zauważono wcześniej, że matematyka jest przedmiotem trudnym do prze­
kazania nawet za pomocą tradycyjnych metod kształcenia. Wydaje się, że korzy­
stanie tylko z tekstowego rodzaju mate iałów dydaktycznych w szkoleniach 
elektronicznych jest niewystarczające. Za pomocą samego tekstu bardzo trudno 
jest nauczyć się matematyki samodzielnie, dlatego do budowy elektronicznych 
materiałów dydaktycznych z tego przedmiotu pomocne może być zastosowanie 
animaci i i elementów interakcji .

2. Wybrane zagadnienia dydaktyki
i psychologii uczenia się w projekcie
szkolenia mieszanego z matematyki

Jak juz wspomniano powyżej, zastosowanie animacji i elementów interakcji 
w elektronicznych materiałach dydaktycznych z matematyki może wpłynąć ko­
rzystnie na realizację tego przedmiotu także w szkoleniach mieszanych. Jednak 
samo wkomponowanie tych elementów nic wystarczy, aby zbudować efektywne

„Właściwość urządzenia elektronicznego, a także programów, gier itp., polegająca na moż­
liwości «prowadzenia dialogu» z użytkownikiem, reagowania na jego polecenia itp.: Dzięki inte­
raktywności odtwarzacza każdą ze scen można łatwo powtarzać, zwalniać i zatrzymywać. 
INTERAKTYWNY o urządzeniu elektronicznym: «taki który odznacza się tą cechą, współpracu­
jący z odbiorcą»".
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szkolenie . Twórca materiałów musi znać podstawowe zagadnienia z psychologa 
uczci na się oraz pewne ogólne zasady nauczania matematyki.

W nauczaniu tego przedmiotu w sposób tradycyjny wykorzystuje się trzy 
podejścia psychologiczne;
1 ) koncepcję behawiorystyczną,
2) koncepcję psychodynamiczną,
3) koncepcję poznawczą [5; 1].

Tco -a behawioryzmu zakłada, że zachowanie się człowieka, jego osiągnię­
cia w nauce oraz w trakcie pracy twórczej wynikają z potencjału genetycznego 
danego osobnika, jak również zależą od środowiska Fizycznego i społecznego. 
Aby móc wpływać na zachowanie i proces uczenia się (a więc nauczać) czło­
wieka, należy bacznie obserwować jego zachowanie oraz relację występującą 
pomiędzy bodźcem a reakcją na ten bodziec (w cybernetyce i ekonomii jest to 
nazywane analizą „wejście - wyjście”). Behawioryzm zakłada, że największy 
wpływ na zachowanie człowieka ma środowisko społeczne, a nie procesy psy­
chiczne, takie jak świadomość, myślenie czy postawy, a to oznacza, że zdolności 
uczenia się człowieka są zasadniczo nieograniczone. Wpływ na osobnika mają 
wzmocnienia (nagrody lub kary bądź pozytywne lub negatywne konsekwencje 
postępowania człowieka) i umiejętny ich dobór, prowadzący do najlepszych 
osiągnięć w procesie kształcenia.

Elementem koncepcji behawiorystycznej jest nauczanie programowe, które 
opiera się na stworzeniu odpowiedniego programu nauczania i jego realizacji za 
pomocą środków dydaktycznych (np. wykład, ćwiczenia, film, rysunki, ilustra­
cje itp.) oraz sprawdzaniu poziomów jego realizacji, co pozwala na wyznaczanie 
nagród lub kar.

Założeniem koncepcji psychodynamicznej jest determinowanie zachowań 
człowieka przez wewnętrzne mechanizmy motywacyjne. Mechanizmami moty­
wacyjnymi są popędy, potrzeby i dążenia, które nie zawsze są ze sobą w zgodzie 
i człowiek nic zawsze potrafi sam rozwiązać powstałe pomiędzy nimi konflikty. 
Według takiego podejścia, uczenie się jest podobne do psychoterapii prowadzą­
cej do zmian w zachowaniu człowieka. Głównym nurtem zainteresowań psy­
choanalityków są motywy, jakimi kierują się ludzie w trakcie nauki, oraz to, dla­
czego jedni uczą się lepiej, a inni gorzej. Koncepcja ta ma jednak pewną wadę, 
a mianowicie przecenia przewagę czynników emocjonalnych i motywacyjnych 
nad procesami poznawczymi (spostrzeganie, pamięć i myślenie).

W koncepcji poznawczej człowiek jest postrzegany jako układ przetwarza­
jący informacje. Na zachowanie człowieka ma wpływ nie tylko dostarczana

Przez efektywność szkolenia można rozumieć np pozytywne wyniki osiągane przez osoby 
szkolone.
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w danym momencie aktualna wiedza, ale także wiedza, jaką zdobył i zgromadził 
wcześniej (czyli doświadczenie) Chcąc zgodnie z założeniami tej teorii wpływać 
na zachowania człowieka, należy go celowo i systematycznie wychowywać. Kon­
cepcja ta nic jest całkowicie jednolita. Można w niej wyodrębnić kilka nurtów:
1. Poznawczo-dccyzyjny - czynności wykonywane przez człowieka są powo­

dowane informacjami pozyskanymi od środowiska w trakcie procesu ucze­
nia się bądź myślenia czy działania.

2. Sformalizowanych modeli teoretycznych — źródłem tego nurtu stał się roz­
wój cybernetyki, ekonometrii i lingwistyki. Nurt ten zakłada, że człowiek, 
oprócz zachowania automatycznego, czyli nieświadomych odruchów, wyko­
rzystuje również działania całkowicie świadome i celowe. Zwolennicy tego 
nurtu są również zainteresowani wykrytą przez neurologów różnicą pomię­
dzy pamięcią świeżą, przechowującą informacje niezbędne do realizacji ak­
tualnie wykonywanej czynności, a trwałą, w której są przechowywane in­
formacje niezbędne do wykonywania różnych czynności, niekoniecznie 
realizowanych w danym momencie.

3. Teorii czynności - podstawą tego nurtu jest pojęcie czynności. Pod pojęciem 
tym rozumie się zachowanie z góry nastawione na osiągnięcie postawionego 
celu. Bardzo ważne są tutaj badania nad strukturą czynności oraz „mechani­
zmami sterującymi ich ukierunkowanym przebiegiem” [5, s. 40].
Podsumowując powyższe poglądy na postrzeganie człowieka, można przy­

toczyć cytat’ „Współcześni psychologowie zgromadzili ogromny materiał empi­
ryczny na temat funkcji i struktury procesów poznawczych. Wynika z niego, że 
człowiek jest pewnym układem poznawczym, który przetwarza informacje 
(information processing system). Przyjmuje informacje ze świata zewnętrznego, 
czyli spostrzega; koduje je w pamięci trwałej; wreszcie operuje tymi informa­
cjami, czyli myśli. Procesy poznawcze nie są przypadkowe, odbywają się one 
zgodnie z pewnymi programami lub planami czynności. O ile dzięki motywacji 
człowiek wic, co warto osiągnąć, o tyle dzięki poznaniu orientuje się, co można 
zdobyć” [5, s. 411.

Można zauważyć, że w trakcie procesu uczenia się i nauczania sposobem 
tradycyjnym są wykorzystywane wszystkie trzy koncepcje psychologiczne.

W nauczaniu na odległość, zwłaszcza metodą e-learning, wydaje się być 
wykorzystywane przede wszystkim podejście bchawiorystyczne (por. [10]). Stąd 
kształcenie metodą e-learning jest trudniejsze niż nauczanie tradycyjne lub me­
todą blended learning Blended learning poprzez zajęcia laboratoryjne jest 
w pewnym stopniu podobny do kształcenia tradycyjnego, gdyż podczas zajęć 
prowadzący ma możliwość wpływania na kursantów również za pomocą podej­
ścia psychodynamiczncgo i poznawczego.
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Na proces kształcenia istotny wpływ mają różne rodzaje uczenia się. Naj­
bardziej popularne są dwie koncepcje:
1 ) uczenie się receptywne (odtwórcze),
2) uczenie się odkrywające (inaczej problemowe) [3|.

Uczenie się receptywne to uczenie się przez przyswajanie. Polega ono na 
pobieraniu informacji z różnych źródeł, przetwarzaniu ich oraz zapamiętywaniu. 
Jest ono bardzo pomocne w nauczaniu matematyki. Najlepiej sprawdza się na 
wyższych poziomach kształcenia, ponieważ najefektywniejsze nauczanie recep­
tywne polega na nauce treści materiałów opierających się na informacjach wy­
uczonych wcześniej, a nie tylko na uczeniu się na pamięć treści zupełnie no­
wych. Do planowania kształcenia pojęć matematycznych używa się pięciu zasad 
nauczania receptywnego, które zostały przedstawione poniżej:

nastawienie na zainteresowanie ucznia przedmiotem oraz organizowanie je­
go postępów poprzez odpowiednią motywację oraz pytania i wskazówki, 
progresywne różnicowanie pojęć za pomocą uogólnień i konkretyzacji, 
integracja w rozum eniu przypadków szczególnych danego pojęcia, związ­
ków pomiędzy pojęciami i analogii,

- systematyczna organizacja uczenia się poprzez kolejność w realizacji tema­
tów,
konsolidacja za pomocą utrwalania wiadomości poprzez ćwiczenia oraz po­
wtarzanie i stosowanie wyuczonych informacji.
Zasadniczą tezą uczenia się odkrywającego jest samodzielne poszukiwanie 

faktów oraz odkrywanie związków pomiędzy nimi. W myśl tej zasady zakłada 
się, że osoba ucząca się lepiej zapamiętuje samodzielnie pozyskaną i przeanali­
zowaną wiedzę. Główną ideą uczenia się problemowego jest sterowanie odkry­
waniem wiedzy (guided discovery learning) przez nauczyciela. Sterowanie to 
powinno usamodzielniać przechodzenie ucznia przez zasadnicze etapy rozwią­
zywania postawionego problemu.

Aby koncepcja uczenia się odkrywającego była efektywna, należy prze­
strzegać dwóch podstawowych zasad:
1) właściwego stawiania problemu,
2) minimalnej wskazówki.

Pierwsza z zasad jest jednak bardzo często pomijana w trakcie procesu na­
uczania, ponieważ pytania problemowe powstają spontanicznie w trakcie pracy 
z osobami uczącymi się [3].

Uczenie odkrywające jest uważane za bardziej czasochłonne w porównaniu 
z nauczaniem reccptywnym, stąd też rzadsze jego zastosowanie. Jednak w tra­
dycyjnym nauczaniu matematyki stosuje się obie koncepcje.
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Analizując powyżej przedstawione rodzaje uczenia się, można zauważyć, 
że w c-lcarningu jest stosowany rodzaj uczenia się receptywnego. Wynika to 
z założeń samodzielnej nauki na podstawie dostarczanych materiałów. Natomiast 
w blended learningu wykorzystuje się ponadto uczenie się odkrywające, podob­
nie jak w nauczaniu tradycyjnym, ze względu na osobiste spotkania kursantów 
z nauczycielem. Wydajc się, że oba te podejścia można zastosować w materiałach 
dydaktycznych, co powinno korzystnie wpłynąć na ich jakość i efektywność.

W konkretnym przypadku nauczania matematyki na odległość podstawową 
oraz najskuteczniejszą metodą w projektowaniu elektronicznych materiałów dy­
daktycznych jest tzw. metoda aksjomatyczna. Polega ona na aksjomatyzacji, 
czyli podaniu gotowych treści matematycznych przez nauczyciela i dedukcji 
podanych zagadnień przez osoby uczące się na podstawie przytoczonych przy­
kładów oraz interpretacji i zastosowaniu zdobytej w trakcie nauki wiedzy. Aby 
nauczanie matematyki tą metodą było skuteczne i efektywne, należy pamiętać 
o zaangażowaniu w ten proces wyobraźni, myślenia oraz świadomego i aktyw­
nego udziału uczących się [3].

W przygotowywaniu elektronicznych materiałów dydaktycznych z mate­
matyki istotne jest również zastosowanie pięciu zasad dydaktyki matematyki. 
Zasadami nauczania nazywa się .,[...] najogólniejsze prawidła, których nauczy­
ciel powinien przestrzegać we wszystkich swoich zabiegach dydaktycznych” 
|3, s. 1661 Zasady te odnoszą się do nauczania rożnych przedmiotów oraz osób 
w różnym wieku (dzieci, młodzież i osoby dorosłe). Są to:

zasada systematyczności,
zasada przystępności.
zasada poglądowości,
zasada świadomości i aktywności,
zasada trwałości.
Pierwsza z zasad, zasada systematyczności, dotyczy nauczyciela. Polega 

ona na systematyczności w doborze i układzie treści (treści kształcenia nadające 
się do ujęć.a w logiczny system) oraz w jej opracowywaniu (staranny dobór ma­
teriałów pod względem ich aktualności i ukierunkowania w stronę najnowszych 
tendencji w rozwoju nauki) Przeanalizowanie przez nauczyciela programu na­
uczania oraz podręcznika pod względem dydaktycznym pozwala na systema­
tyczność uczenia się przez ucznia, a także wpływa na płynność w procesie jego 
uczenia się.

Następną zasadą jest zasada przystępności, inaczej nazywana zasadą stop­
niowania trudności. Jej istotą jest ciągłe stawianie przed uczniem nowych wy­
zwań (zadań) na miarę jego możliwości i umiejętności. Wiążc się z tym również 
stopniowanie trudności oraz „stworzenie warunków do świadomego ich prze­



14 Agata Berdowska, Gabriela Górecka-Berdowska

zwyciężania" [3, s. 159|. Jednym z najtrudniejszych elementów tej zasady jest 
przekazanie przez nauczyciela treści, z zachowaniem stale rosnących wymogów 
ścisłości naukowej przekazywanych materiałów dydaktycznych, w sposób jak 
najbardziej przystępny dla ucznia.

Kolejną zasadą jest zasada poglądowości. Stosowanie tej zasady w trakcie 
procesu nauczania matematyki powoduje „[...] pobudzenie myślenia ucznia 
podczas wykorzystania różnego typu czynności, prowadzących stopniowo od 
czynności konkretnych, przez czynności wyobrażeniowe, do abstrakcyjnych 
operacji” I3, s. 161]. Sposoby realizacji tej zasady są uzależnione od właściwo­
ści rozwoju psychofizycznego osób uczących się, posiadanych przez nich umie­
jętności i doświadczenia oraz od rodzaju przyswajanych treści.

Następną z zasad jest zasada świadomości i aktywności, zwana również za­
sadą świadomego i twórczego udziału ucznia w procesie nauczania. Jej podsta­
wą jest, zgodnie z nazwą, świadomy i twórczy udział w procesie nauczania. 
„Czynnikami gwarantującymi spełnienie obu postulatów nauczania, a więc za­
równo świadomości, jak i aktywności, są: właściwa motywacja czynności uczenia 
się, prawidłowe kształcenie uwagi podczas różnego rodzaju zajęć organizują­
cych uczenie się, praca nad kształtowaniem nawyków dobrej roboty oraz samo­
dzielności myślenia i działania, wreszcie wzbudzanie zainteresowania przedmio­
tem uczenia się” [3, s. 164].

Ostatnią zasadą jest zasada trwałości. „Zasadą trwałości będziemy nazywać 
wskazanie dydaktyki dotyczące trwałego przyswojenia operatywnej i użytecznej 
wiedzy w wyniku pogłębiania jej rozumienia oraz jej utrwalania i stosowania. 
[...] Jest to proces przeistaczania się wiedzy jeszcze chaotycznej, fragmenta­
rycznej, nieraz zdobytej przypadkowo, w wiedzę zorganizowaną i uporządko­
waną” [3, s. 166]. Z podanych „definicji” zasady trwałości wynika, iż opiera się 
ona na wszystkich wyżej omówionych zasadach [3; 6; 8].

Powyższe zagadnienia z psychologii uczenia się oraz zasad dydaktyki ma­
tematyki zostały zastosowane w trakcie projektowania i budowy przykładowych 
elektronicznych materiałów dydaktycznych z algebry liniowej dla studentów 
uczelni ekonomicznych oraz do rozplanowania szkolenia mieszanego z tego 
przedmiotu. Przykład ten zostanie omówiony szerzej w kolejnym fragmencie 
opracowania.

3. Struktura treści i metody przekazu treści szkolenia

Zakres materiału z wybranych zagadnień algebry liniowej oraz ich zasto­
sowań w naukach ekonomicznych, który zawarto w przykładowych elektronicz­
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nych materiałach dydaktycznych, pochodzi z materiałów wykładowych dr Ga­
brieli Górcckiej-Berdowskiej.

Jak zauważono powyżej, na układ treści szkolenia ma wpływ kolejność wy­
stępowania pojęć. W związku z tym na początku przedstawiono rodzaje macierzy, 
a następnie wykonalne na nich działania. Ilustrację praktyczną stanowią przykłady 
ekonomiczne. Po nich przedstawiono własności działań na macierzach.

Następnym wprowadzonym pojęciem jest wyznacznik macierzy i jego wła­
sności.

Kolejnym pojęciem zamieszczonym w materiałach dydaktycznych jest ma­
cierz odwrotna i jej własności. Wprowadzenie tego pojęcia po wyznaczniku ma­
cierzy jest uzasadnione definicją i sposobami otrzymywania macierzy odwrot­
nej. W dalszej kolejności przedstawiono operacje elementarne na macierzach, 
niezbędne do objaśnienia postaci kanonicznej macierzy i w konsekwencji rzędu 
macierzy, które to pojęcie wprowadzono jako następne.

Dale] omówiono partię materiału dotyczącą układów równań liniowych. 
Zakłada się, ze wprowadzone wcześniej pojęcia powinny być na tym etapie do­
brze opanowane przez kursantów, a więc zrozumienie metod rozwiązywania ukła­
dów równań liniowych nie powinno kursantowi stwarzać większych trudności 
W celu lepszego zobrazowania tych metod wykorzystano przykład praktyczny.

Zamieszczono również zarys klasycznej metody najmniejszych kwadratów 
oraz elementy programowania liniowego. Zagadnienia te są przykładami zastoso­
wania elementów algebry liniowej do rozwiązywania problemów ekonomicznych.

Wszystkie powyższe pojęcia i metody rozwiązywania zostały zilustrowane 
praktycznymi przykładami ekonomicznymi.

W celu przekazania treści matematycznych zawartych w elektronicznych 
materiałach dydaktycznych zastosowano następujące środki przekazu:

animacje -- służące do zaprezentowania zagadnień matematycznych w spo­
sób pobudzający wyobraźnię,
filmy - wpływające na poczucie osobistego kontaktu z wykładowcą, 
elementy dźwiękowe - pomagające w lepszym zrozumieniu i zapamiętaniu 
podanych treści merytorycznych i wykorzystujące pamięć słuchową, 
dokumenty tekstowe - pozwalające na dokonanie wydruku i prace bez uży­
cia komputera (co może być wygodniejsze dla osób pracujących na co dzień 
z komputerem, wykorzystanie pamięci wzrokowej),

- elementy pozwalające na interaktywność, czyli takie, które zmuszą użyt­
kownika do aktywnego i świadomego uczestniczenia w procesie kształcenia 
(pozwalające na samodzielność w poruszaniu się po kolejnych etapach szko­
lenia oraz umożliwiające podejmowanie decyzji co do ich kolejności opra­
cowywania),
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kolorowe ilustracje - obrazujące pojęcia w celu ich lepszego zrozumienia, 
zadania do samodzielnego rozwiązania - ułatwiające nabycie umiejętności 
praktycznych,

- odsyłacze do literatury - udostępniające dodatkowe źródła pozyskiwania in­
formacji.
Elementami sprawdzającymi odpowiednie zrozumienie wiedzy przez stu­

dentów, użytymi w elektronicznych materiałach dydaktycznych, są:
pytania - dotyczące wątpliwości związanych ze zrozumieniem materiału 
przez osobę uczącą się,
krótkie zadania - pozwalające ustalić, czy dany fragment materiału został 
poprawnie zrozumiany przez kursanta,
testy - składające się z kilku pytań bądź zadań, oddzielające kolejne partie 
materiału (pozwalające na ocenę, czy dana osoba zrozumiała podane zagad­
nienia na tyle, aby przejść do opracowywania następnych pojęć).

4. Przykładowe szkolenie mieszane
z algebry liniowej dla ekonomistów

Niniejsze szkolenie jest przewidywane do stosowania w szkoleniach typu 
blcnded learning, w związku z czym zostały uwzględnione spotkania w salach 
lekcyjnych.

Pracę z elektronicznymi materiałami dydaktycznymi student rozpoczyna od 
obejrzenia filmowego wstępu. Film prezentuje wykładowcę, który krótko oma­
wia zagadnienia związane ze szkoleniem.

Kolejnym elementem jest spis treści (rysunek 1), w którym jest wyraźnie 
uwidoczniony podział materiału na działy, lekcje, strony oraz testy.

Następnie zamieszczono krótką „Pomoc” dla ucznia, w której zawarto obja­
śnienia przycisków oraz stosowanych w całych materiałach oznaczeń.

Jak widać na rysunku 1, treść została podzielona na trzy podstawowe dzia­
ły: Macierze, Układy równań liniowych oraz Zastosowania algebry. Dział „Ma­
cierze” został podzielony na cztery lekcje. Pierwszą z nich jest lekcja o temacie: 
..Typy macierzy”. Na jej opanowanie przewidziano 2 godziny zegarowe. Na sa­
mym początku zamieszczono wstęp (rysunek 2), który określa cci lekcji oraz 
wytycza postępowanie w jc obrębie, a także z którego za pośrednictwem linku 
student przechodzi do materiałów dydaktycznych w formie pisemnej, które są 
możliwe do wydrukowania.
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PoilKIC
Maciorze

■+. Lekej al-Typy macierzy
=+' Lekrjal-Działania na macierzach
-i Lekej a^-Wyznacznik macierzy
„r Lekcja4-M.acii*rz odwrotna i rząd macierzy
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Podsumowanie

Rys. 1. Struktura treści
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Rys. 2. Wstęp do wybranej lekcji z algebry liniowej

W dalszej części zilustrowano, za pomocą animacji, typy macierzy. Każda 
z animacji przedstawia kolejne etapy tworzenia się macierzy (rysunek 3 i 4), ich 
zapis teoretyczny oraz ilustrujące je przykłady liczbowe.
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Macierz prostokątna u wymiarach (in x n) o dcnołacli a.
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Rys. 3. Obraz macierzy prostokątnej

Macierz prostokątna o wymiarach (nt x n) o deinen rach a

Rys. 4. Obraz macierzy prostokątnej wraz 
z zaznaczonymi wierszem i kolumną

Kolejnym elementem lekcji 1 są zadania do samodzielnego rozwiązania, 
wraz z linkiem do poprawnych odpowiedzi. Na samym końcu zamieszczono py­
tania sprawdzające zrozumienie materiału oraz utrwalające wiedzę. Zostały one 
skonstruowane jako pytania typu prawda-fałsz. Zakładają one interakcję uczące­
go się Po udzieleniu odpowiedzi na pytania, czyli zaznaczeniu pól przy odpo­
wiednich odpowiedziach, należy użyć przycisku „Done”, aby pojawiały się ko­
lejno informacje dotyczące poprawności udzielonych odpowiedzi (rysunek 5).

Treść zadania
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1e) Biedna odpowiedź
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■ Pytania

Rys. 5. Przykład pytania
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Lekcja druga nosi tytuł: „Działania na macierzach”. Na zapoznanie się z jej 
zawartością przewidziano 2 godziny zegarowe. Podobnie jak lekcja pierwsza, 
lekcja druga zaczyna się od słów wstępu, informujących o jej zawartości oraz 
kolejności poruszania się po niej. Na początku zawarto również materiały pisem­
ne. W dalszej części znajdują się animacje obrazujące działania na macierzach 
wraz z ilustrującymi ic przykładami liczbowymi i ekonomicznymi (jeden z przy­
kładów zamieszczono w tabeli 1).

Tabela 1

Trzy hurtownie I. II. III zaopatřuji) cztery duże sklepy (Si, S2, S4, S4) w mąkę. Hurtownie mają mąkę 
w dwóch gatunkach:

mąka wrocławska,
maka poznańska.

Miesięczny plan dostawy mąki wrocławskiej poszczególnych hurtowni do sklepów przedstawia się 
następująco (w kilogramach):

Sklepy

1 lurtownie
s, s2 S, S4

1 100 100 150 70

II 150 130 100 120

III 50 120 0 160

Miesięczny plan dostawy mąki poznańskiej z danych hurtowni do poszczególnych sklepów obrazuje 
poniższa tabela (w kilogramach):

Sklepy

Hurtownie
s, s. S, S4

1 50 115 0 40

II 70 80 125 0

111 80 50 180 110

Możemy postawić pytania:
1) lak wygląda plan dostawy mąki z poszczególnych hurtowni do wymienionych sklepów?
2) Ile mąki otrzymuje sklep Sjt 1 hurtowni, a ile z II?

Aby odpowiedzieć na te pytania, wykorzystamy działanie dodawania macierzy
Wprowadzimy niezbędne oznaczenia:

A macierz dostaw mąki wrocławskiej
B macierz dostaw mąki poznańskiej
(' - macierz łącznych dostaw mąki z poszczególnych hurtowni do wyżej wymienionych sklepów
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A =
100 J00 150 70
150 130 100 120
50 120 0 160 

50 115 040
B= 70 80 125 0 

80 50 180 110

150215 150 110
220 210 225 120
130 170 180 270

I lurtownic

Sklepy
-- -------------------

Si S2 S, s4

1 150 215 150 110

11 220 210 225 120

111 130 170 180 270

Na pierwsze pytanie daje odpowiedź macierz C=A+B, natomiast odpowiedzią na drugie są elementy 
macierzy C, mianowicie Ci2=2 15 orazŁ=łl0. a więc sklep S2 otrzymuje miesięcznie 215 kilogramów mąki 
z 1 hurtowni, a 210 kilogramów z II hurtowni.

Jeśli dostawy mąki wrocławskiej są dostarczane przez kolejnych 5 miesięcy i są one takie same, to ile 
zostanie jej dostarczonej z poszczególnych hurtowni do sklepów0

Zakładamy więc, że dostawy mąki wrocławskiej nadał obrazuje macierz A, natomiast rozwiązanie 
problemu przedstawia macierz T-5A

500 500 750 350
T= 750 650 500 600 

250 600 0 800

W lekcji tej znajdują się również zadania do samodzielnego rozwiązania 
wraz z poprawnymi odpowiedziami, a także pytania sprawdzająco-utrwalające. 
Pytania te są pytaniami typu prawda-fałsz i podobnie jak w lekcji pierwszej, 
wymagają udzielania odpowiedzi w sposób interaktywny.

W lekcji trzeciej zaprezentowano temat „Wyznacznik macierzy”. Podobnie 
jak w lekcjach poprzednich, czas na zapoznanie się z materiałem wynosi 2 godzi­
ny zegarowe Lekcja ta rozpoczyna się również, jak dwie pozostałe, od wstępu 
oraz udostępnienia materiałów pisemnych. Nie zamieszczono animacji dotyczą­
cych wyznaczników, jednakże podano informację, iż animacja, przedstawiająca 
obliczanie wyznacznika metodą Sarrusa, została zamieszczona w lekcji piątej. 
W dalszej kolejności znajdują się zadania do samodzielnego rozwiązania oraz 
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zadania do rozwiązania w grupie wraz z odpowiedziami. Zadania do rozwiąza­
nia w grupie uczący się powinien rozwiązać wraz z innymi kursantami, biorą- 
cymi udział w tym samym kursie (szkoleniu). Rozwiązywanie zadań nic musi 
oczywiście odbywać się w czasie rzeczywistym, ale za pośrednictwem Internetu. 
Na samym końcu znajdują się, tak jak w lekcjach poprzednich, pytania, na które 
uczący się musi udzielić odpowiedzi przed przejściem do lekcji następnej.

Po lekcji pierwszej, drugiej i trzeciej zaplanowano spotkanie w sali lekcyj­
nej z udziałem wykładowcy, lematem zajęć praktycznych będą „Działania na 
macierzach i przekształcenia elementarne na wyznacznikach”. Na ich realizację 
przeznaczono 4 godziny zegarowe.

Ostatnią lekcją z działu „Macierze” jest lekcja czwarta realizująca temat: 
„Macierz odwrotna i rząd macierzy”. Na jej realizację zaproponowano 2 godziny 
zegarowe. Tutaj również na samym początku zamieszczono kilka słów wstępu 
oraz materiały do wydruku. W dalszej części zamieszczono zadania do samo­
dzielnego rozwiązania wraz odpowiedziami. Jako pomoc w rozwiązywaniu czę­
ści zadań zamieszczono istotne wskazówki. Jedno z zadań (nr 5 - patrz rysunek 
6) nic ma jednoznacznej odpowiedzi, dlatego też jego rozwiązanie powinno zo­
stać przesiane do wykładowcy. W celu ułatwienia kontaktu dodano link łączący 
kursanta bezpośrednio z adresem mailowym wykładowcy (rysunek 6).

Rys. 6. Możliwości interakcyjnej pomocy w trakcie rozwiązywania zadań
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Lekcja czwarta kończy się testem. Zadania w nim zawarte są zadaniami 
wielokrotnego lub jednokrotnego wyboru. Te dwa typy zadań różnią się, ponie­
waż pola wyboru przy odpowiedziach są polami tego samego typu. Test ten nie 
jest ograniczony czasowo, dlatego też istnieje możliwość rozwiązania go w cza­
sie wyznaczonym przez indywidualne potrzeby. Jest on również punktowany. 
Aby przejść pomyślnie do następnej lekcji, należy uzyskać minimum 70 punk­
tów. W przeciwnym razie nie należy przechodzić do następnego działu. Na po­
czątku testu znajduje się wstęp, który przedstawia tematykę testu, informacje do­
tyczące czasu na jego rozwiązanie oraz ograniczeń punktowych, a także 
objaśnienia poszczególnych elementów interakcji. Na zakończenie testu poja­
wiają się podsumowanie wyniku testu i objaśnienia dotyczące poprawności 
udzielonych odpowiedzi (rysunek 7).

Rys. 7. Podsumowanie testu

Po wszystkich czterech lekcjach z działu „Macierze” przewidziano zajęcia 
praktyczne w sali, na których zostanie zrealizowany temat: „Wyznaczanie ma­
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cierzy odwrotnej poprzez dopisanie macierzy jednostkowej oraz wyznaczanie 
rzędu macierzy”. Na ich realizację zaplanowano 4 godziny zegarowe.

Drugim z kolei działem są „Układy równań liniowych”. W obrębie tego 
działu jest realizowana tylko lekcja 5 zatytułowana „Układy równań”. Zapozna­
nie się z materiałami zawartymi w tej lekcji powinno zająć 2 godziny zegarowe. 
Podobnie jak w lekcjach poprzednich, na samym początku został zamieszczony 
wstęp oraz materiały w formie tekstowej. W dalszej części znajduje się animacja 
rozwiązania przykładu ekonomicznego wraz z częścią obrazującą wyznaczanie 
wyznacznika metodą Sarrusa. Następnie zamieszczono zadania do samodzielne­
go rozwiązania wraz, z odpowiedziami. Na końcu znajduje się test dotyczący 
układów równań liniowych. Test ten, podobnie jak test poprzedni, jest nieogra­
niczony czasowo. Występują w nim pytania wielokrotnego i jednokrotnego wy­
boru. które różnią się od siebie elementami interakcji. Informacja o tym jest za­
warta we wstępie (rysunek 8).

----------------------------------- ------------------------------------ --------------- -- —

TEST Z DZIAŁU: UKŁADY RÓWNAŃ LINIOWYCH

Zadania w teście są zadaniami jednokrotnego lub wielokrotnego wyboru. 
Czas na rozwiązanie testu jest nieograniczony.

Po każdej udzielonej odpowiedzi pojawi się poprawna odpowiedź.
Test jest punktowany. Za każdą poprawną odpowiedź można otrzymać jeden punkt. Aby test 

„zaliczyć”, należy uzyskać minimum 9 punktów, a maksymalnie 13. Jeżeli test zostanie zdany 
pomyślnie, to program pozwoli przejść do następnego działu, jeżeli natomiast uzyskany wynik 
nie przekroczy 13 punktów, odešle do ponownego przestudiowania wcześniejszych działów.

Objaśnienia przycisków :

Cancel

test jednokrotnego wyboru 1“ test wielokrotnego wyboru

Next I

Cancel - rezygnacja z rozwiązywania testu 
Next - przejście do dalszej części testu 
Back - przejście do poprzedniej części testu

Rys. 8. Oznaczenia testu

Aby test został uznany za „zaliczony”, konieczne jest uzyskanie minimum 
70 punktów.
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Po lekcji piątej przewidziano trzecie i ostatnie spotkanie z wykładowcą 
Również na to spotkanie przewidziano 4 godziny zegarowe. Tematem tego spo­
tkania o charakterze praktycznym będzie ,,Rozwiązywanie dowolnych układów 
równań liniowych zgodnych nieoznaczonych i sprzecznych’'.

Po przestudiowaniu działów: „Macierze” i „Układy równań liniowych’, 
osoba ucząca się powinna rozwiązać test zawierający pytania dotyczące zagadnień 
z obu tych działów. Tym razem na jego rozwiązani« przeznaczono 60 minut. Za­
dania występujące w tym teście są zadaniami typu prawda-lałsz Minimalna 
ilość punktów do zdobycia wynosi 75. W razie uzyskania niewystarczającej 
liczby punktów uczący się jest odsyłany do ponownego przeanalizowania 
wszystkich działów obejmujących pytania testowe.

Kolejny dział to: „ Zastosowania algebry”. Została w nim zamieszczona 
lekcja szósta zatytułowana „Model Lconticfa ’. Na zapoznanie się z treścią tej 
lekcji przewidziano 1 godzinę zegarową. Na wstępie zamieszczono materiały 
tekstowe, a następnie animację z przykładem ekonomicznym.

Ponieważ, jak zostało to juz wspomniane wcześniej, model Lconticfa jest 
omawiany jedynie jako przykładowe zastosowanie zagadnień algebry omówio­
nych w lekcjach od 1 do 5, więc nic podano żadnych zadań do samodzielnego 
rozwiązania.

W tym dziale zrealizowano również lekcję siódmą pod tytułem „KMNK”. 
Również tutaj na realizację przeznaczono 1 godzinę zegarową. Lekcja ta zawiera 
materiały w formie tekstowej oraz zadanie do rozwiązania z grupą. Podano rów­
nież literaturę pomocną do rozwiązania podanego zadania.

Jako ostatnia została przedstawiona lekcja ósma zatytułowana „Programo­
wanie liniowe”. Na jej realizację przewiduje się 2 godziny zegarowe. Na począt­
ku, tak jak we wszystkich pozostałych lekcjach, zamieszczono materiały teksto­
we, a także animację zawierającą przykład ekonomiczny. Podano również 
literaturę uzupełniającą. Na końcu zamieszczono zadania do samodzielnego 
rozwiązania wraz z poprawnymi odpowiedziami.

Na realizację całego kursu przewidziano łącznie 30 godzin zegarowych. Na 
spotkania z wykładowcą przeznaczono 12 godzin zegarowych, natomiast na za­
poznanie się z materiałami dydaktycznymi — 15 godzin. Ze względu na indywi­
dualne tempo nauki oraz możliwość nieograniczonego czasowo rozwiązywania 
dwóch testów przewidziano 3-godzinny zapas czasowy [9|.

Do wykonania powyższych elektronicznych materiałów dydaktycznych za­
stosowano program Lcctora Profesionál firmy Trivantis. Jest to kompleksowe 
narzędzie do tworzenia elektronicznych materiałów dydaktycznych. Do wyko­
nania animacji zastosowano program Flash firmy Adobe.
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Zakończenie

Celem pracy było zaprezentowanie projektu wykonania i realizacji szkole­
nia mieszanego nauczania matematyki na przykładnie szkolenia z elementów al­
gebry liniowej. W opracowaniu przedstawiono pewne podstawy psychologii 
i dydaktyki wykorzystywane w nauczaniu tradycyjnym i ich próbę adaptacji do 
szkoleń elektronicznych. Szkolenia elektroniczne mogą być elementem uzupeł­
niającym w nauczaniu tradycyjnym w przypadkach, gdy rzeczywiste uczestnic­
two w zajęciach jest utrudnione (praca za granicą, absencja chorobowa, niepeł­
nosprawność itp.j. Jednak kontakt z najlepszym komputerem nie zastąpi dobrego 
wykładowcy i jego bezpośredniego wpływu na osobowość osoby szkolonej. 
Niemniej świat zmierza do jak najlepszego przybliżenia komputera do wzoru 
wykładowcy - prowadzącego szkolenie. Powyższe opracowanie jest niewielką 
próbą podejścia do tego zagadnienia.
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THE PROJECT OF TRAINING IN MATHEMATICS BLENDED 

TEACHING FOR THE ECONOMIC UNIVERSITES

Summary

The e-learning courses arc thc future for the Polish économie university éducation. 
Thcrcforc, il is important lo build eiTective elcctronic matcrials for every subject taught. 
Mathemalics is a difficult subject to study, so thc clectronic matcrials for this subject 
must bc prepared taking into account thc psychological and didactic éléments of this 
subject.

The main goal of this article has been the présentation of the project on The Train­
ing in Malhematics Blcnded Tcaching for the 1-conomic Univcrsities. The paper de- 
scribcs the distance learning courses, the electronic and blended learning courses. Il also 
shows thc éléments of psychology of learning and didactics of mathematics used in the 
projcct.
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MODEL PROGNOZ

ZŁOŻONYCH W PRZEDSIĘBIORSTWIE 

BRANŻY CERAMIKI SANITARNEJ

Wprowadzenie

W zarządzaniu przedsiębiorstwem szczególnie ważną rolę odgrywają pro­
gnozy sprzedaży Stanowią podstawę podejmowania decyzji w zakresie produk­
cji. zaopatrzenia, zapasów, finansów, siły roboczej itp. Prawidłowe, tj. odpowia­
dające potrzebom rynku, zaplanowanie wielkości sprzedaży i wynikającej stąd 
wielkości produkcji jest dla przedsiębiorstwa sprawą n ezmiernie ważną. Skutki 
błędnego zaplanowania tych wielkości mogą być bardzo poważne.

Gdy rynek okażc się bardziej chłonny, niż to założono w planie produkcji 
na podstawie zbudowanej prognozy sprzedaży, przedsiębiorstwo może r.ie zdo­
łać zaspokoić potrzeb swoich klientów, zamówienia na produkty lub usługi 
przedsiębiorstwa będą realizowane z opóźnieniem, wzrośnie niezadowolenie 
klientów. Ponadto szybka realizacja nieplanowanych zamówień powoduje 
wzrost kosztów robocizny (nadgodziny) i trudne do przewidzenia koszty prze­
zbrajania maszyn i urządzeń. Może to doprowadzić do sytuacji, w której część 
klientów zac/me zaspokajać swoje potrzeby u innych producentów. W przedsię­
biorstwie powstaną tzw. koszty utraconych możliwości. W rezultacie przedsię­
biorstwo może stracić swoją pozycję na rynku.

Jeśli zaś rynek okaże się mniej chłonny, niż przewidywano na podstawie 
prognozy sprzedaży, przedsiębiorstwo może mieć kłopoty ze zbytem produkcji. 
Wpłynie to - m.in. poprzez nieplanowany wzrost zapasów — na zwiększenie 
kosztów ich magazynowania Zamrożenie kapitału obrotowego w zapasach nie- 
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sprzedanych wyrobów gotowych wpłynie na pogorszenie sytuacji finansowej 
przedsiębiorstwa, a jeżeli przedsiębiorstwo finansowało swoje potrzeby ze źró­
deł zewnętrznych, konsekwencje mogą być znacznie poważniejsze

Specyfika produkcji ceramiki sanitarnej określa potrzeby w zakresie pro­
gnozowania sprzedaży poszczególnych grup asortymentowych. Produkcja ta 
cechuje się dużą bezwładnością, jeśli chodzi o zmiany w produkowanych asor­
tymentach. Częsta zmiana produkowanych asortymentów, dostosowująca asor­
tyment do nagłych potrzeb rynku, jest tu niemal niemożliwa. Ograniczenia 
wprowadzają dwa etapy procesu produkcyjnego ceramiki sanitarnej: wydział od­
lewni i wydział modelarni. Odlewanie wyrobów sanitarnych polega na zalewa­
niu wcześniej przygotowanej formy masą (zawiesiną) lejną. Formy mogą być 
wykonane z gipsu - wtedy mamy do czynienia z odlewaniem tradycyjnym, lub 
z tworzywa sztucznego porowatego, które są stosowane do odlewania ciśnienio­
wego. Wynika stąd, że w określonym czasie rodzaj produkowanych wyrobów 
zależy od rodzaju form zainstalowanych na odlewni i od ewentualnego zapasu 
tych form przygotowanych do zainstalowania.

Istotne ogniwo procesu technologicznego stanowi wydział modelarni, gdzie 
szczególnym problemem przy planowaniu produkcji jest plan produkcji gipso­
wych form odlewniczych. Należy nadmienić, że z ekonomicznego punktu wi­
dzenia forma gipsowa po zainstalowaniu na tzw. ławach odlewniczych powinna 
być eksploatowana aż do jej całkowitego zużycia. Jej zbyt wczesny demontaż 
wywołuje wicie przerw technologicznych na odlewni oraz najczęściej powoduje 
zniszczenie niewykorzystanej do końca formy. Czas produkcji formy gipsowej 
( 15 do 25 dni) i jej cykl życia (80 do 120 odlewów) oraz zdolność produkcyjna 
modelarni są znane w warunkach konkretnego przedsiębiorstwa branży ceramiki 
sanitarnej. Do sprawnego sterowania procesem produkcyjnym brakuje więc tyl­
ko wiarygodnej prognozy sprzedaży, którą można by się kierować przy plano­
waniu produkcji.

W niniejszym opracowaniu przedstawiono metodykę prognozowania wiel­
kości sprzedaży przedsiębiorstwa branży ceramiki sanitarnej, wykorzystującą 
trzy różne źródła informacji: historyczną sprzedaż, prognozy działu marketingu 
oraz prognozy przygotowywane na podstawie złożonych zamówień. Dokonano 
oceny zbudowanych prognoz zarówno pod kątem ich dokładności, jak i korzyści 
finansowych dla przedsiębiorstwa. Porównano, w szczególności, dokładność 
prognoz, zbudowanych na podstawie modeli złożonych z dotychczas stosowa­
nymi w badanym przedsiębiorstwie rozwiązaniami, tj. prognozami formuło­
wanymi przez dział marketingu z wykorzystaniem metod o charakterze jako­
ściowym. W części drugiej dokonano charakterystyki próby badawczej, ze 
szczególnym uwzględnieniem sposobu gromadzenia danych i agregacji, co wy- 
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nika zc specyfiki badanego przedsiębiorstwa. Przedstawiono też etapy budowy 
prognoz sprzedaży dla wyróżnionych grup asortymentowych. Część trzecia za­
wiera wyniki empiryczne ilustrujące przydatność poszczególnych rozwiązań 
w ramach badanego przedsiębiorstwa. Ostatnia - czwarta - część zawiera krót­
kie podsumowanie i wnioski.

1. Przygotowanie badania

1.1. Dane

W rozważanym przedsiębiorstwie nie istniał dotąd spójny system groma­
dzenia i przechowywania danych dotyczących sprzedaży w formie elektronicz­
nej. Dokumentacja źródłowa była głównie przechowywana w formie papiero­
wej. W pierwszym etapie badań skoncentrowano się zatem na przygotowaniu 
właściwej bazy danych obejmującej szereg’ czasowe wartości sprzedaży dla od­
powiednio zagregowanych grup asortymentów. Należy podkreślić, żc proces po­
zyskiwania i agregacji danych był przede wszystkim podporządkowany celom 
realizowanym w przedsiębiorstwie w zakresie prognozowania wielkości sprze­
daży W szczególności, aby prognoza wielkości sprzedaży konkretnego wyboru 
była przydatna na etapie budowy planów produkcji, należy identyfikować te 
spośród wyrobów, które mogą być wykonywane na formie odlewniczej o tym 
samym kształcie.

W praktyce modelowania wielkości sprzedaży należy się liczyć z niebez­
pieczeństwem zakłócenia wyników błędami występującymi w szeregach da­
nych. Błędy te najczęściej mają charakter losowy i są konsekwencją pomyłek 
bądź to przy zbieraniu danych, bądź w trakcie ich komputerowego przetwarza­
nia. Nic można jednak zupełnie wykluczyć celowego fałszowania danych, dlate­
go też konieczna jest formalna i merytoryczna kontrola poprawności danych, po­
legająca na wyrywkowym sprawdzeniu ich rzetelności oraz porównaniu danych 
powiązanych zc sobą w celu ustalania stopnia zgodności.

W wybranym przedsiębiorstwie w okresie objętym badaniem produkowano 
około 250 rodzajów wyrobów. W wyniku analizy specyficznych cech asorty­
mentów, w szczególności pod kątem realizowanego procesu technologicznego, 
wyodrębniono 39 grup asortymentowych, na które składało się od kilku do kil­
kunastu wyrobów. Grupowanie przeprowadzono na podstawie danych tygo­
dniowych w zakresie wielkości oraz wartości sprzedaży za okres trzech lat dzia­
łalności przedsiębiorstwa, tj. od stycznia 2001 do grudnia 2003 roku. Szeregi 
czasowe sprzedaży przeciętnie obejmowały 156 obserwacji.
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Dla każdej z wyróżnionych grup asortymentowych ustalono następnie licz­
bę zamówień złożonych w poszczególnych tygodniach badanego okresu. Pod­
stawą było w tym wypadku archiwum zamówień (przechowywane w formie 
papierowej) złożonych w latach 2001-2003, którego rzetelność została potwier­
dzona przez kierownictwo firmy i uzasadniona stosowaniem ścisłych procedur 
w zakresie rejestracji i archiwizowania zamówień w ramach stosowanego w przed­
siębiorstwie systemu zarządzania opartego na normie ISO 9001

Zdroworozsądkowe rozumowanie każę domniemywać, że między udziałem 
określonego asortymentu (grupy asortymentowej) w całkowitej marży brutto 
osiąganej przez przedsiębiorstwo w pewnym okresie a intensywnością zabiegów 
kierownictwa tego przedsiębiorstwa o możliwie ścisłe prognozowanie tej kate­
gorii wyrobów będzie istnieć zależność dodatnia. Na podstawie wywiadu we­
wnątrz przedsiębiorstwa ustalono potrzeby kierownictwa w zakresie dokładności 
(trafności) prognozowania wielkości sprzedaży poszczególnych grup asortymen­
towych, utworzonych z wyrobów ceramiki sanitarnej produkowanych w przed­
siębiorstwie. Stwierdzono też, że otrzymanie prognoz charakteryzujących się 
lepszą dokładnością w porównaniu do stosowanych dotąd w przedsiębiorstwie 
jakościowych metoo prognozowania wielkości sprzedaży będzie przez kierow­
nictwo firmy uważane za sukces Kierownictwo przedsiębiorstwa było szczegól­
nie zainteresowane finansowym aspektem ulepszenia systemu prognozowania 
wielkości sprzedaży w drodze mariażu stosowanego dotąd prognozowania jako­
ściowego i ilościowej ekstrapolacji z wykorzystaniem historycznej wielkości 
sprzedaży zanotowanej w okresach przeszłych.

W wyniku zastosowania kryterium globalnej marży brutto, każda z wyróż­
nionych grup asortymentowych została zakwalifikowana dojednej z trzech ka­
tegorii, którym - w relacji do ich ważności - nadano oznaczenia literowe A, B 
i C. Literą A zostały oznaczone te spośród grup asortymentowych, których 
udział w globalnci marży brutto przekraczał 3%. Są to zatem albo wyroby 
sprzedawane w dużej ilości, albo wyroby o wysokiej jednostkowej marży pokry­
cia, albo wyroby spełniające jednocześnie oba warunki. Asortymenty kategorii B 
to produkty wytwarzane i sprzedawane wprawdzie w mniejszej ilości i o niższej 
marży pokrycia, lecz stanowiące istotne dopełnienie produkowanego asortymen­
tu. Kategoria C składa się natomiast z wyrobów produkowanych w niewielkiej 
ilości lub na których uzyskuje się niewielką jednostkową marżę pokrycia. W za­
łączniku (patrz tabela A i) przedstawiono globalną marżę brutto dla poszczegól­
nych grup asortymentowych, z podziałem na wyroby kategorii A, B i C. Struktu­
ra globalnej marży pokrycia według wyróżnionych kategorii wyrobów została 
/ilustrowana na rysunku 1.
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Rys. 1. Struktura globalnej marży pokrycia według wyróżnionych kategorii wyrobów

Można zauważyć, że znana w literaturze przedmiotu tzw. reguła Pareto 
znajduje potwierdzenie także w wypadku badanego przedsiębiorstwa. Wspo­
mniana wyżej reguła formułuje wskazówkę dla kierownictwa przedsiębiorstwa, 
zgodnie z którą cztery piąte efektów jest generowane przez jedną piątą przyczyn. 
W badanym przedsiębiorstwie wyroby zaliczane do kategorii A (około 25% pro­
dukowanych wyrobów) generują ponad 75% całkowitej marży pokrycia.

Ze względu na fakt, że w portfelu wyrobów produkowanych przez badane 
przedsiębiorstwo znajdowały się i takie, które były wytwarzane krócej niż rok, 
zdecydowano się na zróżnicowanie metodyki prognozowania. W odniesieniu do 
pięciu grup asortymentowych będących w sprzedaży przez okres krótszy niż rok 
stosowano zasadę, że poziom sprzedaży w tygodniu / będzie równy sprzedaży 
obserwowanej w tygodniu t— I. W wypadku tej grupy wyrobów niemożliwe było 
bowiem zastosowanie alternatywnych modeli ekonomctrycznych, z reguły wy­
magających szeregów o długości przekraczającej 50 obserwacji.

1.2. Metodyka

W odniesieniu do każdej z wyróżnionych grup asortymentowych rozważo­
no możliwość zastosowania do opisu szeregu czasowego sprzedaży alternatyw-
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nych modeli należących do pięciu różnych klas, a mianowicie : trendów ze 
zmienną syntetyczną reprezentującą upływ czasu, modeli ARIMA ze stałą i zmien­
ną w czasie wariancją, przełącznikowych modeli łańcuchów Markowa oraz mo­
deli SETAR.

W grupie klasycznych modeli trendu rozważano zastosowanie trendu linio­
wego oraz kwadratowego Zrezygnowano natomiast z prób opisu szeregów 
sprzedaży wyrobów badanego przedsiębiorstwa za pomocą wielomianów wyż­
szych stopni oraz innych modeli tendencji rozwojowej, takich jak trend logi­
styczny czy trend wykładniczy, ponieważ ogląd zachowania się sprzedaży 
względem czasu nie pozostawiał wątpliwości co do słuszności tej decyzji.

Model ARIMA zyskał sobie wielką popularność, od kiedy Box i Jenkins 
zaproponowali tę metodologię blisko trzydzieści lat temu [5]. Praktyczne zasto­
sowanie modelu ARIMA poprzedza etap jego identyfikacji, w trakcie którego 
badacz, na podstawie odpowiednich przesłanek, decyduje o wyborze konkret­
nej parametryzacji modelu. Aby to zilustrować, rozważmy ogólny model 
ARIMA(/?,í/,<y) dla szeregu czasowego z„ który wyraża się równaniem:

^7J)(l-ß)‘'z,=^ + 4/ßX, (I)

gdzie 1 przy czym Bz^.-z, i, B jest
operatorem przesunięcia (ang. backspace operator), zaś £t — białym szumem.

Parametryzacja modelu ARIMA rozpoczyna się od wyznaczenia funkcji au­
tokorelacji ACF oraz funkcji autokorelacji cząstkowej PACF dla oryginalnego 
szeregu danych. Jeżeli uogólniony test Dickeya-Fullera [61 lub test Phillipsa- 
-Perrona [14] świadczą o istnieniu pierwiastków jednostkowych (integracja sze­
regu stopnia d>0), konieczne jest uprzednie J-krotne różnicowanie szeregu w celu 
osiągnięcia jego stacjonarności. Następnie ustala się wartość p (liczba parame­
trów autoregresyjnych) oraz q (liczba parametrów średniej ruchomej). W tym 
celu rzeczywiste przebiegi funkcji ACF oraz PACF są porównywane z przebie­
gami teoretycznym' których opis można znaleźć m.in. w pracy [ 10].

Często może się również zdarzyć, że faktycznego przebiegu funkcji ACF 
i PACF' nie można jednoznacznie zakwalifikować jako odpowiadającego któremuś 
z teoretycznych schematów zachowania. W takich wypadkach pomocna może 
się okazać znajomość wartości wybranego kryterium informacyjnego, np. kryte­
rium Akaikc (AIC) lub Schwarza-Bayesa (SB1C). Oba kryteria pozwalają doko­
nać wyboru pomiędzy alternatywnymi parametryzacjami modelu ARIMA, ma­
jąc na względzie z jednej strony adekwatność modelu względem oryginalnego 
szeregu danych, z. drugiej zaś — oszczędność modelu, która wyraża się możliwie 
najmniejszą liczbą parametrów do oszacowania.
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Duża popularność inodc'i klasy AR1MA wynika również i stąd, żc uprzed­
nio stosowane modele, takie jak model błądzenia losowego z dryfem oraz model 
wygładzania wykładniczego, często wybierane przez praktyków jako podsta­
wowe narzędzie prognostyczne zc względu na swą prostotę i łatwość zastoso­
wania, są szczególnymi parametryzacjami w ramach ogólnego modelu AR.1MA.

Uogólnieniem metodologii zaproponowanej przez Boxa i Jenkinsa jest mo­
del uchylający założenie o stałości wariancji składr ika losowego w czasie. Re­
alizuje się to najczęściej poprzez wyrażenie funkcji warunkowej wariancji w po­
staci liniowej kombinacji opóźnionych wartości kwadratów składnika losowego 
(model ARClł) i opóźnionych wartości wariancji (model GARCH). Model 
ARIMA zc zmienną w czasie wariancją składnika losowego wyraża się równa­
niem:

^(/?)(1-Z?)'z, =Oa + 0ii(B)£„£l ~(0,<t,2),
(2)

<t,2 = a0 + (B)ó-,2 + ^.(B)<t2.

Od kiedy Engle po raz pierwszy zaproponował model ARCH [7], który na­
stępnie został uogólniony do procesu GARCH przez Bollersleva [1; 2], stworzo­
no wicie odmian tego modelu, nierzadko bardzo skomplikowanych w warstwie 
teoretycznej, które pozwalają uwzględnić wiele dodatkowych własności ekono­
micznych szeregów czasowych (por. [4; 3; 7]) Mimo dostępności skompliko­
wanych narzędzi, relatywnie prosta parametryzacja GARCH(1,I) cieszy się cią­
gle dużą popularnością, szczególnie w praktycznych zastosowaniach. Z tego też 
względu wydaje się, że wykorzystanie wspomnianej wyżej parametryzacji 
w modelowaniu szciegów sprzedaży wyrobów badanego przedsiębiorstwa jest 
w pełni wystarczającym rozwiązaniem zarówno z teoretycznego punktu widze­
nia, jak . potrzeb praktyki gospodarczej.

Przełącznikowe modele łańcuchów Markowa to jedna z klas modeli niesta­
cjonarnych procesów stochastycznych. Modele te znajdują zastosowanie w mo­
delowaniu szeregów ekonomicznych szczególnie wówczas, gdy rozkłady odpo­
wiednich zmiennych wykazują silną asymetrię oraz duże prawdopodobieństwo 
wystąpienia obserwacji nietypowej bądź też zasadne jest przyjęcie hipotezy, że 
są one mieszankami rozkładów. W ogólnym zapisie przełącznikowe modele 
Markowa wyrażają się wzorem:

zu gdy s, = i

z2, gdy \ = 2

A, gdy s, = k 

(3)
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gdzie s, jest realizację jednorodnego łańcucha Markowa 5, o k stanach zadanego 
macierzą przejścia Ił = [p,, k ■

Biorąc pod uwagę heterogeniczność klientów firmy produkującej wyroby 
ceramiki sanitarnej, przyjęcie założenia, że szereg sprzedaży pochodzi w istocie 
z mieszanki indywidualnych rozkładów poszczególnych grup klientów, wydajc 
się być w pełni uzasadnione. Za hipotezą tą przemawia dodatkowo fakt, że roz­
kład tygodniowej sprzedaży wyrobów odznacza się silną asymetrią oraz tzw. 
grubymi ogonami (skrajne wielkości sprzedaży realizują się częściej, niż w wy­
padku obowiązywania rozkładu normalnego). Na podstawie analizy działu mar­
ketingu, wśród klientów badanego przedsiębiorstwa wyróżniono dwie kluczowe 
grupy, a mianowicie klientów krajowych i zagranicznych. Szczegółowa analiza 
wykazała, że w ramach każdej z wyróżnionych grup klientów inna jest wielkość 
popytu odtworzeńiowego. Dlatego też zdecydowano się opisać proces tygo­
dniowej sprzedaży wyrobów przedsiębiorstwa dwustanowym modelem łańcu­
chów Markowa. Model ten wyraża się równaniem:

z, =«0i, gdy.v, =1

z, = a0+a2]zl_i+el gdy 5, =2

£, ~N(0,cP)

£t ~ 7V(0, er)
(4)

Założono dodatkowo, że aH > a2].

Zmienna S, przyjmuje wartość 1, gdy znajdujemy się w reżimie (stanie) wy­
sokiego popytu odtworzeniowego, oraz wartość 2. gdy znajdujemy się w reżimie 
niskiego popytu odtworzeniowego. Zmienna S, nie jest bezpośrednio obserwo- 
walna, a jej wartość w chwili / zależy tylko i wyłącznie od jej wartości w chwili 
/ 1. Dlatego stany łańcucha Markowa są opisane następującymi prawdopodo­
bieństwami przejścia:

PGVi|s,_1=i) = A1,
P(S, =\\Sl_l =2) = pl2=\~ pn, 

P(Sl=2\Sll=\) = p2l=\~p22, 

P(S,=2\S,_l=2) = p22,

gdzie p,t jest prawdopodobieństwem przebywania procesu w reżimie j w okresie 
/, jeżeli w okresie Z-l proces przebywał w reżimie i.
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Zaproponowany model wymaga oszacowania sześciu parametrów (a«, aH, 
a7i, o,/2|| i /j22). Wyczerpujący opis procedury cstymacyjncj przełącznikowych 
modeli łańcuchów Markowa można znaleźć w pracy [11],

Ostatni z rozważanych modeli ekonometrycznych należy do klasy modeli 
progowych. O przełączeniu z jednego reżimu w drugi nie decyduje, tak jak było 
to w wypadku modeli Markowa, nicobserwowalna zmienna S,, lecz poziom zja­
wiska z,. Model SETAR rzędu (p, k\,...,kp) wyraża się równaniem:

«d+oriVi +h's,
2 2 2 i 2

«0 +0(2,^+... + «*./,^ + h £,

+alpz,_} +... + apZ'_k' +hp£l

gdy

gdy

gdy

z,-d

r\<Zl-d^r2

z,-d > rp- i

(5)

Na podstawie wyników wstępnych analiz szeregów czasowych sprzedaży 
wyrobów badanego przedsiębiorstwa podjęto decyzję o ograniczeniu rzędu mo­
delu SE I \R do dwóch (/; 2). Model ten można wówczas zapisać w prostej po­
staci jako:

°io + °qiz/-i ^'i/ 
<

+ OS1Z/-I + £2l

gdy

gdy
z,-i r

z,-i > r
(6)

Dodatkowe informacje na temat estymacji modelu (6) można znaleźć 
w pracy j 13].

Na wstępie badania okres próby został podzielony na dwie części, a mia­
nowicie okres cstymacyjny (przeciętnie 156 obserwacji) oraz okres testowy 
(13 najnowszych obserwacji). Następnie w odniesieniu do każdego z szeregów 
zweryfikowano hipotezę o istnieniu pierwiastka jednostkowego z użyciem 
uogólnionego testu Dickcya-Fullera. O wyborze pomiędzy np. modelem trendu 
liniowego i modelem ARIMA(/>,t/,ę) decydowała wartość kryterium informacyj­
nego AIC oraz dodatkowe przesłanki, takie jak poprawna struktura stochastycz­
na modelu. Statystyczna istotność parametrów każdego z modeli została zwery­
fikowana za pomocą klasycznego testu opartego na statystyce /-Studenta. 
Badaniu poddano również statystyczne własności reszt, a w szczególności zwe­
ryfikowano hipotezę o niewystępowaniu efektu ARCH (z użyciem testu Engla) 
oraz braku autokorelacji składnika losowego (z użyciem testu Ljunga-Boxa 
o 15 opóźnieniach).
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Stosując pizedstawionę wyżej kryteria, szeregi sprzedaży wyrobów badane­
go przedsiębiorstwa opisano z wykorzystaniem ośmiu różnych modeli, a mianowi­
cie: trendu liniowego - w jedenastu wypadkach, trendu kwadratowego — w jednym 
wypadku, ARIMA(O.O.O) w trzynastu wypadkach, ARIMA( 1.0.0) - w dwóch 
wypadkach, ARIMA(l,0,l) — w dwóch wypadkach, ARIMA(1,O,1)-GARCH(1,1) 

w trzynastu wypadkach, AR1MA(2,O.2)-GARCH(1,1) — w jednym wypadku 
(tabela A.2 w załączniku zawiera oszacowane modele oraz wartości statystyk te­
stowych w testach ARCI I oraz Ljunga-Boxa, a także odpowiadające im prawdo­
podobieństwo krytyczne dla grup asortymentowych zakwalifikowanych do kate­
gorii zł).

Po zweryfikowaniu statystycznej istotności parametrów, ważnych z punktu 
widzenia własności prognostycznych modelu, oraz zbadaniu własności składni­
ka losowego dokonano prognozy sprzedaży każdego z wyróżnionych asorty­
mentów na trzynaście tygodni poza próbę estymacyjną.

W następnym etapie badania przystąpiono do konstrukcji prognoz złożo­
nych. Modele prognoz złożonych są wykorzystywane w wielu obszarach, od 
prognozowania wartości sprzedaży w pojedynczym przedsiębiorstwie do pro­
gnoz wielkości makroekonomicznych, takich jak inflacja, dochód czy PKB (zob. 
np. |9; 12]). Model prognoz złożonych w ogólnej postaci wyraża się równaniem:

C, = aJ\ + «2/2 + - + akfk + £,, (7)

gdzie C jest prognozą złożoną, zaś /, (ż=l k) są prognozami indywidualnymi.
W charakterze prognoz indywidualnych wykorzystano: prognozę uzyskaną 

na podstawie wybranego modelu ekonometryczncgo, prognozę przygotowaną 
przez dział marketingu badanego przedsiębiorstwa oraz prognozę ckstrapolowaną 
z zamówień, które wpłynęły do zrealizowania w ostatnim kwartale. Włączenie 
do modelu prognoz złożonych zamówień wynika z doświadczeń kadry kierow­
niczej przedsiębiorstwa, które wskazują na dużą przydatność niezrealizowanych 
zamów icń w procesie prognozowania wielkości sprzedaży.

Model (7) może być zatem zapisany jako:

Ç = <*tfM + + «3-4 + £. ’ (8)

przy czym a, >0,\/i oraz '^ctl =1.
z=i

Estymację parametrów modelu (8) przeprowadzono dwuwariantowe (wy­
niki estymacji w grupach asortymentowych zakwalifikowanych do kategorii A
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można znaleźć w tabeli A.3 w załączniku). W wariancie A funkcję straty zdefi­
niowano klasycznie, tj. jako sumę kwadratów reszt. Jednakże asymetria między 
kosztami zawyżonych i zaniżonych prognoz uzasadniała uwzględnienie jej bez­
pośrednio w równaniu minimalizowanej funkcji. Problem nic dotyczy zresztą 
tylko różnicy w kosztach zawyżonych i zaniżonych prognoz. Wyobraźmy sobie 
sytuację, że w okresie / prognoza przewyższa rzeczywistą wielkość sprzedaży 
o pewną wartość e,. Poi icważ produkcja w normalnych warunkach zawsze od­
powiada prognozie, wielkość e, podlega magazynowaniu, generując określone 
koszty, które jest zmuszone ponosić przedsiębiorstwo. Jeżeli w okresie Z+l pro­
gnoza znowu jest zawyżona, to wielkość e,+1 — tak jak poprzednio — będzie sta­
nowić przymusowe inwestycje przedsiębiorstwa w zapasy. Należy jednak za­
uważyć, że w okresie Z+l na całkowite koszty przedsiębiorstwa z tytułu 
zawyżonej prognozy składają się koszty związane z utrzymaniem e, oraz e,+]. 
/ tego też względu w wariancie B funkcja straty dla modelu (8) została zdefi­
niowana następująco:

ł = A,+ 
/=!

(9)

gdzie jk„, oraz jkp oznaczają jednostkowe koszty odpowiednio utrzymania przy­
musowego zapasu wyrobów gotowych i wyprodukowania wyrobu w stanie po­
nadplanowego obciążenia (produkcja powyżej ilości prognozowanej), Mt i P, są 
zaś funkcjami zdefiniowanym następująco:

M =
M, = -e, 

M,=Q

P.=

gdy e, 0

gdy e,

gdy e,-Ml_]>0 

gdy

oraz 0 i P() = 0.

2. Wyniki empiryczne

Prezentację wyników empirycznych rozpoczyna porównanie średniego ab­
solutnego błędu procentowego (MAPĘ) dla poszczególnych modeli i metod pro­
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gnozowania wartości sprzedaży badanego przedsiębiorstwa w okresie estyma- 
cyjnym i testowym (zob. tabele 1 i 2). Można zauważyć, że w okresie estyma- 
cyjnym, w wypadku 80% grup asortymentowych, wartość MAPĘ była niższa 
dla prognoz wyznaczonych z użyciem modeli prognoz złożonych (w obu wer­
sjach) niż dla analogicznych prognoz opracowanych przez dział marketingu. 
W okresie testowym prognozy przygotowane przez dział marketingu badanego 
przedsiębiorstwa wypadały już nieco lepiej w porównaniu do prognoz modeli 
złożonych. Nadal ednak wartość MAPĘ była niższa w wypadku tego ostatniego 
dla 27 grup asortymentowych spośród 34 przebadanych.

W kolejnym etapie porównano przeciętne koszty całkowite przedsiębior­
stwa z tytułu nietrafionej prognozy dla alternatywnych rozwiązań prognostycz­
nych w ramach okresu cstymacyjnego i testowego (zob. tabele 3 i 4). Pierwszym 
spostrzeżeniem są niższe średnie koszty tygodniowe w wypadku użycia modeli 
prognoz złożonych Jak wynika z obliczeń, zastosowanie w badanym przedsię­
biorstwie opisanego wyżej rozwiązania, opierającego się na modelu prognoz 
złożonych, pozwoliłoby na wygenerowanie oszczędności na poziomie około 
pięciu tysięcy trzystu złotych, średnio w każdym tygodniu działalności. Należy 
jednak pamiętać, że jest to wartość hipotetyczna, odnosi się bowiem do okresu 
cstymacyjnego. Przewaga modeli prognoz złożonych (w ujęciu kosztowym) nad 
prognozami działu marketingu oraz prognozami budowanymi na podstawie za­
mówień jest, do pewnego stopnia, konsekwencją zastosowania w estymacji pa­
rametrów modeli złożonych kryterium minimalnych kosztów całkowitych. 
W okresie testowym modele te okazały się dużo gorsze, choć ciągle lepsze od 
prognoz formułowanych na bazie zamówień. Najlepiej wypadły natomiast pro­
gnozy budowane na podstawie odpowiednich modeli ekonomctrycznych, będą­
cych częścią modelu złożonego. Należy jednak podkreślić, że różnice w kosz­
tach całkowitych nietrafionych prognoz nie są w tym wypadku duże.

Tabela 1

Porównanie MAPĘ w okresie estymacyjnym

Kod 
grup)

Prognozy 
złozone: 
wariant A

Prognozy 
złożone: 
wariant ß

Model Dział 
market ngu Zamówienia

1 2 3 4 5 6

KI 1.849 1.8-19 1.777 2,317 2.135

K2 3.071 3,118 3.089 3,214 3,027

U3 1.350 1,409 1,400 1,502 1,219
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cd. tabeli 1

1 2 3 4 5 6

Ul 3.682 3,835 3,980 3.759 2,942

1’5 2.446 2,349 2,318 3.115 2,747

1’6 2.524 2.297 2,591 2,573 2.341

1’7 7.478 7,077 7.852 7,550 4.397

MS 3.116 3.288 3,599 2.779 3.420

B9 1,803 2.178 1.801 2.300 2.423

KIO 3.199 3.310 3.103 4.019 3.893

Kl 1 2.952 2.972 3,547 2.907 2.147

UI2 4.387 5,005 4,580 5.005 1,705

U13 3,634 3,560 3,560 6,283 3,581

UI4 5,903 5,903 5,903 7.828 3,649

NI5 4.625 4.712 4.649 4,712 3,994

NI6 3.078 3,108 3,385 2,174 1,354

NI7 13.981 14.590 13,491 14.993 15.924

N1S 6,200 6.299 6,299 5.858 5.328

NI9 6.874 6,370 7,206 5.335 6,583

N2O 21.029 24.966 24,966 19,301 21,902

K22 63.810 78.550 63,810 70,691 101,219

K25 9,075 12,085 8.569 9,424 12.921

U28 2,774 2.737 2,712 2.963 2.520

B29 1.577 1.680 1.577 1,363 2,258

K3O 1.391 1,551 1.507 1.306 1.939

K31 2.260 2,182 2.245 2,471 2,266

1’32 3.067 3,318 3,081 3,683 3,212

1’33 2,506 2,814 2,469 3.139 2,340

U34 4 534 4.523 4,478 4.629 4.382

U35 3.723 3.336 3,723 4.262 3,325

B36 1,524 1.670 1,670 2,010 1,328

M37 0,969 1.232 7,812 2,318 0,969

M38 4.080 3.564 7.616 3,997 3,564

M39 1.169 2,774 7,576 15,092 1,169
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Tabela 2

Porównanie MAPĘ w okresie testowym

Kod 
grupy

Prognozy 
złożone: 
wariant A

Prognozy 
złożone: 
wariant B

Model Dział 
marketingu Zamówienia

KI 1.236 0.969 1,361 2.359 0.571

K2 1.580 2.170 0.714 2,887 0.482

U3 0.926 0.885 1,092 0.963 1,024

U4 0.905 0.945 0.971 0.919 0.923

P5 0.720 0.650 0,717 0,850 0.528

P6 0,464 0,435 0,400 0.537 0.569

P7 2.682 2.588 3.232 2,224 0.584

MS 1.278 1,505 2,368 0.619 0.761

B9 0.640 0,781 0.643 1.511 1,048

KIO 0,41 1 0,487 0.410 1 284 0.745

KII 2,675 4.712 2.754 6.878 0.912

U12 0,802 0.807 0,884 0,807 0.490

U13 42,546 43.909 43,909 51,885 31,247

IJ14 3,857 3.857 3,857 4,869 0.843

N15 0.697 0.608 0,723 0,608 0,546

N16 0.649 0.674 0,650 0,642 0,892

N17 0.977 0,874 1.071 0,832 0,805

N18 0,761 0,842 0,842 0.389 0.603

N19 0.975 0,717 1.058 0,630 0,637

N2O 14,967 18 541 18,541 13,413 4,396

K22 0,383 0,508 0.383 0,367 0,918

K25 0,516 0,320 0.522 0,567 0,354

U28 2.284 2,347 1.985 3,050 1,436

1329 1,679 1.915 1.679 1,426 2,716

K30 0.980 0.836 0.814 1,140 0.689

K3I 1,820 1,356 1,795 2,205 0.486

P32 1,305 1,615 1,265 1,432 2.118

P33 0,718 0,787 0,714 0,859 0,525
1134 0,858 0,804 0,851 0.868 0.666

U35 2,768 0,920 2,768 2,437 0,852

1336 0,448 0,455 0,455 0.825 0,485

M3 7 0,952 1,428 14,162 2,907 0.952

M3S 4.875 4,667 6,948 2,984 4,667

M39 0.534 4.082 11,771 32.923 0,534
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Przyczyn tego stanu rzeczy może być oczywiście wiele. Wśród nich na 
szczególną uwagę zasługuje być może fakt, że okres testowy został wyodrębnio­
ny w taki sposób, iż zawiera najstarsze dostępne obserwacje. Należy oczekiwać, 
że prognozowaniu wartości sprzedaży towarzyszył w badanym przedsiębior­
stwie proces samokształcenia i wzrost świadomości finansowych aspektów bu­
dowania prognoz w dziale marketingu. Ponadto, trzynastodniowy okres testowy 
wydiiie się być dość krótki, szczególnie gdy porówna się go z okresem estyma- 
cyjnym. co może negatywnie wpływać na poprawność formułowanych wnio­
sków. Przyjęta długość okresu testowego jest wynikiem kompromisu między za­
gwarantowaniem dostatecznej liczebności próby estymacyjncj z jednej strony 
a potrzebami wnioskowania o własnościach modelu na podstawie okresu testo­
wego z drugiej strony.

Aby, mimo ograniczonej długości okresu testowego, formalnie sprawdzić, 
czy zastosowanie któregoś z alternatywnych rozwiązań prowadzi do istotnej re­
dukcji kosztow. wykorzystano rangowy test Wilcoxona. Hipotezę zerową sfor­
mułowano następująco

Mediana przeciętnych kosztów tygodniowych w ramach modelu prognoz 
złożonych jest równa medianie przeciętnych kosztów tygodniowych 
w związku z zastosowaniem alternatywnych rozwiązań (tj. Model, Dział 
Marketingu oraz Zamówienia).

Hipotezę alternatywną stanowiło przypuszczenie, że:
Mediana przeciętnych kosztów tygodniowych w ramach modelu prognoz 
złożonych jest mniejsza niż w wypadku alternatywnych rozwiązań.

W toku analizy stwierdzono, ze model prognoz złożonych okazał się lepszy 
(przyjęcie hipotezy alternatywnej) od modelu jednostkowego w wypadku ośmiu 
i trzech grup asortymentowych, odpowiednio dla wariantu A i B. Na tle prognoz 
d 'talu marketingu i prognoz budowanych na podstawie zamówień, istotnie niż­
szą mcdi nę przeciętnych kosztów tygodniowych stwierdzono w blisko jednej 
trzeciej przebadanych grup asortymentowych. Na uwagę zasługuje dodatkowo 
fakt, że gdy ograniczymy zainteresowanie do dziewięciu najważniejszych grup 
asortymentowych, pozytywna ocena przydatności modeli prognoz złożonych zy­
skuje kolejne potwierdzenie.

Na zakończenie konieczne jest wyjaśnienie przyczyn wysokiej trafności 
prognoz działu marketingu w wypadku grupy asortymentowej oznaczonej sym­
bolem K22. Wyrób oznaczony tym symbolem jest sprzedawany głównie na eks­
port do krajów byłego Związku Radzieckiego, głównie do Rosji. Pod koniec 
2003 roku, a zatem w okresie testowym, sprzedaż na ten rynek ustabilizowała 
się, a prognozy opierały się na wiarygodnych deklaracjach partnera handlowego. 
Z łatwością można więc było przewidzieć moment zwiększonej aktywności po 
stron e zakupów, która tradycyjnie przypada na dwa ostatnie miesiące w roku.
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Tabela 3

Porównanie przeciętnych kosztów nietrafionej prognozy w okresie estymacyjnym 
(w zl na jeden tydzień produkcji)

Kod 
grupy

Prognozy złożone
wariant. 1

Prognozy złożone: 
wariant B

Model Dział 
marketingu Zamówienia

KI 236,54 129.28 293,64 567.19 262,08
K2 449,69 562.08 826.51 967,50 1 080.81
U3 84,42 94,88 87.58 106,77 107.46
IM 83,92 88.54 117,22 100,55 102.37
1’5 26,35 21.98 19,59 26.31 24,40
1’6 61,22 44.88 76,52 58.11 66,29
1’7 72,92 57.63 97,91 113.43 151,28
M8 139.01 87.49 141,07 279.41 226.67
B9 48,25 22.06 48,54 46.32 43.57
KIO 73,44 54.27 72.60 140.65 135,11
KII 152.40 120,41 193,94 228.52 273,97
U12 128.35 150,49 129,16 150,49 376.53
U13 77,90 77.43 77,43 229.61 152,67
U14 31,28 31.28 31.28 91.37 65.03
N15 302,90 323.77 311,33 323.77 879.07
N16 261,14 232.77 274.07 907.05 715.37
N17 324,67 242,88 427,43 269.89 648.43
N18 27,99 18,70 18,70 133,92 90.16
N19 40,87 45.48 40,27 150,98 93,11
N20 191,71 133.50 133.50 239,20 283 20
K22 1 252,18 1 019.36 1 252,18 2 555 95 1 183.84
K25 412,37 212.56 466.24 727,65 314,08
U28 38 43 26,75 45,53 49.55 50.69
1329 17,95 16.09 17.95 57.70 42,96
K30 28,26 13.36 23,47 49.54 59,50
K31 82,98 62.49 81,76 131,08 202,48
1’32 36,29 43.22 35,35 37,78 66.74

1’33 30,98 38,18 29,50 61,46 88,77
U34 83,73 71,33 107,97 147,11 170.45
1)35 66,26 38,08 66,26 112,13 41.60
B36 34,04 30,19 30,19 56,17 90.61
M37 187,78 151,54 327.70 230,29 187,68
M38 87.80 67.52 219.95 96,53 68.79
M39 55,61 22,41 92.25 217,76 55.61
Łącznie 5 229,66 4 352,89 6 214,57 9 661,72 8 401,38
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Tabela 4

Porównanie przeciętnych kosztów nietrafionej prognozy w okresie testowym 
(w zł na jeden tydzień produkcji)

Kod 
grupy

Prognozy złożone: 
wariant A

Prognozy złożone: 
wariant B Model Dział 

marketingu Zamówienia

KI 12,03 18,28 13,39 8.47 28,26
K2 20.05 29.90 37.18 41,02 49,44
U3 11.63 12.23 7,63 9.99 22,30
114 19.72 17.44 16.40 18,52 35,18
P5 0.24 0.16 0.22 0,42 4,59
P6 0.66 6.97 1.62 1.00 11,31
P7 31.31 32.88 20,42 40.90 79,90
MS 30.53 28,78 24.59 63.50 59,44
B9 7.99 3.41 8.04 0.82 2,27
KIO 11,41 14,34 15,45 2.77 12,15
KI 1 4,12 4.10 5.23 7,87 25,22
U12 78.38 85.14 72,95 85.14 114,64
U13 9.08 6.99 6,99 7,83 27,13
li 14 25.21 25.21 25.21 19.53 39,66
NI5 164.12 229.69 155.58 229.69 273,54
N16 772,21 718,05 757.61 842,32 429,48
NI7 160.41 230.13 1 14 02 260.38 564,98
N18 113,32 122 08 122,08 53.63 45,47
N19 57,74 94.18 43.25 126,70 120,66
N20 8.14 4.75 4.75 22,69 78,85
K22 590.85 793.25 590.85 289,57 1 109,60
K25 61.75 147.01 66.03 62,89 219,74
U28 4,03 3,11 5.92 3,12 8,91
B29 0.60 1.14 0.60 0.78 2.04
K30 7.46 7,04 12.89 8.64 10,74
1*31 18.21 24,97 18,29 17.13 79.69
P32 5.43 3,31 5.66 3.68 3,89
P33 5.65 3,96 5,83 2,26 9,88
(134 9.77 9,63 9.87 9,64 9.66
U35 1.05 6.15 1,05 I.H 7,17
B36 17,28 16.78 16.78 6,68 22,86
M37 1,72 1.31 5,26 0,52 1,69
M38 2.64 3.20 2,05 2,74 3,20
M39 1.82 0.67 1,82 6,38 1,82
Łącznic 2 269,58 2 706,26 2 195,51 2 258,31 3 515,37
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Wnioski

Celem niniejszego opracowania było empiryczne zweryfikowanie przydat­
ności zastosowania modeli prognoz złożonych w przedsiębiorstwie branży ce­
ramiki sanitarnej. Modele te uwzględniają oprócz prognoz uzyskanych na pod­
stawie jednostkowych modeli ckonometrycznych także subiektywne prognozy 
działu marketingu i prognozy ckstrapołowane z zamówień (ze względu na za­
uważoną przez pracowników badanej firmy cykliczną zależność wielkości 
sprzedaży od złożonych w danym okresie zamówień).

Zaprezentowane wyniki empiryczne uprawniają do sformułowania następu­
jących wniosków:

modele złożone wydają się być dobrym narzędziem budowania krótkotermi­
nowych prognoz sprzedaży wyrobów ceramiki sanitarnej ze względu na ni­
ski błąd prognozy i niskie koszty, które jest zmuszone ponosić przedsiębior­
stwo z tytułu nietrafionej prognozy,
zastosowanie w modelu prognoz złożonych kryterium maksymalnych korzy­
ści finansowych, zamiast minimalizacji sumy kwadratów błędów, ujawniło 
jego dużą elastyczność, która polega na możliwości uwzględnienia bezpo­
średnio w modelu asymetrii między kosztami zawyżonej i zaniżonej pro­
gnozy.
Należy jednak zauważyć, że koszty zaniżonej i zawyżonej prognozy muszą 

być rozliczone na każdy z produktów podlegających prognozowaniu z osobna. 
Dodatkowo występują duże trudności dotyczące dokładnego oszacowania tego 
rodzaju kosztów.
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Załącznik

Globalne marże brutto dla grup asortymentowych

Tabela A.1

Kod grupy asortymentowej Globalna marża brutto (w zl) Kategoria
K22 3 260 281
NI7 2 023 763
K2 1 779 962
NI5 1 577 013
NI6 1 536 288 A
K25 1 000 754
KI 709 176
U12 513 331
M8 512651
K3I 462 174
KII 429 952
N20 381 148
K23 298 481
UI3 234 726
N19 195 896 n
K26 187 147
KIO 167 649
1’7 158 580
113 135 100
M39 134 289
M37 125 480
1’6 125 274
U34 122 531
N18 122 065
B36 113 134
K30 93 871
B9 90 481
U4 66 656
Ul I 66 357
M3« 65 460 r*
1’32 64 596
1’33 63 957
B29 57 370
1’5 55 805
U28 52 522
K24 51 535
U35 39 541
K21 23 722
U27 8 530
RAZEM 17 107 247



46 Henryk Gurgul, Paweł Majdosz, Stanisław Myszą

Tabela A.2

Wyniki estymacji modeli ekonometrycznych dla grup asortymentowych 
zakwalifikowanych do kategorii A

cr;= 99,503 + 0,171 + 0,829 er,2.,
(119,509) (0,072) (0,056)

Kod 
grupy

Model
ARCH

test
Ljung- 

-Box test

K22 z, = 81,070 + 0,862 z, 0,781 = l,9xl05
(68,871)“ (0,124) (0.157)

9,148 

(0,870)b
17,311

(0,301)

N17 z, = 62,966 i- 2,206 t,a2 = 6,07x104
(68.532) (0.668)

11,675 
(0,703)

27,257 
(0.027)

K2 z, - 0,867 i- 0,985 z,_, - 0,898 e,_, 
(2,127) (0,019) (0,056)

<r,2 = 0,000 -i 0,050 £-2, + 0,935 a2_, 
(0,000) (0,020) (0.022)

5,385 
(0,996)

22,123 
(0,105)

NI5 z, = 182,844+ -2,106/+ 0,015 t2 ; er2 = 7,80x10’
(21,147) (0,694) (0,005)

12,101 
(0,671)

12,213 
(0,663)

N16 z, = 16,011 + 1,367 /;cr2 =4,32x10’
(16.717) (0,208)

22,514 
(0,095)

9,419 
(0,855)

K25 z, = 101,526+ 3,612 /;<r2 =3,15xl04
(49,024) (1,136)

5,068 
(0,992)

6,584 
(0,968)

KI z, = 2,435 + 0.381 z,_, 0,556 z,.,- 0,326 £,_,- 0,673 £,_, 21,925 10,980
(0,351) (0,130) (0,129) (0,118) (0,127)

CT,2 = 88,026 + 0,296 + 0,691 a,2.,
(80,253) (0,145) (0,124)

(0,101 ) (0,754)

U i 2 z, = 141,543+ 0,588 /;<r2 = 1,24x104
(24,152) (0,276)

15,237 
(0,434)

10,746 
(0,770)

M8 z, =-0,688+ 1,037 z,.,- 0,922 e,_, 
(1,592) (0,033) (0,041)

12,404 

(0.641)

13,907 

(0,533)

“ W nawiasach umieszczono błędy średnie szacunku odpowiednich parametrów 
b W nawiasach umieszczono prawdopodobieństwa krytyczne.
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Tabela A.3

Wyniki estymacji modeli prognoz złożonych w grupach asortymentowych kategorii A

Funkcja straty: Funkcja straty:

Kod suma kwadratów reszt strata przedsiębiorstwa według (9)
grupj

model dział 
marketingu

zamówienia model dział 
marketingu zamówienia

K22 1,000 0,000 0,000 0,605 0,000 0,395

NI7 0.666 0,334 0,000 0,286 0,667 0,047

K2 0,151 0,523 0,326 0,000 0,748 0,252

N15 0,891 0,078 0,031 0,000 1,000 0,000

N16 0,770 0,219 0,011 0,882 0,000 0,118

K25 0,594 0,351 0,055 0.000 0,211 0,789

KI 0,756 0,082 0,162 0.663 0,000 0,337

U12 0,650 0,254 0,096 0.000 1,000 0,000

M8 0,428 0.572 0.000 0,552 0.222 0,225
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COMPOSITE FORECASTING MODEL 
FOR SANITARY CERAMICS ENTERPRISE

Summary

The forccast mcthodology of sale value of a ceramics company has been presented 
in the paper. Thrcc sources of information hâve been used, i sale in the past, forecasts 
of marketing department and forecasts based on Orders. The relevance of the alternative 
solutions has been verified by the mcans of data sample from the selectcd company for 
the timc period from January 2001 to Decembcr 2OO3.The empirical results seem to con- 
firm the reasonability of inclusion of a new element, námely composite forecasts, into 
the forcasting system.
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MODEL WYCENY PRZEDSIĘBIORSTW

METODĄ DOCHODOWĄ

Wstęp

Wycena spółek notowanych na giełdzie papierów wartościowych służy po­
tencjalnemu inwestorowi przede wszystkim do określenia, czy warto dane 
przedsiębiorstwo nabyć do portfela inwestycyjnego celem późniejszej sprzedaży 
po wyższej cenie lub w przypadku inwestowania długoterminowego, które pre­
feruje Warren Buffett, w pierwszej kolejności czerpać korzyści z wypłacanych 
dywidend, a dopiero potem ze wzrostu rynkowej wartości.

Aby rozważać sposób czerpania korzyści z tanio kupionych akcji trafnie 
wycenionego przedsiębiorstwa, należy najpierw rozwiązać problem, w jaki spo­
sób wyceniać przedsiębiorstwa, aby wytypować te, które są niedowartościowane 
i mają największy potencjał wzrostu na rynku kapitałowym.

W gospodarce rynkowej jest wiele powodów wymuszających przeprowa­
dzenie wyceny przedsiębiorstw. Obok klasycznych transakcji kupna-sprzedaży 
są to m.in. fuzje i przejęcia przedsiębiorstw, podziały firm, likwidacje, wniesie­
nie przedsiębiorstw w formie aportu, podwyższenie kapitału, ustalenie wartości 
ubezpieczenia. W zależności od rodzaju wycenianego przedsiębiorstwa, celu 
wyceny i innych istotnych okoliczności są stosowane różne metod wyceny 
przedsiębiorstw |7, s. 131.

Przeprowadzenie wyceny często zostajc wymuszone przez różne okoliczno­
ści, dlatego też można wskazać następujące grupy przesłanek wyceny przedsię­
biorstwa. li przesłanki związane z:
I ) transakcjami kupna-sprzedaży lub innymi prowadzącymi tym samym do 

zmiany właściciela przedsiębiorstwa,
2) restrukturyzacją przedsiębiorstw,
3) prowadzeniem transakcji finansowych, najczęściej związanych z finansowa­

niem przedsiębiorstwa poprzez kapitały obce,
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4) koncepcją zarządzania wartością przedsiębiorstwa,
5) wyceną, przeznaczone do celów podatkowych,
6) prawem rodzinnym lub prawem o spadkach i darowiznach,
7) wymiarem odszkodowań [1, s. 64].

1. Wyceny i ich podział

Z pojęciem wyceny nierozerwalnie wiążc się zagadnienie wartości, które 
jest wieloznaczne w zależności od tego, w jakiej dziedzinie nauki się je stosuje. 
Idea wartości ekonomicznej opiera się na zdolności aktywów do dostarczenia 
ich posiadaczowi strumienia wolnych przepływów pieniężnych. Przepływy te 
mogą mieć formę zysków lub określonych płatności umownych.

Z kolei wartość księgowa aktywów lub pasywów jest sumą wartości ujętej 
w zestawieniu bilansowym według zasad rachunkowości. Zatem wartość księ­
gowa jest koncepcją stosowaną na potrzeby rachunkowości. Inne pojęcie warto­
ści wartość odtworzeniowa, to kwota konieczna do zastąpienia istniejących 
aktywów trwałych według rodzaju, czyli inaczej jest to koszt zastąpienia posia­
danych maszyn, urządzeń i innych środków trwałych jednakowymi co do rodza­
ju aktywami. Natomiast wartość likwidacyjna dotyczy szczególnej sytuacji, gdy 
firma musi zlikwidować część lub całość swoich aktywów i roszczeń.

Jako podsumowanie rozważań nad odmianami terminu „wartość” warto 
przytoczyć pojęcie wartości rynkowej. Wartość rynkowa to wartość aktywu bę­
dącego przedmiotem na zorganizowanym rynku, np. na giełdach towarowych 
czy giełdach papierów wartościowych.

W teorii oraz praktyce występuje wiele metod wyceny przedsiębiorstw 
i wybór ich odpowiedniej formy jest uzależniony nie tylko od specyfiki wyce­
nianego podmiotu, ale i od celu wyceny.

Klasyfikacja metody wyceny, która została zaproponowana przez M. Kufla, 
wyróżnia 4 grupy, tj.:
1. Metody dochodowe, które opierają się na wielkości dywidend, przepływów 

pieniężnych lub zysków.
2. Metody majątkowe dotyczące kosztów odtworzenia majątku przedsiębior­

stwa.
3. Metody mieszane, które łączą wartość majątkową z dochodową. Wśród nich 

wyróżnia się: metody średniej wartości i metody z zyskiem dodatkowym ja­
ko źródłem wartości reputacji.

4. Metody niekonwencjonalne obejmujące metody wyceny przez porównania 
rynkowe oraz metody wyceny z opóźnieniem czasowym [6, s. 18].
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Z kolei Dariusz Zarzecki proponuje inny podział, tj. na metody:
1 ) dochodowe,
2) majątkowe,
3) mieszane,
4) porównawcze,
5) niekonwencjonalne [7, s. 13J.

Istnienie różnych poglądów na temat wartości przedsiębiorstwa i ustalania 
jego wyceny spowodowało wyróżnienie następujących funkcji wyceny, tj.:
1. Doradczych, inaczej decyzyjnych, które są wyznacznikiem procesu decy­

zyjnego dotyczącego negocjacji ceny przedsiębiorstwa. Ich realizacja stwa­
rza możliwość określenia indywidualnego obszaru cenowego zarówno dla 
nabywcy, jak i zbywcy oraz pozwala na wyznaczenie strategii negocjacji ce­
ny dla obydwóch stron.

2. Uzasadniających (zwanych również argumentacyjnymi, negocjacyjnymi), 
które są związane z funkcjami doradczym Dostarczają one argumentów 
mogących wzmocnić pozycję negocjacyjną danej strony w taki sposób, żeby 
przekonać stronę przeciwną do swoich racji.

3. Pośredniczących, czyli mediacyjnych, pozwalających na znalezienie warto­
ści akceptowalnej przez obie strony, czyli nabywcę i sprzedawcę.

4. Zabezpieczających, które odnoszą się do wycen wykonywanych przez ze­
wnętrznych ekspertów w celu zabezpieczenia się właścicieli przed powsta­
niem ewentualnych sporów na tle tej wyceny.

5. Informacji zewnętrznej (informacyjnych), które nie służą żadnej ze stron 
tylko stanowią sygnał lub wskazówkę skierowaną do otoczenia. Zawierają 
one informacje dotyczące np. sytuacji finansowej przedsiębiorstwa czy wa­
runków jego przejęcia 11, s. 70].
Z praktycznego punktu widzenia wyceny przedsiębiorstw najbardziej prak­

tyczne są podejścia majątkowe i dochodowe. Według metod majątkowych, 
przedsiębiorstwo jest warte tyle, ile przynależny do niego majątek, a zgodnie 
z metodami dochodowymi przedsiębiorstwo jest warte tyle, ile przyniesie do­
chód od dzisiaj do nieskończoności.

2. Dochodowe metody wyceny przedsiębiorstw

Dochodowe podejście do wartości przedsiębiorstwa wiąże się z sumą zy­
sków lub innej postaci dochodu netto przedsiębiorstwa, jakie przyniesie ono 
właścicielom w okresie swojej działalności.
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W rzeczywistości poszczególne strumienie dochodów przypadają na różne 
momenty czasowe od chwili wyceny. Powoduje to konieczność ich korygowa­
nia, które uwzględnia zmienność ich wartości wraz z upływem czasu. Dlatego 
tez w tym celu jest wykorzystywana metoda dyskonta. Wykorzystanie tej meto­
dy przy wycenie dochodowej ma bezpośrednie odzwierciedlenie w określaniu 
metody zdyskontowanych przepływów pieniężnych. Najprostsza jej odmiana 
opiera się na założeniu, że w okresie n-lat funkcjonowania przedsiębiorstwa od 
momentu wyceny przynosi ono co roku stały dochód o oszacowanej wartości CF 
|l,s. 56|.

Opisując nadwyżkę finansową jako pomiar przyszłej dochodowości przed­
siębiorstwa, powinno się przyjąć ją w takiej postaci, żeby mogła ona w sposób 
obiektywny i kompletny odzwierciedlać zdolność aktywów przedsiębiorstwa do 
generowania dochodów.

Sposobów wyznaczania przepływów pieniężnych jest kilka. Warto przyto­
czyć najciekawsze metody ich szacowania dla wycenianego przedsiębiorstwa.

I sposób:

FCFE = zysk netto + amortyzacja -
- wydatki inwestycyjne - zwiększenie kapitału pracującego — ( 1 )

spłata zadłużenia + zaciągnięcia nowych kredytów [7, s. 113]

II sposób:

CF = ZO * (1 - rp) + A-AKO- I (2)

gdzie:
CF nadwyżka finansowa,
ZO zysk operacyjny,
rp - stopa podatku dochodowego płaconego przez przedsiębiorstwo,
A - amortyzacja,
AKo - przyrost kapitału obrotowego netto,
I - nakłady inwestycyjne [1, s. 114],

Przepływy pieniężne należące do wszystkich stron finansujących to rów­
nież rodzaj dochodu ekonomicznego, który jest stosowany na potrzeby szaco­
wania wartości przedsiębiorstw. Przepływy pieniężne należące do wszystkich 
stron finansujących FCFF (cash flow to firm) wyznacza się następująco:
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FCFF = FCFE + odsetki ęl - stopa podatkowa) + spłata zadłużenia -
— zaciągnięci® nowych kredytów + dywidendy uprzywilejowane =

= zysk netto + amortyzacja - wydatki inwestycyjne - (3)
zwiększenie kapitału pracującego + odsetki (1 - stopa podatkowa) +

+ dywidendy uprzywilejowane [7, s. 125]

Innym, nieco uproszczonym sposobem liczenia przepływu pieniężnego jest 
zsumowanie zysku netto oraz amortyzacji przedsiębiorstwa za ostatnie cztery 
kwartały Sposób len jest dopuszczalny w liczeniu przepływu pieniężnego jako 
nadwyżki finansowej w dużych przedsiębiorstwach, szczególnie tych, które są 
notowane na rynku kapitałowym. Wtedy wzór na CF przyjmuje postać:

CF = roczny zysk netto + roczna amortyzacja (4)

Dochodowa wycena przedsiębiorstwa stanowi problem w momencie, gdy 
analityk zastanawia się, jak długo w sposób uzasadniony i maksymalnie praw­
dopodobny jest w stanie szacować konieczne do przeprowadzenia rachunku 
elementy składowe.

Formuła wyrażająca sumę zdyskontowanych dochodów przedsiębiorstwa 
z okresu n lat powinna zostać uzupełniona o element odzwierciedlający wartość 
firmy na końcu n-tego roku. Składnik ten jest określany jako wartość rezydualna 
przedsiębiorstwa. Biorąc pod uwagę przedstawione uwarunkowania wyceny do­
chodowej przedsiębiorstwa, można ją zobrazować w następujący sposób:

1=1

CF, + RV (5)

gdzie:
PV - wartość przedsiębiorstwa,
Cl j przewidywane przepływy pieniężne w przedsiębiorstwie w okresie t, 
r stopa dyskontowa.
KV - wartość rezydualna [1, s. 115],

Istotnym elementem jest również właściwe oszacowanie poziomu stopy 
dyskontowej. Powinna ona we właściwy sposób odzwierciedlać tzw. cenę wy­
miany dochodu teraźniejszego na przyszły. Można zatem stwierdzić, że w po­
ziomie stopy dyskontowej jest zawarta oczekiwana przez inwestora stopa zwrotu 
ou zainwestowanego przez niego kapitału. Trzeba jednak pamiętać, że przyjęcie 
stopy dyskontowej na takim poziomie byłoby zbytnim ułatwieniem, ponieważ 
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najczęściej działalność przedsiębiorstwa, oprócz kapitału własnego, jest finan­
sowana także przez kapitał obcy. Dlatego też podstawą do wyznaczania poziomu 
stopy dyskontowej w tym przypadku będzie tzw. średni ważony koszt kapitału 
przedsiębiorstwa (WACC - wcightcd average cost of capital). Jest to średnia 
kosztu kapitału własnego i kosztu kapitału obcego ważona ich udziałem w całym 
kapitale zainwestowanym w przedsiębiorstwie.

Średni ważony koszt kapitału oblicza się jako:

r - rw * ww i- rd * wd *(1 - rp) (6)

gd/.e
r - średnia ważona stopa zwrotu z kapitału całkowitego przedsiębiorstwa (stopa 

dyskontowa),
rw oczekiwana przez inwestora stopa zwrotu z kapitału własnego (koszt kapita­

łu własnego),
rd średnic ważone oprocentowanie kapitału własnego,
rp stopa podatku dochodowego,
w„ wskaźnik udziału kapitału własnego w kapitale przedsiębiorstwa,
wd - wskaźnik udziału kapitału obcego w kapitale przedsiębiorstwa [1, s. 85],

Z kolei określając wartość rezydualną przedsiębiorstwa w celu oszacowania 
jego wartości po okresie szczegółowej prognozy, w literaturze przedmiotu stosu­
je się również różne sposoby jej kalkulacji.

Gdy sytuacja ekonomiczna przedsiębiorstwa, jej prognozy oraz perspekty­
wy rozwojowe na najbliższe lata wskazują na szansę jej dalszej stabilizacji 
w kolejnych latach, wtedy do celów obliczenia wartości rezydualnej wykorzy­
stuje się wzór:

r*(l + r)"
(7)

Zakładając coroczny, regularny wzrost zysku w wymienionym okresie, 
w celu wyrażenia wartości rezydualnej można skorzystać z formuły tzw. modelu 
stałego wzrostu, wtedy:
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|l + g|*CF„ 

(r-<7)*(l + r)"
(8)

gdzie:
CFn wartość przepływów z ostatniego roku prognozy, 
q założona stała stopa wzrostu po okresie prognozowanym, 
r przyjęta dla całego okresu prognozy stopa dyskontowa.

3. Model wyceny w praktyce

Aby stworzyć model wyceny przedsiębiorstw, posłużono się następującymi, 
wcześniej omówionymi wzorami:

+ RV (9)

(10)

Ponadto w celu zaprezentowania przykładowej wyceny założono, że: 
przykładowe wyceniane przedsiębiorstwo to spółka giełdowa Lubawa S.A., 
wycena przedsiębiorstwa uwzględnia jego sytuację finansową na dzień 
27.12.2007,
przepływy pieniężne CF obliczono jako nadwyżkę finansową, czyli: zysk 
netto i amortyzacja, co jest podyktowane nieskomplikowanym i logicznym 
sposobem liczenia przepływu pieniężnego,
zmiany zysku uwzględniono na poziomie 5% rocznie,
zmiany amortyzacji uwzględniono na poziomie 2% rocznie, 
przepływ pieniężny w wartości rezydualnej obliczono jako przepływ z ostat­
niego okresu prognozy pomniejszony o 20%, co oznacza, że przedsiębior­
stwo ponosi koszty na poziomie 20%, aby w przyszłości mogło nadal funk­
cjonować,
koszt kapitału określono na poziomic 8%.
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Tabela 1 przedstawia zestawienie założeń liczbowych służących jako dane 
wejściowe do modelu wyceny.

Tabela 1

Dane wejściowe do modelu wyceny

1. Dynamika zysku netto: 5.00%

2. Dynamika amortyzacji: 2,00%

3. Liczba akcji (w tys.): 87 000

4. Rynkowa cena akcji: 0.75 zł

5. Stopa dyskonta: 8.00%

6. Roczna stopa inwestycji poza okresem prognozy: 20,00%

Z tabeli 1 można odczytać nie tylko założenia wyceny, lecz także to, że 
przedsiębiorstwo będące przedmiotem wyceny jest notowane po 0,75 zł. Wska­
zana wartość notowania jest ważna przy porównaniu jej ze sporządzoną wyceną.

Tabela 2

Wyniki historyczne oraz prognoza na przyszłe lata (tys. zł)

Historia Prognoza

Rok 2007 2008 2009 2010 2011 2012

Zysk netto 10 666 11 199 11 759 12 347 12 965 13 613

Amortyzacja 1 010 1 030 1 051 1 072 1 093 1 115

CF 11 676 12 230 12 810 13419 14 058 14 728

Z tabeli 2 widać, że zgodnie z poczynionymi bezpiecznymi założeniami 
wyceny, wyniki w okresie prognozy (2008-2012) rosną systematycznie. Wzrost 
ten jednak nie jest obarczony ryzykiem przeszacowania, gdyż należy mieć na 
uwadze fakt, że przyjęte założenie wzrostu zysku netto o 5%, a amortyzacji 
o 2% jest uśrednionym wynikiem. Może to oznaczać, że w 2009 roku dynamika 
będzie ujemna, aby w 2010 roku przekroczyć 10% zmiany, co średnio w bada­
nym okresie da założone wartości dynamiki z tabeli 1.

Tabela 3 przedstawia model wyceny przedsiębiorstwa oparty na zdyskon­
towanych przepływach pieniężnych dla 5 lat prognozy z tabeli 2 oraz wartości 
rezydualnej.
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Tabela 3

Model wyceny (tys. zł)

Okres wyceny 1 2 3 4 5 RV

Stopa dyskonta 8,00% 8.00% 8.00% 8,00% 8,00% 8,00%

Wycena w okresach 11 324 10 983 10 652 10 333 1.0 024 92 952

Wartość wyceny 146 267

Wycena akcji DCF 1,68 zł

Z tabeli 3 wynika, że wartość wyceny całego przedsiębiorstwa wynosi 
146 267 min zł. Z kolei wycena 1 akcji spółki Lubawa S.A. wynosi 1,68 zł, co 
przy notowaniach z dnia wyceny na poziomie 0,75 zł oraz zakładanych wzro­
stach w przyszłości daje możliwość hipotetycznego zarobku 0,93 zł, czyli 124% 
zysku.

Wnioski

Podsumowując problematykę dochodowych metod wyceny przedsiębior­
stwa, należy nadmienić, że są one obarczone błędem prognozy wyników i zakła­
dają wycenę wartości jedynie po przyszłym dochodzie bez uwzględnienia majątku 
wycenianego podmiotu. Może się zatem zdarzyć, że wyceniane przedsiębior­
stwo w kolejnym okresie osiągnie inne wyniki od poczynionych prognoz CF. 
Należy wtedy korygować wycenę i dostosowywać swoje decyzje inwestycyjne 
już do zmienionej wyceny.

Jeśli wyceniane przedsiębiorstwo nie tylko nic będzie osiągać zysków na 
zakładanym poziomie, ale i będzie generować straty, wówczas prognoza CF bę­
dzie błędna, a wartość wycenianego podmiotu przewartościowana względem cen 
rynkowych. W takiej sytuacji inwestor poniesie stratę, a na odrobienie jej będzie 
musial poczekać, aż osiągane przez przedsiębiorstwo wyniki będą adekwatne do 
wcześniejszej wysokiej ceny nabycia.
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A MODEL OF EVALUATING ENTERPRISES 
BY INCOME METHOD

Summary

The article describcs the task of value estimating shares by the income method to- 
gether with a detailed description of the problems of estimating cash flow, cost of capital 
and residua! value.

In order to consider the way of the benefits from the inexpensively bought shares 
of the coiTectly estimated enterprise, we should solve the problem how to estimate the 
enterprises in order to show these which are undervaluated and have the biggest potential 
to inerease on the capital market.

The income method evaluating the enterprise is connectcd with the sum of incomes 
or any other forms of the net income of the enterprise obtained by its owners during their 
activity.

An important element is also the correct estimation of the level of the discount rate. 
The discount rate should properly reflect the so called the priée of the present exchange 
income related to the future one.
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ANALIZA ZMIENNOŚCI W DYNAMICE

PROCESÓW FINANSOWYCH

NA PODSTAWIE FUNKCJI

GĘSTOŚCI SPEKTRALNEJ

Wprowadzenie

Analiza działalności na rynku finansowym w większości przypadków 
sprowadza się do wszechstronnego badania dynamiki zjawisk. Najczęściej 
przedmiotem badania jest zmienność w czasie wartości instrumentów rynku ka­
pitałowego, różnego rodzaju transakcji, w szczególności krótko- lub długookre­
sowych. Do takich zagadnień można zaliczyć dzienne zyski z giełdy papierów 
wartościowych. W sytuacji powtarzalności sekwencji stanów, tj. cykliczności 
pewnych zachowań, można się posłużyć analizą spektralną. W większości przy­
padków dynamika procesów finansowych nie zawiera wyraźnie ustalonych cy­
kli. C zęsto mówi się o efekcie jednego momentu, np. jednego dnia, mimo że ta­
kie obserwacje nie zawsze znajdują pełne potwierdzenie empiryczne.

Jednocześnie w analizach finansowych mamy do czynienia z teorią tzw. 
długiej pamięci, czyli wielookrcsowcj autozalcżności procesów finansowych. 
Auto/aieżność w badanym zjawisku może być jednookresowa lub wielookreso- 
wa. W przypadku autozalcżności jednookresowej mamy do czynienia z autoko­
relacją wartości w okresie Z z wartością z okresu jednoimiennego cyklu poprzed­
niego. W przypadku autokorelacji wielookrcsowcj istotna jest zależność 
wartości jawiska w okresie / jednocześnie od wartości tego zjawiska w okre­
sach jcdnoimicnnych z kilku cykli wstecz. Analiza spektralna w pełni pozwala tę 
zależność identyfikować, i to zarówno dla momentów, jak i przedziałów czaso­
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wych dla krótkiego i długiego okresu. Jednym z wymogów, jaki stawia się przed 
analizą spektralną, jest założenie stacjonarności procesu. Zbadanie stacjonarno- 
ści stanowi punkt wyjścia w analizie spektralnej.

Analizę spektralną w niniejszym opracowaniu podjęto w celu dekompozy­
cji procesu na składowe częstotliwościowe o różnych okresach. Osiągnięto przez 
to przedstawienie procesu w dziedzinie częstości. Nic stracono przy tym infor­
macji z dziedziny czasu. Informacja ta w wystarczającym stopniu podlega opi­
sowi za pomocą funkcji spektrum oraz funkcji p(có) spełniającej założe­
nia funkcji gęstości spektralnej. Najważniejszym założeniem jest stacjonarność 
procesu w węższym sensie. Stacjonarność ta zostanie tu sprawdzona. Analiza 
spektralna polegająca na przekształceniu trygonometrycznym Fouriera ma tę za­
letę, żc może być wykorzystana do krótkich szeregów obejmujących do pięć­
dziesięciu obserwacji.

1. Model procesu

Podstawą analizy spektralnej w przypadku stacjonarnego procesu stocha­
stycznego jest model funkcji gęstości spektralnej. Model ten jest określony na­
stępującym wzorem, zgodnie z którym szereg aproksymujemy n-tą sumą czę­
ściową:

n

y, f(t) + [a, cos + ó, sin (tw o]=/(o+E[«, cos + ó sin(<»/)]• (!)
! I i = l

W powyższym wzorze wskaźnik cot to częstość związana z cyklem wyra­

żona wzorem:
2rti. n

co, =----- , dla z = 0,1,...,— .
n 2

Funkcję trendu przyjmujemy w postaci funkcyjnej, a w rozpatrywanym 
przykładzie zostanie uwzględniona postać funkcji liniowej f (/)= ml + n .

Oceny parametrów modelu a,, bt to stałe niezależne od czasu, zdefinio­

wane wzorem:

o, = <

1 ,,  . n
— / cos 69/, dla i = 0oraz i = — gdy n parzyste

2
2 V' / zz • i o ~
— / y, cos/, dla z = l,z,...,(------ ),
.n f=i 2
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2 ” n — 1ht = — V y, sin (j),t dla z = 1,2,...,(------ ). (2)
«ZT 2

Przedstawiona postać modelu yjest zjednej strony funkcją czasu, a z dru­

giej strony funkcją rozpatrywanych częstości, można więc ją rozpatrywać, ogra­
niczając się do zależności:

y, = f (&) • (3)

Funkcja f(co) nosi nazwę spektrum, jest funkcją ciągłą, nieujemną, okre­
sową, spełnia wszystkie założenia spektrum, jest rozpatrywana w mierze spek­
tralnej określonej za pomocą miary Euklidesowej wektora danych empirycz­
nych. Funkcje tę w najprostszym przypadku można przedstawić w postaci:

p(ú)) = — , r = (f-.s),dla/,.s- = l,...,20. (4)
2æ V

Jest to funkcja rzeczywista, ponieważ kowariancja sprowadza się do funkcji 
jednej zmiennej r .W związku z tym:

f(cú) = —\K(ť)cosú)T. (5)
2^ r

Przez K(Q) oznaczmy wariancję rozpatrywanej zmiennej y, 
K(0) = D2(yt). K(0) wyodrębnimy z funkcji spektrum f(co) i otrzymamy 

postać:

f(ců) = —ÄC(O) +—\K(i) cos ai. (6)
2ćł> n *

Obejmuje ona wszystkie możliwe częstości, jakie mogą się pojawić w reali­
zacji zjawiska yt, czyli Cù g 7t, x) . Funkcja spektrum jest funkcją okresową, 

co podkreśla słuszność podjętej analizy. Iloraz funkcji spektrum i wariancji cał­
kowitej rozpatrywanego zjawiska j’jest funkcją spełniającą założenia funkcji
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gęstości rozkladu, czyli p(ço) = -------- . Całka funkcji gęstości spektralnej jest
£(0)

liczbą rzeczywistą, a jako iloraz kowariancji do iloczynu odchyleń standardo­
wych może być potraktowana jako estymator współczynnika autokorelacji. 
K(0) jest stałą, w związku z tym spektrum można utożsamiać z gęstością spek­
tralną, której model zostanie przedstawiony w niniejszym opracowaniu zgodnie 
ze wzorami (1) i (7).

Szereg (I) można przedstawić w alternatywnej, nieco uproszczonej postaci:

y, ~ /(0 + ^ Asin(rĄ/ + ę9,), (7)

i=i

gdzie jest uwidoczniona amplituda wahań harmonicznych, która wynosi:

A, = yja; + b> . (8)

Podane jest przesunięcie początkowe (pt, określone zgodnie ze wzorem:

a,
(p, = aretg—, (9)

b,

gdzie CO' to wskaźnik częstości zdefiniowany wcześniej.

W przypadku ograniczonej kowariancji cov^,}7,) powyższy szereg jest 

zbieżny, przy czym rozpatrujemy kowariancję między wartościami z okresów / 
i s.

W dalszych etapach obliczeń zostaną oszacowane parametry wprowadzo­
nego do modelu szeregu, a w przypadku wykazania jego stacjonarności można 
będzii wyodrębnić prognozę kształtowania się obrotów spółki na giełdzie 
w przyszłości.

2. Dane empiryczne

Analizie poddano dzienne przychody z giełdy papierów wartościowych 
spółki z 40 dni od 2 listopada 2005 roku do 30 grudnia 2005 roku, uwzględnia­
jąc wartość akcji na dany dzień w momencie jej zamknięcia.
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Tabela 1

Zysk akcji w momencie zamknięcia

Data Zamknięcie Dala Zamknięcie
2005-11-02 19 2005-12-02 20,5

2005-11-03 18.7 2005-12-05 22,3

2005-11-04 19.4 2005-12-06 21,7

2005-11-07 20,3 2005-12-07 21,2

2005-11-08 20,9 2005-12-08 21,8

2005-11-09 20,8 2005-12-09 21,4

2005-11-10 20.7 2005-12-12 21,7

2005-11-14 19,5 2005-12-13 21

2005-11-15 18.6 2005-12-14 20,2

2005-11-16 18.8 2005-12-15 20,4

2005-11-17 19.25 2005-12-16 20,9

2005-11-18 18.8 2005-12-19 20,3

2005-11-21 19.25 2005-12-20 20,2

2005-11-22 18.95 2005-12-21 20,7

2005-11-23 19.1 2005-12-22 20,4

2005-11-24 18.8 2005-12-23 20,9

2005-11-25 18,75 2005-12-27 20,9

2005-11-28 18,5 2005-12-28 21,2

2005-11 29 18,7 2005-12-29 22,8

2005-11-30 18.5 2005-12-30 21,7

2005-12-01 19.6

Źródło: www.biznes.onet.pl

3. Zbadanie zgodności z rozkładem normalnym

Jednym z założeń zjawisk opisywanych metodami analizy spektralnej jest 
zgodność realizacji zjawiska z rozkładem normalnym. Rozkład normalny jest 
rozkładem symetrycznym, którego kurioza Ko = 3. Oszacowano warian­

cję O (Y) —-1,088 oraz odchylenie standardowe cr(y) = 1,043. Wyznaczono 
wartość oczekiwaną, która dla rozpatrywanego szeregu czasowego wynosi 
/:( K) = 20,05. Wyznaczono także wartość wskaźnika kurtozy:

http://www.biznes.onet.pl
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K = 2,934,

^100% = 2,934-3

3
= -0,22%,

^-100% = -1,04-3—h 00% = 4,3%.
<T0 1

(10)

(H)

Kurtoza rozkładu rozpatrywanego szeregu czasowego od wartości 3 jest 
niższa o 0,22%, a odchylenie standardowe od wartości 1 jest wyższe o 4,3%. 
Wartość oczekiwana wynosi 20,05 i wykazuje nieznaczny wzrost wraz z upły­
wem czasu. Rozkład badanej zmiennej można traktować jako zbliżony do nor­
malnego. Wartość oczekiwana jest różna od zera, wzrost wartości badanej 
zmiennej jest nieistotny statystycznie. Można więc przyjąć, ze wartość oczeki­
wana nic różni się istotnie od wartości, jakie zmienna przyjmuje w rozpatrywa­
nym okresie.

4. Zbadanie stacjonarności rozpatrywanego procesu

W punkcie 3 wykazano, że wartość oczekiwana i wariancja są skończone. 
Wyznaczenie wartości oczekiwanej i wariancji dla innej próby dało wynik, na 
podstawie którego można było wnioskować o nieznacznym wzroście wartości 
oczekiwanej. Wzrost ten będzie odzwierciedlała funkcja trendu liniowego 
wprowadzonego do modelu. Natomiast wariancja dla innych okresów obejmują­
cych około czterdziestu dni nie różni się istotnie od wariancji oszacowanej dla 
rozpatrywanej próby. Wartość średnia z upływem czasu wzrasta średnio o 0,05 zł, 
natomiast wariancja zawiera się w przedziale [1 ± 0,15] - przedział ten wyzna­
czono jako przedział ufności na podstawie poziomu istotności a = 0.05.

Wyznaczono funkcję kowariancji:

cov(y,. r ) = - E (r, - ř, )(/,. - Ę ) ( 12)
n

oraz odpowiednie wartości kowariancji dla różnych okresów t i s. Jeżeli przez r 
oznaczymy różnicę l-s, to okazuje się, że kowariancja zależy w sposób liniowy 
od r= t-s, cov(y;,rj=0,001(t-s) +0,5 i siła tej zależności jest słaba, ale ze 
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wzrostem różnicy między rozpatrywanymi okresami nieznacznie wzrasta. 
Wzrost ten jest nieistotny statystycznie, można go więc pominąć. Można go po­
minąć tym bardziej, że suma bezwzględnych wartości wszystkich kowariancji 
jest mniejsza od 20, czyli od połowy ilości rozpatrywanych obserwacji. Oznacza 
to, że kowariancja spełnia warunek bezwzględnej zbieżności:

£|K(r)|<oo. (13)

Spełnione są założenia stacjonarności funkcji autokowariancji. Wartość 
oczekiwana i wariancja procesu yt są skończone:

E(Yt ) = const., Ď* (Yt ) = const. (14)

Ponadto kowariancja stanów w dowolnych okresach t, s zależy jedynie od 
różnicy czasu:

cov(r,,rj = /:a-5) = ^(r). (15)

Spełnienie powyższych trzech warunków oznacza, żc proces jest stacjonar­
ny w wę/szym sensie.

Funkcja gęstości spektralnej jako ilustracja empirycznej postaci zjawiska 
jest funkcją okresową i została przedstawiona na rysunku 1.

Rys. 1. Estymator funkcji gęstości spektralnej
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Rysunek 1 przedstawia dziesięć końcowych obserwacji. Widoczne są zani­
kające wahania przy stałej długości cyklu. Oznacza to, zc udział częstości 
w kształtowaniu zjawiska z upływem czasu jest coraz mniej istotny. Proces ten 
nie jest białym szumem, ponieważ E(Yt) 0 i cov(}j,Fs.) 0. Skoro nie jest 

białym szumem, to należy wskazać trend i oszacować ewentualne wahania cy­
kliczne.

5. Wyznaczenie trendu

Wyznaczono liniową funkcję trendu. Jest to funkcja w postaci:

y = 0,051+18,96.

Rys. 2. Wykres funkcji trendu

Oznacza to, że wartość akcji z dnia na dzień wzrasta średnio o 0,05 zł. Mo­
del trendu w 34,62% odzwierciedla zmienność cen akcji. Poziom determinacji 
jest taki słaby, ponieważ model liniowy nie uwzględnia wahań. Aby uwzględnić 
wahania regularne i tym bardziej nieregularne, należy pogłębić analizę, np. za­
stosować analizę spektralną.



Analiza zmienności w dynamice procesów finansowych... 67

6. Wyznaczenie modelu wahań

Na podstawie danych z tabeli 1 i wzoru (1) dokonano oszacowania modelu 
dynamiki dziennych zysków z akcji:

ił
y, = + cos (ry,/) +6, sin(ry,Z)]. (16)

/-i

Wyniki obliczeń przedstawiono w tabeli 2.

Tabela 2

Obliczenia pomocnicze

i millier
ii a ruloniki rosta,,/) (li b, a,:+b* <4. «/Z>; arc 

tg(a/bi) CO i co cui .i i

/ -18 83 6,75 20 05 -0 041 0,34 1,00 1,00 -2,79 -1,23 45.97 45,97 1
2 9.48 9 48 0,474 0,47 0,45 0,67 1,00 0.79 20.65 66.61 2

3 -5.24 6,47 -0,262 0,32 0,17 0,42 -0.81 -0,68 7,63 74,24 3
4 -5.33 -6.55 -0,267 -0,33 0.18 0.42 0.81 0.68 8.20 82.43 4
5 -6.49 3,55 -0,324 0.18 0,14 0,37 -1.83 -1,07 6,28 88,72 5
6 -3.90 3.55 -0.195 0,18 0.07 0.26 -1.10 -0.83 2,20 90.91 6
7 -0.89 3,98 -0,045 0.20 0.04 0.20 -0.22 -0,22 1,92 92,83 7
8 -4 33 -0 23 -0.217 -0.01 0.05 0,22 18.93 1.52 1,16 93,99 8
9 -1.45 0,46 -0,072 0,02 001 0,08 -3,18 -1.27 0.26 94,26 9

10 -0.85 2,80 -0.042 0,14 0.02 0,15 -0,30 -0.29 0.98 95,24 10
11 0.88 0,69 0,044 0,03 0.00 0.06 1,28 0,91 0,14 95,39
12 -0.97 3.12 -0,049 0,16 0,03 0,16 -0,31 -0,30 1,23 96,62
13 0,00 -0 16 0,000 -0,01 0,00 0.01 0,00 0.00 0,00 96.62
14 1,18 2.30 0,059 0,12 0,02 0.13 0,51 0,47 0.77 97.39
15 -0.09 3.05 -0.004 0,15 0.02 0.15 -0.03 -0.03 1.07 98,46
16 0,74 1,50 0,037 0,08 0,01 0,08 0,49 0,46 0,32 98,78
17 0,15 1.45 0.007 0.07 0.01 0.07 0.10 0,10 0,25 99.03
18 0,40 2.43 0,020 0,12 0,02 0,12 0,16 0,16 069 99,72
19 -0.59 0.29 -0.030 0,01 0,00 0 03 -2.01 1 11 0,05 9977
20 0.00 2.85 0,000 0,07 0,01 0,07 0.00 0,00 0.23 100.00

Suma -36,14 47.80 20,05 -1.81 2,32 2,23 4,68 10,70 -1,94 100,00
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W kolejnych kolumnach przedstawiono wykonane pośrednie obliczenia 
mające na celu wyznaczenie parametrów modelu. Kolumna Ct)l to wykaz części 

ogólne wariancji zmiennej Y wyjaśnionej przez kolejne spośród dwudziestu 
harmonik:

_A
2S2 ’

n
(17)

W związku z tym, że model całkowity zawiera 20 harmonik, z których 
10 wyjaśnia 95% ogólnej wariancji zmiennej Y, końcowe 10 harmonik pominię­
to jako nieistotne statystycznie. Model ma więc postać:

y, = 0,05t + 18,96 + I sin(45,97t - 1,23) + 0,67sin(20,65t + 0,79 +

4 0,42sin(7,63t - 0,68) + 0,42sin(0,68t 4 8,20) 4- 0,37sin(6,28t - 1,07) +
4 0,26sin(2,20t - 0,83) + 0,20sin(l ,92t - 0,22) 4- 0,22sin( 1,16t + 1,52) +

+ 0,08sin(0,26t - 1,27) + 0,15sin(0,98t - 0,29). ( 18)

7. Ocena jakości oszacowanego modelu

Wyznaczono wariancję resztową S2 =0,405, odchylenie resztowe 

Sn = 0,63 oraz VH = 3,17%. Oznacza to, że model charakteryzuje się bardzo 

dobrą wyrazistością. Współczynnik zmienności resztowej nic przekracza progo­
wej wartości 10%, model można więc wykorzystać do celów diagnostycznych 
lub celów prognostycznych badanego zjawiska. Współczynnik zbieżności

2  0/105  37,22%, R2 =62.78%. Oszacowany model nie wyjaśnia zmien- 
1,088

ności zjawiska w 37,22% zakresu zmienności zmiennej objaśnianej, natomiast 
wyjaśnienie tej zmienności ma miejsce w 62,78%.

8. Prognozowanie kształtowania się
zysków dziennych w przyszłości

W celu zbadania dopuszczalności modelu do szacowania prognoz wyzna­
czono dla każdego okresu danych historycznych prognozę wygasłą. Są to pro­
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gnozy ex post przedstawione w tabeli 3. Zbadano sumę wartości rzeczywistych, 
zaobserwowanych :

Ez =801.65

i sumę wartości prognoz wygasłych, która ukształtowała się na poziomie
i =801.71. Zgodność powyższych sum zbadano z racji niewysokiego 

współczynnika determinacji przedstawionego w poprzednim punkcie. Przy ta­
kiej zgodności wartości empirycznych i prognoz wygasłych można przedstawić 
prognozę cx antę na najbliższe kolejne interesujące dla opracowania okresy.

Prognoza ex post

Tabela 3

l y, y '
1 18.75 19,535
2 18,8 17,298
3 19.45 18.879
4 19.7 21,003
5 20,5 20,005
6 20,6 19.122
7 20,2 19.654
8 20.2 20,194
9 19,25 18.411
10 18,55 19 472
II 19 19.773
12 19,45 19,107
13 19,35 19,356
14 19 4 19,104
15 18,95 18.953
16 18,95 18,901
17 18.6 18.622
18 18,75 18.667
19 18,2 18.294
20 18,9 18.225

l y, y >
21 18.9 19.296
22 19.5 19.566
23 21 21,547
24 21,8 21,067
25 21.1 20 000
26 21.7 20.977
27 21,9 21.730
28 21,3 20.930
29 21,5 21,880
30 21 20,926
31 20.2 20,093
32 20.4 21,603
33 20,9 22,049
34 20,5 20,555
35 20.3 20,747
36 20,3 20,501
37 20.5 20,343
38 21 21,683
39 21 21.678
40 21.6 21,963

Suma 801.65 801.711
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Tabela 4

Prognozy na następne okresy

t y. y '

41 18.967 19.211

42 22.010 22,100

43 20.928 21.311

Wariancja predykcji cx post wynosi:

S„ = ±=>—!------ ! = 0,405, ( 19)
n

natomiast wariancja predykcji ex antę wynosi:

S,2 = XIÍlJlL = 0,071. (20)

m

Niskie wartości obliczonych wariancji występują przy wysokiej zgodności 
modelu z rzeczywistością, co potwierdza poniższy diagram.

—•—Dane empiryczne —»—Model i prognoza

Rys. 3. Model i prognoza
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Korzystając z powyższych obliczeń, wyznaczono również współczynnik 
Janusowy, zdefiniowany jako stosunek wariancji prognoz na przedziale horyzon­
tu prognozy do wariancji z okresu z danych historycznych. Prognozy są dopusz­
czalne, gdy wartość współczynnika nie przekracza wartości 2, W przedstawio­
nym przykładzie wartość współczynnika wynosi 0,176, co ma miejsce przy 
niższej wariancji prognoz ex antę od wariancji prognoz ex post.

T S- 
.7 = -^--0,176. (21)

Wnioski

Analiza spektralna pozwala na zbadanie wahań regularnych i nieregular­
nych rozpatrywanego zjawiska. Pozwala również na szacowanie precyzyjnych 
prognoz. Współczynnik Janusowy ma wartość mniejszą od 1, co oznacza, ze 
prognoza jest trafna. Analiza spektralna stanowi narzędzie wyznaczania prognoz 
obarc onych nieistotnym błędem, co jest szczególnie przydatne w przypadku 
badania cen akcji na giełdzie i przewidywań ich wartości na okresy przyszłe. 
Analiza spektralna oparta na przedstawionej transformacie Fouriera pozwoliła 
zbadać autokorelację rozwoju procesu finansowego poddanego badaniu na pod­
stawie krótkiego szeregu czasowego. Zanikające wahania przedstawionej funkcji 
spektralnej uzasadniają słuszność wykorzystania modelu do wyznaczenia pro­
gnoz kształtowania się zjawiska na przyszłość. Przedstawiona analiza pozwoliła 
na zbadanie poziomu zanikania wahań. Jednak do jej wad należy to, że nie ma 
możliwości przedstawienia czynników, które w istotny sposób mają wpływ na 
zanikanie wahań.
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ANALYSIS OF THE FLUCTUATION IN THE DYNAMICS
OF THE PROCESSES FINANCED ON THE BASIS 

OF THE SPECTRAL DENSITY FUNCTION

Summary

The paper présents an analysis of the revenues from the Stock Exchange. The data 
covcrs the period from 2 November 2005 to 30 December 2005. A model was con- 
structed, its stationary charactcr was proved and its forecast was prepared - Janusowy ra­
tio stands at less than 1, which mcans that the forecast is accuratc



Adrianna Mastalerz-Kodzis

MULTIUŁAMKOWY PROCES

RUCHU BROWNA A FUNKCJA

WEIERSTRASSA- PORÓWNANIE

WYBRANYCH WŁASNOŚCI

Wstęp

Multiułamkowy proces ruchu Browna jest procesem stochastycznym wyko­
rzystywanym m.in. do opisu zmian kursów giełdowych. Postać analityczna 
funkcji Weierstrassa to suma nieskończonego ciągu trygonometrycznego Oka­
zuje się jednak, ze wspomniane dwa pojęcia wiele łączy. Czy można np. w ana­
lizach empirycznych zamiast dosyć skomplikowanego matematycznie procesu 
wykorzystywać funkcję Weierstrassa?

Celem opracowania jest zaprezentowanie wybranych własności multiułam- 
kowego procesu ruchu Browna i jego uogólnienia oraz porównanie tych własno­
ści z własnościami funkcji Weierstrassa.

Opracowanie składa się z trzech części. W pierwszej przedstawiono pod­
stawowe pojęcia analizy fraktalnej i multifraktalnej. W części drugiej zaprezen­
towano wybrane uogólnienie multiułamkowego procesu ruchu Browna, zaś 
w trzeciej pokazano związek pomiędzy omawianym ruchem Browna a standardową 
i uogólnioną funkcją Weierstrassa.

1. MuItiułamkowy proces ruchu Browna
i jego własności

Obiekty fraktalne posiadają własność samopodobieństwa. Można je podzie­
lić na części o takiej własności, ze każda z nich stanowi pomniejszoną kopię ca­
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łości. O samopodobieństwic mówi się wtedy, gdy każdy element obrazu zostajc 
pomniejszony lub powiększony w takim samym stosunku (zob, [6; 3]). Multi- 
fraktale (multifractals) opisują obiekty, których składowe nie muszą być po­
mniejszone w takiej samej skali.

Multiułamkowy proces ruchu Browna (ang. Multifractional Brownian Mo­
tion) został wprowadzony niezależnie przez Lévy Véhel i Peltier [8] oraz Benassi, 
Jafford i Roux [2]. W definicji wykorzystuje się pojęcie funkcji I löldera.

Niech będzie dana funkcja f : D —> 91 (D c 91) oraz parametr a G (0,l). 

Funkcja f:D—>91 jest funkcją klasy Ca Höldera (f G C” ), jeżeli istnieją 

stałe c > 0 oraz h0 > 0 takie, że dla każdego x oraz wszystkich h takich, że

0 < h < h0 jest spełniona nierówność:

|f(x + h)-f(x)|<cha. (1)

Dalej, niech x() będzie dowolnym punktem z dziedziny funkcji 

f (x0 g Dc 91). Funkcja f :D —>91 jest w punkcie Xq funkcją klasy C

Höldera

a 
xo 

?eC“J, jeżeli istnieją stałe s, c > 0 takie, że dla każdego 

x G (x0 - E,x0 + e) jest spełniona nierówność:

|f(x)-f(x0)|<c|x-x0|a. (2)

Punktowym wykładnikiem Höldera funkcji f w punkcie Xq nazywamy 
liczbę ar(x0) daną wzoremccf(x0) = sup|cc : f G C“o }. Funkcją Höldera dla 

funkcji f nazywamy funkcję, która każdemu punktowi x G D przyporządkowuje 
liczbę ccf(x).

Niech Ht : (0,°o) —> (0,l) będzie funkcją Höldera o wykładniku a > 0.

Multiułamkowym procesem ruchu Browna z parametrem funkcyjnym Ht 
nazywamy proces stochastyczny BH (t) zdefiniowany dla t > 0 wzorem:

)H‘ X -(-s)Hi XjdB(s)+ j(t —s)H* ^dB(s)-,(3)

o

o ri [(t-s

gdzie B jest standardowym procesem ruchu Browna.
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b) I I(t) = 0,9 (cos 2 (10t) 1-0,1)

Rys. 1. Realizacja multiulamkowego procesu ruchu Browna

Powyższy proces ma m.in. następujące własności (zob. [8; 1]).
1. Proces nic ma przyrostów stacjonarnych, gdy funkcja Höldera nie jest funk­

cją stałą.
2. Jeśli U jest funkcją Höldera, to multiułamkowy proces ruchu Browna 

BHf (t) dla t > 0 jest ciągłą funkcją zmiennej t (z prawdopodobieństwem 

równym jeden).
3. Im wartość funkcji Höldera są bliższe zera, tym wykres jest bardziej niere­

gularny, postrzępiony, o wyższym wymiarze fraktalnym; dla wartości funk­
cji H| bliskich jedynki proces jest gładszy.

4. Proces nic jest samopodobny, jest lokalnie asymptotycznie samopodobny, 
tzn.:
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d

(= oznacza równość względem wszystkich rozkładów skończenie wymia­
rowych).

Wprowadzono dodatkowe założenie, a mianowicie dla wszystkich t > 0 
wartości funkcji Hóldera ograniczono do przedziału 0 < Il(t) < min(l,cc). Wte- 

dj z prawdopodobieństwem równym jeden są prawdziwe poniższe własności:
1. Dla dowolnego przedziału [a,b]c:R+ wymiar pojemnościowy i Ilaus- 

dorfia wykresu trajektorii procesu BH( (t) wynosi (zob. [6]):

d’mHaus({t,BHi (t):te [a,b]})= dimBox(jt,BHi (t):te [a,b]})=2- min{łł(t)}. 
te[a,b]

2. Lokalny wymiar pojemnościowy i Hausdorffa trajektorii procesu BH( (t) 

dla każdego tc > 0 wynosi 2 — Il(t0).

3. 7. prawdopodobieństwem równym jeden punktowy wykładnik Hóldera tra­
jektorii procesu Bb (t) dla każdego t() > 0 jest równy Il(t0).

4. Funkcja BH (t) jest ciągła.

2. Uogólniony multiułamkowy proces 
ruchu Browna

W multiułamkowym procesie ruchu Browna funkcja Hóldera była funkcją 
ciągłą, a zatem mierzona tą funkcją regularność trajektorii procesu również 
zmieniała się w sposób ciągły. Uogólnienie procesu ruchu Browna polega na za­
stąpieniu ciągłej funkcji Hóldera funkcją nieciągłą (zob. [1]).

Funkcję h : 9Î —> 9Î nazywamy funkcją Hóldera typu (cc,c), gdzie 

cc,c > 0, wtedy i tylko wtedy, gdy dla dowolnych tt ,t2 takich, że |tt - t2| < 1 

zachodzi nierówność:

|h(tj)-h(t2)| < c|tj -t2|“. (4)
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Niech H będzie zbiorem funkcji H zdefiniowanych na 91 takich, że 
Il(t)= liminl Hn(t), gdzie (Hn(t)) N jest ciągiem funkcji Höldera typu 

11 ->cO M
(a,cn), funkcji o wartościach z przedziału [a.b]c[Oj] i spełniających poniż­

sze własności:
1. Dla każdego e>0 i t0 istnieje n0=n0(t0,e) oraz h() = h0(t0,£)> 0

takie, że dla n > n() i |h| < h0 zachodzi nierówność

II„(to+h)2H(t„)-E.
2. Dla każdego t Il(t) < a oraz cn - 0(n),

Niech funkcja U o wartościach Il(t) = liminf Hn(t) będzie funkcją ze 
ll->cO

zbioru II i niech À. > I. Uogólnionym multiułamkowym procesem ruchu Brow­
na (ang. generalized multifractional Brownian motion) z parametrem funkcyj­
nym Il(t) i X liczbą rzeczywistą nazywamy proces {Bn ^(t)} , taki, że dla

każdego t e 91 :

oo _ 1
Bha(')= X ! , (,)«,, dBfc). M)

11=0 Dn|^| ”

gdzie Do = {č, : |£,| < 1} oraz dla wszystkich n > 1 Dn = : À.n 1 < |ć,| < À.n

Przykłady funkcji należących do zbioru U można znaleźć w pracy [I]. 
Uogólniony multiułamkowy proces ruchu Browna jest procesem zależnym nic 
tylko od funkcji Il(t), ale także od ciągu Hn(t). Autorzy definiują ułamkowy 

proces ruchu Browna jako całkę stochastyczną po procesie ruchu Browna w na­
stępujący sposób (zob. także [7; 5]):

+oo

Bh(i)= J
—00

(6)

Gdy w powyższym wzorze zastąpimy H funkcją nieciągłą, to uzyskamy 
nieciągły proces stochastyczny.
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Rys. 2. Realizacja uogólnionego multiułamkowego procesu ruchu Browna 
,, fOJ dla te[0,1/2I

Il(t) = ł / 1
[0,9 dla te(l/2,1]

Niech |ßH x(t)} będzie uogólnionym multiułamkowym procesem ruchu 

Browna z parametrem funkcyjnym Il(t) i X > 1. Niech t(, będzie wybraną rze­
czywistą wartością oraz niech ccB (t0) będzie wykładnikiem Höldera proce- 

11 .A.
su w punkcie t0. Z prawdopodobieństwem równym jeden zachodzi

równość (X Y

3. Funkcja Weierstrassa i jej uogólnienie

Poniżej podano przykład funkcji o stałym wykładniku Höldera w każdym 
punkcie dziedziny (funkcji Weierstrassa) oraz przykład funkcji, dla której wy­
kładnik ten nie jest stały w całej dziedzinie (uogólnionej funkcji Weierstrassa) 
(zob. [4; 9j).

Funkcją Weierstrassa nazywamy funkcję dlax e ÏR daną wzorem:

W(x) = £rks sin(xkx), 
k=l

(7)

gdzie X > 0 oraz s e (0,l).

Funkcja Weierstrassa jest funkcją ciągłą, ale nie ma pochodnej w żadnym 
punkcie dziedziny (zob. [4]) Jest to funkcja klasy Cs, zatem wymiar Hausdorffa 
wykresu funkcji spełnia nierówność:



Multiulamkowy proces ruchu Browna a funkcja Weierstrassa... 79

d'miiails(Graph W)<2-s

(przypuszcza się, że wymiar ten jest równy liczbie (2 - s), ale jeszcze nie zostało 
to dowiedzione).

Wykres funkcji W zacieśnionej do przedziału [a, b] dla dowolnych 
a.b e R ma wymiar pojemnościowy równy liczbie (2 - s):

dim Box (Graph W ) = 2 - s

oraz dla każdego x e [a, b] wymiar pojemnościowy funkcji w punkcie jest stały, 
równy (2 - s):

dimBox (Graph W) = 2 - s.

Zatem wykres funkcji Weierstrassa jest fraktalem o wymiarze pojemno­
ściowym równym 1,5. Punktowy wykładnik Höldera w każdym punkcie dzie­
dziny przyjmuje taką samą wartość równą ccw(x)= s.

Funkcja Weierstrassa Lambda=4, s=0,1

b)
Rys. 3. Przybliżony wykres funkcji Weierstrassa (nieskończony szereg trygonometryczny zastą­

piono 10-elementowąsumę częściową)
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Funkcję Weierstrassa można uogólnić, przyjmując w zamian za stały para­
metr s g (0,l) funkcję ciągłą. Niech zatem a,be 91, [a,b cz (0,l). Dalej, niech 
s : [0,1] —> [a, b] będzie funkcją ciągłą dla każdego xe 0,1] spełniającą nie­

równość s(x) < cts(x). Ponadto, niech istnieje stała M > 0 taka, aby dla każde­

go (t,u)e [0,l]x[0,l] zachodziła nierówność:

|s(t)-s(u)|< M|t-u|°>W

Wtedy dla dostatecznie dużej i nieparzystej liczby X > 0 dla uogólnionej 
funkcji Weierstrassa w postaci:

W(x) = £vks(x)sin(x.kx) 
k=l

(8)

jest spełniona równość:

2 - dimßOX (Graph w) = a(x) = s(x).

Rozważmy uogólnioną funkcję Weierstrassa W zacieśnioną do przedziału 
[0,11 z ciągłą funkcją s(x)= x . Lokalny wymiar pojemnościowy wykresu tej 

funkcji wynosi:

dim ßOX (ûraph w) - 2 - s(x).

Wykres uogólnionej funkcji Weierstrassa jest fraktalem Wymiar pojemno­
ściowy wykresu funkcji w punkcie jest różny w różnych punktach. Jest to przy­
kład funkcji o różnych wykładnikach Ilöldera w różnych punktach wykre­
su otf(x)= s(x).
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Uogólniona funkcja Weierstrassa 
Lambda=7, s(x)=x

W(x) 3.UU

4,00

3,00

2,00

1,00

0,00

-1,00

-2.00

Rys. 4. Uogólniona funkcja Weierstrassa

Podsumowanie

W opracowaniu rozważano wybrane własności dwóch przekształceń: multi- 
ulamkowcgo procesu ruchu Browna ■ ego uogólnienia oraz standardowej i uogól­
nionej funkcji Weierstrassa. Proces stochastyczny jest generowany przez funkcję 
Höldera; to własności tej funkcji odpowiadają za stopień regularności (wymiar 
fraktalny wykresu), natomiast czynnikiem wskazującym na regularność w funk­
cji Weierstrassa jest s(x). Pokazano podobieństwa pomiędzy własnościami 
omawianych przekształceń, w szczególności wskazano na równość wymiarów 
fraktalnych.

Jakie własności posiadałby funkcja W(x) zadana wzorem (9), gdyby funk­

cja s była nieciągła? Czy byłby to odpowiednik uogólnionego multiułamkowego 
procesu ruchu Browna? Można przypuszczać, że większość własności fraktal­
nych nic uległaby zmianie, w szczególności wymiar pojemnościowy.

Czy można zatem zamiast procesu stochastycznego, jakim jest multiułam- 
kowy proces ruchu Browna w analizach empirycznych, stosować łatwiejszą 
w sensie obliczeniowym funkcję Weierstrassa? Wydaje się, ze taka zamiana jest 
możliwa. Wartości funkcji Höldera - punktowe wykładniki Höldera - są inter­
pretowane jako miary ryzyka punktowego (w otoczeniu dowolnego punktu wy­
kresu); wartości funkcji s ze wzoru (9) można także traktować jako lokalne 
mierniki ryzyka.
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MULTIFRACTIONAL BROWNIAN MOTION AND WEIERSTRASS 
FUNCTION - COMPARISON OF THE SELECTED PROPERTIES

Summary

In this article we compare the sclccted properties of Multifractional Brownian Mo­
tion and Gcneralised Weierslrass Function. As it turned out the main fractional proper­
ties arc the same (for example the local fractional dimension). So, we hâve concluded 
that it is possible to replace the Multifractional Brownian Motion by the Gcneralised 
Weierstrass Function.



Jerzy Mika

O LINEARYZACJII ROZWIĄZANIACH 

UOGÓLNIONYCH ZADAŃ

OPTYMALIZACJI ILORAZOWEJ

Wprowadzenie

Istotnym zarówno z teoretycznego, jak i praktycznego punktu widzenia 
przypadkiem szczególnym zadań optymalizacyjnych wykorzystywanych w pro­
cesach wspomagania podejmowania decyzji ekonomicznych są tzw. zadania 
optymalizacji ilorazowej, czyli zadania optymalizacyjne charakteryzujące się 
tym, że ich zbiorem rozwiązań dopuszczalnych jest zbiór rozwiązań pewnego 
układu równań i nierówności liniowych, a funkcja kryterium jest ilorazem form 
liniowych zmiennych decyzyjnych rozpatrywanego zadania optymalizacyjnego. 
Zadania optymalizacyjne tego typu są jednym z nieliniowych uogólnień zadań 
optymalizacji liniowej. Racjonalnym uzasadnieniem istotności modeli optymali­
zacji ilorazowej jest m.in. to, iż są one naturalnym krokiem w uogólnianiu i do­
skonaleniu idei i metod programowania matematycznego. Ilorazowy charakter 
funkcji kryterium lego typu zagadnień optymalizacyjnych, jak wykazują 
szczegółowe analizy rozpatrywanego problemu decyzyjnego, może umoż­
liwiać efektywne stosowanie niektórych standardowych i specjalnych algo­
rytmów optymalizacji liniowej do rozwiązywania tego typu zagadnień optyma­
lizacyjnych. Algorytmy optymalizacji ilorazowej mogą ponadto, nie tylko 
potencjalnie, lecz również efektywnie, być wykorzystywane jako podprogramy 
w bardziej ogólnych algorytmach optymalizacji nieliniowej. W związku z powyż­
szym uprawniona jest konstatacja, że wyodrębnienie zadań optymalizacji ilora­
zowej z ogólnych badań dotyczących optymalizacji nieliniowej jest uzasadnione 
zarówno ze względów teoretycznych, jak i praktycznych i można w tym zakresie 
oczekiwać oryginalnych wyników badawczych.
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W dalszych rozważaniach niniejszego opracowania zostanie zaprezentowa­
na oryginalna propozycja praktycznego zastosowania wybranych dei ogólnej 
teorii optymalizacji nieliniowej z efektywnym zastosowaniem procedury tzw. 
metody uogólnionych macierzy odwrotnych dla zadań optymalizacji ilorazowej.

1. Zadania optymalizacji ilorazowej

Rozpatrywane i analizowane zadania optymalizacji ilorazowej należą do 
bardziej ogólnej i obszernej klasy zadań optymalizacyjnych z liniowym układem 
warunków ograniczających, Mają następującą postać ogólną:

min] /(X) = C'X + a- ąx = b. a A2X < b2
l C2X + ß 2

Dla dalszych szczegółowych rozważań merytorycznych związanych z ana­
lizami czysto teoretycznymi oraz w odniesieniu do zastosowań utylitarnych tego 
typu zadań optymalizacyjnych oddzielne znaczenie mają następujące dwie 
szczególne postacie sformułowanego wyżej zadania:
— postać kanoniczna zadania optymalizacji ilorazowej z liniowym układem 

warunków ograniczających:

min<
C,X + a

C2X + ß
AX = b a X>0>

— postać standardowa zadania optymalizacji ilorazowej z liniowym układem 
warunków ograniczających:

mini —----------; AX <b a X >0 >

[C2X + ß J
Zadania optymalizacyjne dwóch powyższych wyodrębnionych postaci są 

oczywiście szczególnymi przypadkami pierwotnej, ogólnej postaci rozpatrywa­
nego zadania optymalizacji ilorazowej. Ponadto, doniosłe i niebanalne znaczenie 
praktyczne ma fakt, że zadania optymalizacji nieliniowej powyższej postaci są 
często występującymi przypadkami zadań optymalizacji nieliniowej w zastoso­
waniach praktycznych związanych zwłaszcza z niektórymi ideami w optymali­
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zacji wielokrytcrialncj i koncepcjami maksymalnej efektywności w procesach 
wspomagania podejmowania optymalnych decyzji przy wielorakości celów.

Dalsze analizy rozpatrywanej klasy nieliniowych zadań optymalizacyj­
nych w postaci kanonicznej z liniowym układem warunków ograniczających 
będą uwzględniać ich przynależność do klasy tzw. zadań optymalizacji wy­
pukłej Zasadność powyższej uwagi wynika z wypukłości funkcji kryterium 

C > X + ct
j(X) =-------------  na następującym mepustym i ograniczonym zbiorze roz-

C2 X + ß
wiązań dopuszczalnych:

D = [x&R" ; AX = b /\ X>&]

Postulowany warunek wypukłości funkcji kryterium f(X) =
C.X + g

C2X + ß

ma przy tym następującą szczegółową postać analityczną:

X,X,eR" 0<?21 1

Xt,X2^Rr 0<2<l {c2
XX' + {1-X)X2

ÄX1 + (]-à)X2

+ (1-Ä)
C,X2 + a 

C2X2+ß

Analizowana klasa zadań optymalizacji ilorazowej w postaci kanonicznej 
z liniowym układem warunków ograniczających spełnia dodatkowo, wymagane 
w dalszych analizach, założenie klasy różniczkowalności C' wypukłej funkcji 

C,X + a
kryterium j (X) =-------------  na zbiorze rozwiązań dopuszczalnych D. Ozna-

C, X + ß

cza to, że funkcja kryterium rozpatrywanego zadania optymalizacji nieliniowej 
ma ciągłe wszystkie pochodne cząstkowe rzędu pierwszego na zbiorze rozwią- 



86 Jerzy Mika

zan dopuszczalnych. Spełnienie tego dodatkowego założenia pozwoli efektyw­
nie stosować metody rachunku różniczkowego w analizach dotyczących zadań 
optymalizacyjnych rozpatrywanej postaci i wykorzystywać podstawowe idee 
metody uogólnionych macierzy odwrotnych.

2. Koncepcja metody kierunków dopuszczalnych 
w optymalizacji ilorazowej

Wyznaczanie optymalnych rozwiązań nieliniowych zadań optymalizacyj­
nych może być dokonywane poprzez wykorzystywanie do tego celu wielu kon­
kurencyjnych metod wypracowanych przez teorię optymalizacji nieliniowej. 
Podstawowe znaczenie w tym zakresie ma tzw metoda kierunków dopuszczal­
nych, która może być wykorzystana do rozwiązywania sformułowanych w po­
przednim punkcie szczególnych zadań optymalizacji ilorazowej, spełniających 
wszystkie sformułowane wyżej założenia dodatkowe. Motywem przewodnim 
postępowania optymalizacyjnego jest ogólna idea metody kierunków dopusz­
czalnych (por. np. 116J) polegająca na zastosowaniu iteracyjnej procedury gene­
rowania kolejnych rozwiązań dopuszczalnych rozpatrywanego zadania optyma­
lizacyjnego. Wymaga się przy tym, aby generowane rozwiązania były coraz 
lepsze w sensie krytc.ium optymalizacyjnego. Generowanie kolejnych rozwią­
zań dopuszczalnych w rozpatrywanej metodzie optymalizacyjnej odbywa się 
przy tym poprzez przemieszczanie się z wcześniej ustalonych lub wyznaczonych 
rozwiązań dopuszczalnych:

Xk eDá\ak = O, 1, 2,...

do kolejnych rozwiązań dopuszczalnych Xk+I g D w odpowiednio wyznacza­
nych kierunkach nazywanych kierunkami użytecznymi dla minimalizacji funkcji 

(XX + cc . .... i-ii
f(X)-—---------- , nazywanymi alternatywnie kierunkami stosowalnymi dla

C 2X + ß
minimalizacji albo też kierunkami dopuszczalnymi i stosowalnymi dla minima­

lizacji funkcji kryterium f(X J  +ćZ na zbjorzc rozwiązań dopuszczal- 
C2X + ß

nych D oraz dla rozwiązania Xk e D. W konsekwencji stwierdzamy, że kie­

runkiem użytecznym dla minimalizacji funkcji f(X)- —--------- będzie
C 2 X + ß

dowolny wektor v e R" , spełniający następujący warunek:
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0<Ag7? J<A
/I + óveDA f(X + Sv) < f ( X )]

który po uwzględnieniu konkretnej postaci analitycznej ilorazowej funkcji kryte­
rium przyjmuje postać:

0<Ag7? A<A
X+foeD A

C^X + ôv1 ) + a C,X + a 

C2(X + óv‘ ) + ß C2X+ß

Z ogólnych idei z zakresu teorii optymalizacji wynika, że dla zadań opty­
malizacji ilorazowej rozpatrywanego typu spełniającego przyjęte wyżej warunki 
dodatkowe wektor v G R" będzie kierunkiem użytecznym dla minimalizacji 

C,X + a
funkcji f(X) =-------------- na zbiorze rozwiązań dopuszczalnych D oraz dla

C2X + ß

rozwiązania Xk g D wtedy, gdy:

(C2Xk +a)C, -(C,X* +a)C2 \ n V /X
(C,Xk+ßß / 0<Ag7? A<A

Xk + öv g D

gdzie:

(•, ~ symbol iloczynu skalarnego dwóch wektorów,

(C2Xk +a)C, -(CtX" +a)C2 

(C2Xk+ß)2
- gradient funkcji w punkcie Xk g D .

Wobec powyższych faktów można stwierdzić, że dla dowolnych rozwiązań 
dopuszczalnych Xk G D a X G D rozpatrywanego zadania optymalizacji ilo­

razowej wektor:
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będzie kierunkiem użytecznym dla minimalizacji kwadratowej funkcji kryterium 
C. A' + a .

/ ( X) —-------------- na niepustym i ograniczonym zbiorze rozwiązań dopusz-
C 2X "k ß

czalnych D oraz dla rozwiązania dopuszczalnego Xk e D, wtedy i tylko wtedy, 
gdy będzie spełniony warunek:

l(C2Xk + a)Cl ~(C'Xk + a)C2

\ (C2Xk +ß)2

którego ostateczna postać jest następująca:

’(C?Xk + a)C, -(C,Xk +a)C2 y\ + oJC, + rr>C2

(C,Xk +ßß / \ ĆC, + ß)2

Powyższa nierówności będzie spełniona w szczególności dla wektora 
X e Rn będącego optymalnym rozwiązaniem następującego zadania optymali­
zacji liniowej postaci kanonicznej

min{
'(C2Xk +a)C, -(CtXk + a)C2

(C2Xk + ß)2

Dodatkowo, wektor spełniający powyższą formułę można przedstawić 
alternatywnie w postaci następującej formuły równoważnej:

= arg min{
(C\Xk + a)C, -(CtXk + a)C, 

(C2Xk + ß)2
,X);XeD}

Ponadto Xk e D a Xk e D oraz zbiór rozwiązań dopuszczalnych D ja­

ko zbiór rozwiązań odpowiedniego układu równań i nierówności liniowych jest 
zbiorem wypukłym. W związku z tym można stwierdzić, że również wszystkie 
punkty leżące na odcinku łączącym punkty Xk oraz Xk należą do zbioru roz­
wiązań dopuszczalnych rozpatrywanego zadania optymalizacyjnego, a więc:

0<p<l
Xk +p(Xk -Xk) = Xk + pvk(Xk )eD
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Jeżeli ponadto liczba rzeczywista 0 < pk < 1 będzie optymalnym przesu­

nięciem rozwiązania dopuszczalnego Xk e D w kierunku wektora na

odcinku łączącym punkty Xk oraz Xk, dla minimalizacji wypukłej funkcji 
i • r/vi C,X + g . . . . ,
kryterium j ( A ) —-------------  na mepustym i ograniczonym zbiorze rozwiązań

CyX + ß

dopuszczalnych D, co oznacza, ze:

pk =arg min
tCt[Xk + p(Xk-Xk )] + g 
' C2[Xk +p(Xk -Xk )] + ß}

dodatkowo stwierdzamy, że:

Xk>‘ =xk +pk(Xk -Xk)

i ostatecznie otrzymujemy następującą nierówność:

C,Xk+l + g CtXk + a 

C2Xk+l + ß~ C2Xk +ß

Na podstawie powyższych wywodów wnioskujemy, że jeżeli początko­
wym, nazywanym również startowym, rozwiązaniem scharakteryzowanego tu 
postępowania iteracyjnego będzie następujący wektor:

Xk =X" eD

natomiast dla k = k + 1 (dla k = 0, 1, 2,...), można otrzymać następujący ciąg 
rozwiązań dopuszczalnych rozpatrywanego zadania optymalizacji ilorazowej:

przy czym będzie spełniony następujący ciąg nierówności nieliniowych:

C.XkH+g C,xk+g 
—----------------<—- ------------ <
C2Xk+l + ß C2Xk + ß

< C,X‘ + g < C'X" + g 

~ C2X‘ + ß~ C2X“ +ß
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Można dodatkowo wykazać, źc dla określonego jednoznacznie w przedsta­

wiony wyżej sposób ciągu rozwiązań dopuszczalnych , dla rozpa­

trywanego wypukłego zadania optymalizacji kwadratowej z liniowym układem 
warunków ograniczających zachodzi finalnie:

— arg min{ XeD}

co oznacza, że przy spełnieniu wszystkich przyjętych założeń dotyczących roz­
patrywanego nieliniowego procesu optymalizacyjnego ciąg rozwiązań dopusz­
czalnych |AZk j 2 , określony zgodnie z przedstawioną wcześniej procedu­

rą iteracyjną, jest zbieżny w skończonej ilości kroków do poszukiwanego 
rozwiązania optymalnego rozpatrywanego nieliniowego zadania optymaliza­
cyjnego lub:

lim Xk
k->co

C,X + a 
= arg mirą----------------- ;

C2X + ß
XeD}

co oznacza, żc przy spełnieniu wszystkich przyjętych założeń dotyczących roz­
patrywanego nieliniowego procesu optymalizacyjnego ciąg rozwiązań dopusz­
czalnych ]Xk }Æ=012 , generowany zgodnie z przedstawioną wcześniej proce­

durą iteracyjną, jest zbieżny w nieskończonej ilości kroków do poszukiwanego 
rozwiązania optymalnego nieliniowego zadania optymalizacji ilorazowej rozpa­
trywanej postaci.

3. Linearyzacja zadań optymalizacji ilorazowej

Zaprezentowane wyżej szczegółowe rozważania dotyczące koncepcji roz­
patrywanej metody kierunków dopuszczalnych w optymalizacji ilorazowej 
umożliwiają obecnie sformułowanie konkretnej propozycji autorskiej wersji 
standardowego algorytmu tzw. metody Franka i Wolfc’a do wyznaczania opty­
malnych rozwiązań dla rozpatrywanej klasy nieliniowych zadań optymalizacyj­
nych w postaci kanonicznej z liniowym układem warunków ograniczających
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z dodatkowym założeniem, że funkcja kryterium f (X ) = ——-------- będzie na
C2X + ß

zbiorze rozwiązań dopuszczalnych D, klasy różniczkowalności C, czyli że 
funkcja ta ma na zbiorze rozwiązań dopuszczalnych ciągłe wszystkie pochodne 
cząstkowe rzędu pierwszego.

Krok wstępny

Wyznaczyć dowolne rozwiązanie dopuszczalne rozpatrywanego nielinio­
wego zadania optymalizacji ilorazowej, czyli punkt X° e D, który w dalszych 

procedurach będzie traktowany jako początkowe rozwiązanie startowe.

Krok 0

Dowolną efektywną metodą optymalizacji liniowej wyznaczyć wektor 
spełniający następujący warunek:

a -arg min{
(C2Xn +a)C,- (C,X° + a )C2

X^D}

a następnie wektor w postaci:

gdzie:

p(i = arg min 
ł)<p<!

Kontynuując, w proponowanej procedurze optymalizacyjnej rekomenduje 
się następujące uogólnienie dla dowolnego k-tego kroku:

Krok k dla (k > 1)

Wyznaczyć następujący wektor:

= arg min{
+ a)C, ~(C,Xk +a)C2

(C2Xk +ß)2
Xe.D}
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a następnie wektor w postaci:

X = X +pk(X -X )

gdzie:
k

pk ~arg min /

Opierając się na zaprezentowanych wyżej faktach z zakresu teorii metod 
kierunków dopuszczalnych w optymalizacji ilorazowej, w następnej kolejności 
wnioskujemy konsekwentnie, że jeżeli dla konkretnego rozpatrywanego nieli­
niowego zadania optymalizacyjnego sformułowany wyżej algorytm metody 
franka i Woife’a będzie skończony, to postępowanie algorytmiczne polegające 
na itcracyjnym generowaniu odpowiednich rozwiązań dopuszczalnych powinno 
być kontynuowane do wystąpienia następującej równości dla pewnej liczby na­
turalnej p;

Ponadto, na podstawie znanych własności algorytmu wnioskujemy, źc w 
tym przypadku będzie dodatkowo spełniona następująca formuła:

co w rezultacie, zgodnie z odpowiednią własnością procedur metody kierunków 
dopuszczalnych w optymalizacji nieliniowej, oznacza, że następujący wektor 
będzie optymalnym rozwiązaniem rozpatrywanego zadania nieliniowej optyma­
lizacji ilorazowej:

= Xp ~arg min{
+ a
Vß X g D}

W możliwym przypadku alternatywnym, czyli gdy odpowiednie postępo­
wanie algorytmiczne jest nieskończone, niezbędne będzie dodatkowe ustalenie 
kryterium zakończenia obliczeń i wyboru przybliżonego, suboptymalnego roz-
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wiązania rozpatrywanego zadania optymalizacyjnego. Typową możliwością 
w tym zakresie jest przyjęcie postulatu zakończenia iteracyjncgo procesu obli­
czeniowego wtedy, gdy dla pewnej liczby naturalnej No i z góry zadanej liczby 
rzeczywistej £>0, w procedurze stosowania zmodyfikowanej wersji metody 
Franka i Wolfe’a zajdzie następująca nierówność:

1%"" II Cf

Finalnie proponuje się w takim przypadku przyjęcie w charakterze subóp- 
tymalncgo rozwiązania przybliżonego rozpatrywanego zadania optymalizacyj­
nego wektora określonego następująco:

X*" = X =cirg min{
C,X + a
C2X + ß

; XeD}

Przedstawione rozważania prowadzą w konsekwencji do wniosku, że w każ­
dym kroku proponowanego postępowania algorytmicznego, aby wyznaczyć 
kolejny wektor będący lepszym przybliżeniem poszukiwanego rozwiązania 
optymalnego wyjściowego ilorazowego zadania optymalizacji nieliniowej roz­
patrywanej postaci standardowej, należy rozwiązać odpowiednie pomocnicze 
zadanie optymalizacyjne z następującego ciągu zadań optymalizacji liniowej:

{Zt } = {min{
'(C2Xk J-ajC,~(C,Xk +a)C2
i (C2Xk+ß)2

, X); XeD}},

dla* = 0, 1. 2,...

Należy dodatkowo zauważyć, że charakterystycznym zjawiskiem towarzy­
szącym w proponowanej procedurze itaracyjncj jest fakt, że wszystkie pomocni­
cze zadania optymalizacji liniowej z ciągu { Zk } mają ten sam zbiór rozwiązań 

dopuszczalnych i różnią się wyłącznie postacią analityczną liniowej funkcji kry­
terium. Ta charakterystyczna okoliczność będzie wykorzystana w dalszych roz­
ważaniach, gdzie zostanie przedstawiona autorska propozycja wykorzystania 
i zastosowania tzw. metody uogólnionych macierzy odwrotnych w optymalizacji 
liniowej do efektywnej realizacji wybranych procedur wyznaczania optymal­
nych rozwiązań ilorazowych zadań optymalizacji nieliniowej z liniowym ukła­
dem warunków ograniczających.
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4. Metoda wyznaczania optymalnych rozwiązań zadań 
optymalizacji ilorazowej z procedurą uogólnionych 
macierzy odwrotnych

Wyznaczanie optymalnych rozwiązań dla rozpatrywanej klasy nieliniowych 
zadań optymalizacyjnych może się odbywać zc wspomaganiem tzw. metody 
uogólnionych macierzy odwrotnych w optymalizacji liniowej. W celu zrealizo­
wania tej koncepcji zostanie obecnie zaproponowana autorska propozycja wyko­
rzystania i zastosowania scharakteryzowanej wyżej tzw. metody uogólnionych 
macierzy odwrotnych w optymalizacji liniowej do efektywnej realizacji wybra­
nych procedur wyznaczania optymalnych rozwiązań ilorazowych zadań optyma­
lizacji nieliniowej z liniowym układem warunków ograniczających.

Przesłanki teoretyczne szczegółowych rozważań w tym zakresie będą wy­
korzystywały fakt, że na podstawie wcześniej przeprowadzonych badań za­
stosowanie procedury metody kierunków dopuszczalnych i modyfikacji algo­
rytmu metody Franka i Wolfc’a (por. np. [18]) do itcracyjnego procesu 
poszukiwania rozwiązań optymalnych rozpatrywanej klasy wypukłych nielinio­
wych zadań optymalizacyjnych w postaci kanonicznej z liniowym układem wa­
runków ograniczających daje następujące wyniki w kolejnych krokach:

dla k 1, 2,3,...

lub, co równoważne:

Xk ' — arg min'

à\ak = I, 2,3,...

czyli

Xk~‘ =Xk~'(źk, Uk~‘) dla k = 1, 2,3,...
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i ostatecznie: 

gdzie:

(CX +/3)1

oraz:

lk~‘ ={zk-' eR; V Xk~‘ =Xk-'(zk~‘ ,Uk~‘}>0} 
uk-‘^rr v ’

Wynika stąd, że zk ' e R jest najmniejszą możliwą liczbą rzeczywistą 

spełniającą następującą formułę:

, _ ... M1 (C2Xkl + «K, - (C,Xk-‘ + a)C2

M7
+ (E-zl+71-^-)Uk~,>0j

H
gdzie:
Uk 1 — dowolny wektor z R", dla którego r minimum określone powyższym 

wzorem zostanie osiągnięte.

Następnie, zgodnie ideą i zasadami postępowania w iteracyjnej realizacji 
koncepcji kierunków dopuszczalnych w optymalizacji nieliniowej, kolejnym 
otrzymanym rozwiązaniem dopuszczalnym będzie:
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Xk = Xk~' + pk_l(Xk"' -Xk~‘ )

dla:

Cß'Xk^1 pk(Xk~' - Xk~l )] + a 
. - are min !------------------------ ~--------------------------

C2[Xk~‘ + pk(Xk~' -Xk-' )] + ß

Podsumowując ten wątek rozważań, na podstawie wyżej pokazanych rezulta­
tów oraz wcześniejszych ustaleń dotyczących otrzymanego ciągu: , 2 

kolejnych przybliżeń poszukiwanego rozwiązania optymalnego rozpatrywanego 
nieliniowego zadania optymalizacyjnego, a w szczególności ustaleń dotyczących 
zbieżności i kryteriów zakończenia postępowania iteracyjnego metody kierun­
ków dopuszczalnych oraz algorytmu metody Franka i Wolfe’a, można obecnie 
stwierdzić, że jeżeli zbiór rozwiązań dopuszczalnych D rozpatrywanego zadania 
optymalizacji ilorazowej będzie niepusty i ograniczony, funkcja kryterium 

.. .. C,X + a
j ( X )= %—— tego zadania będzie jednomodalna, różniczkowalna oraz 

mająca ciągłe wszystkie pochodne cząstkowe rzędu pierwszego na zbiorze roz­
wiązań dopuszczalnych D, to:

\ X* = arg minS,X +an ; XeD} = Xk" = Xk" (zk". Uk" ) 
k(}&N C.X + ß

C.X + a
X = arg mini-------------; X e D} =

C,X + ß

*oc N

+ (E- A* A

(C2Xk- +a)C, -(C,Xk'‘ + a)C2
(C2Xk" + ßß~ A+h ) +

M'l'M
nr

)Uki



O linearyzacji i rozwiązaniach uogólnionych zadań optymalizacji ilorazowej 97

gdzie:

A7-
(C2Xk‘ + g)Cl-(ClXk"+a)C2

(C2Xk"+ß)2

lub:

X* =arg min{
C [X + cc

C2X + ß
; X e D} — lim Xk (zk 

k->OD U o )

czyli:

X* =cirg min{
C/X + cc

C2X + ß
X e D} =

— A+b) +
= limf A+b + -^ 7(zk'

+ (E-A'A
l< )U]

gdzie:

(C2Xk +cc)C, -(C,Xk +cc)C^ ,+ ..
> -1 \ is /

(C2Xk +ß)2

Prawdziwość powyższych faktów, bezspornie uzasadniona we wcześniej­
szych częściach niniejszego opracowania, dowodzi poprawności zaprezentowa­
nej autorskiej propozycji iteracyjnego algorytmu metody Franka i Wolfe’a z pro­
cedurą metody uogólnionych macierzy odwrotnych w optymalizacji liniowej do 
wyznaczania optymalnych rozwiązań wypukłych zadań optymalizacji ilorazowej 
z liniowym układem warunków ograniczających spełniających przyjęte w po­
wyższych rozważaniach wszystkie założenia dodatkowe. Proponowana metoda 
wyznaczania optymalnych rozwiązań zadań programowania matematycznego 
rozpatrywanej klasy może więc dodatkowo wspomagać procesy podejmowania 
optymalnych decyzji w określonym zakresie.
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Zakończenie

Przedstawione opracowanie zawiera zwięzłą prezentację autorskiej propo­
zycji wykorzystania ogólnej idei tzw. metody uogólnionych macierzy odwrot­
nych w optymalizacji liniowej do poszukiwania optymalnych rozwiązań zadań 
optymalizacji ilorazowej. W przedstawionych i rekomendowanych procedurach 
postuluje się ponadto idee algorytmu linearyzacji rozpatrywanych ilorazowych 
zadań optymalizacyjnych oparte na klasycznej koncepcji metody Franka i Wol- 
fc’a w programowaniu nieliniowym. Synteza proponowanych sposobów postę­
powania umożliwia dodatkowo uzyskiwanie dopuszczalnych i optymalnych tzw. 
rozwiązań uogólnionych rozpatrywanych zadań optymalizacji ilorazowej, co da­
je dodatkowe możliwości, w tym interpretacyjne, w przypadkach sprzeczności 
układu warunków ograniczających analizowanej klasy zadań optymalizacyj­
nych. Ta okoliczność, w intencji autora, dodatkowo wzmacnia ideę praktycznej 
użyteczności proponowanych ilcracyjnych procedur optymalizacyjnych.
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ON THE LINEARISATION AND THE GENERALIZED SOLUTIONS 

OF THE QUOTIENT OPTIMIZATION PROBLEMS

Summary

In the paper we have proposed the author's generalizations of the selected, classical, 
thcoretical methods to be used to the aid of the treat of the optimal decisions of the 
cconomy and management with the use of some ideas of applying the methods of the 
generalized inverse matrices in the linear optimization.
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O ZASTOSOWANIACH

TWIERDZENIA TAKENSA O ZANURZANIU

DO ANALIZY NIELINIOWYCH

SYSTEMÓW DYNAMICZNYCH

Wstęp

Twierdzenie Takensa o zanurzaniu odgrywa bardzo ważną rolę w teorii nie­
liniowych systemów dynamicznych, gdyż pozwala odkryć geometryczne włas­
ności atraktora oraz zrekonstruować, czyli odtworzyć na podstawie jednowy­
miarowego szeregu czasowego obserwacji, przestrzeń stanów. Rekonstrukcja 
umożliwia odtworzenie wielu istotnych własności pierwotnego układu. W opra­
cowaniu zostanie omówione twierdzenie Takensa oraz jego zastosowania do 
analizy ekonomicznych szeregów czasowych. Badanie dynamiki takich syste­
mów zazwyczaj zaczyna się od testowania detenninizmu. Do typowych miar 
stopnia detenninizmu należą: szacowanie wykładników Lapunowa, obliczanie 
wymiaru korelacyjnego oraz stosowanie opartego na tym wymiarze testu BDS. 
Zostanie tu zaprezentowana miara DETM. Analizy szeregów czasowych zostaną 
przeprowadzone na podstawie rzeczywistych danych natury ekonomicznej. Pod 
uwagę wzięto szeregi czasowe utworzone z indeksu giełdowego WIG oraz no­
towań wybranych kursów walut.

1. Twierdzenie Takensa o zanurzaniu

Rozważmy system dynamiczny (jf, /), który można zapisać w postaci 

równania rckurencyjnego:
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x,+i =/(x,),/ = L2,.-, (1)

gdzie:
./’ : X Az, X a Rm,
X - przestrzeń stanów,
x,, x,+1 G X - stan systemu odpowiednio w chwilach / i 1 + 1 .

TWIERDZENIE F. lakensa o zanurzaniu [9]: Niech M będzie zwartą, 
/«-wymiarową rozmaitością różniczkową. Dla par (/,//),

h G C2 (A/, R) jest własnością generyczną, że odwzorowanie : M —> 7?2m+l 

określone wzorem:

(2)

jest zanurzeniem, tj. dyfeomorfizmem klasy C1 odwzorującym 71/na /(//,)(tV/).

Z powyższego twierdzenia wynika, ze dynamika systemu (X, f) genero­

wanego przez nieznane odwzorowanie/może być odtworzona za pomocą ciągu 
//-historii. Są to ciągi w postaci: 

(3)

gdzie:
/ = (j-l)r + l,...,7V,

x, - obserwacje oryginalnego szeregu, t = l....,7V,

d— wymiar rekonstruowanej przestrzeni (zwany również wymiarem zanurzenia),
T - opóźnienie.

W szczególności jeśli f g Diff2(M,M}, h g C2(M,Ř) oraz d > 2m +1, 

to odwzorowanie określone wzorem:

A,,, (4)

tzn. h)(X/)=xf =(x,,x,+r,...,x,+(rf_1)r), jest zanurzeniem.

Z Dowyższego twierdzenia wynika, że dla prawie każdej funkcji skalarnej h 
dostarczającej ciągu obserwacji można uzyskać informacje na temat dynamiki 
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systemu pierwotnego generującego szereg obserwacji tylko na podstawie za­
chowania się i własności układów wektorów opóźnionych czasowo, utworzo­
nych z. wykorzystaniem szeregu obserwacji.

W idealnej sytuacji, gdybyśmy potrafili zmierzyć wartości jednej zmiennej 
pierwotnego układu, wektory zanurzenia x'1 = (x,,x,_r ,xi_Jt.,...,xj__^_ ,jr) dokład­

nie odtwarzałyby dynamikę pierwotnego systemu dynamicznego, pod warun­
kiem, że wymiar zanurzenia d będzie dostatecznie duży, funkcja pomiarowa/ 
będzie dwukrotnie różniczkowalna oraz będziemy dysponować dostatecznie du­
żym i gęsto próbkowanym zbiorem obserwacji. W praktyce oczywiście te wa­
runki nie są w pełni możliwe do spełnienia, ale badacze przyjmują, że jeśli są 
chociaż częściowo spełnione, to procedura zanurzania jest w stanic odtworzyć 
przybliżoną geometrię atraktora oraz dynamikę procesu reprezentowanego przez 
wektory zanurzenia. Uniemożliwia to oczywiście osiągnięcie doskonałej rekon­
strukcji, ale zostało wielokrotnie sprawdzone poprzez różne testy statystyczne, 
że pozwala na wystarczająco dobre odtworzenie dynamiki systemu [6|.

Twierdzenie Takensa gwarantuje jakość rekonstrukcji układu dynamicznego 
tylko w matematycznym sensie. W zastosowaniach praktycznych nie jesteśmy 
w slame wiernie odtworzyć pierwotnego układu dynamicznego, ale wiedza o tym, 
że teoretycznie istnieje taka transformacja, jest bardzo istotna. Daje to matema­
tyczne podstawy i uzasadnienie dla stosowania wielu algorytmów, które wyko­
rzystują dane w postaci szeregów czasowych do opisu nieliniowości, złożoności, 
istnienie chaosu w wielu układach dynamicznych. Jednakże wszystkie te zasto­
sowania mają sens, gdy dysponujemy odpowiednią ilością dokładnych danych.

2. Rekonstrukcja przestrzeni stanów

Rekonstrukcja przestrzeni stanów polega na odtworzeniu przestrzeni sta­
nów jedynie na podstawie jednowymiarowego szeregu obserwacji. W 1981 roku 
!•’. Takcns zaproponował metodę opóźnień, w której wykorzystuje się J-historie. 
tZ-historic powstają w wyniku przesunięcia oryginalnego szeregu czasowego o sta­
łe opóźnienie t , natomiast elementami zrekonstruowanej ^/-wymiarowej prze­
strzeni stanów są <7-wymiarowe punkty dane wzorem (3 )

Takcns udowodnił, ze dla d > 2/n + l, gdzie m jest wymiarem atraktora, 
a J-wymiarem zanurzenia, zrekonstruowana przestrzeń stanów będzie topolo­
gicznie równoważna z „oryginalną” przestrzenią. Wyboru parametru d dokonuje 
się zazwyczaj metodą prób i błędów. Tradycyjnym podejściem jest obliczanie 
wymiaru korelacyjnego. Natomiast czas opóźnień r można wyznaczyć za po­
mocą całki korelacyjnej.
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Całka korelacyjna wyraża się wzorem:

2
~X! (5)

gdzie:

/(«) =
0.

1,

ci < 0 
a>0’

x‘f = (*, ,*,_r ) — punkt J-wymiarowej przestrzeni stanów.

n = N — r(d — 1) - liczba wektorów J-wym i arowej przestrzeni stanów,

N - liczba danych, 
r opóźnienie,
U I dowolna norma w przestrzeni d-wymiarowej.

Całka korelacyjna jest interpretowana jako prawdopodobieństwo, że dwa 
losowo wybrane punkty przestrzeni wektorowej są oddalone od siebie o mniej 
niż r.

Dla ustalenia czasu opóźnień T wykorzystamy metodę C-C opartą na staty­

styce:

S(d, N,r,l) = C(d, N,r,t)-Cd (1, N, r, /). (6)

W tym celu dzielimy szereg czasowy xt, t = 1,2,...,# na / rozłącznych 
szeregów. Dla Z = 1 będziemy mieli tylko jeden oryginalny szereg. Dla t = k 
będziemy mieli k rozłącznych szeregów w postaci:

A , ^+1 , ’•••' XN-k+l J ’ lX2 ’ Xk+2 ’ X2k+2 XN-k+2

!.Xk ■> X2k ’X3k XN (7)

Wówczas statystyka S(d,N,r,i) jest dana wzorem:

S(d, N, r, /) = - £ [C, (d, N, r, /) - C‘‘ (1, N, r, /)].
1 5=1

(8)
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Dla stałych parametrów d i l oraz dla każdego r statystyka S(d,N,r,l) 

będzie równa zero, gdy dane są i.i.d. (independent, identically distributed) 
i A,r —> co . W przypadku danych rzeczywistych TVjest skończone i wtedy w wie­
lu przypadkach S(d,0. Czas opóźnień r jest związany z pierwszym 

minimum lokalnym równania:

AS(d, l ) - max {s(d, rt, /)) (9)

obliczanym dla różnych wartości

Wymiar zanurzenia, drugi z parametrów niezbędnych do rekonstrukcji, wyzna­
czono za pomocą metody fałszywego sąsiada. Niech xK = (xk ,xk_r,...,x/!_^i/^t ) 

będzie najbliższym sąsiadem punktu xT =[xl,xl_T,...,xl_^l_ly) w r/-wymia- 

rowej przestrzeni oraz niech Rj(xt, xA, ) = ||x7. — xA|| będzie odległością eukli- 

desową między tymi punktami w przestrzeni ^/-wymiarowej. Następnie wyzna­
cza się odległość w przestrzeni o wymiarze d + 1

7+l (*7’ > XA ) = (*7 ’ Xk' ) + k+r ~ XA+r F • (10)

Jeżeli RtM (x7.,xK ) istotnie przekracza Rd(xT,xK ), wówczas punkty xr 

i xK nic są najbliższymi sąsiadami, tylko tzw. fałszywymi sąsiadami. Dla usta­
lenia wymiaru zanurzenia wykorzystuje się dwa kryteria:

Rd+\ (X7’ ’ XK ) ^</(X/’XA') n R<li\ (X7 "*XK ) . A

------------- —,--------- r---------- > Kr oraz------------------- > A (II)

gdzie Rr, Ar to pewne ograniczenia (zazwyczaj przyjmuje się Rr =15, 
źl7 =2 [1]). Jeżeli spełnione są powyższe kryteria, to punkty xr i xK są fał­
szywymi sąsiadami.

3. Miara determinizmu DETM [6]

7. twierdzenia Takensa o zanurzaniu wynika, że jeśli szereg ma charakter 
deterministyczny, to dla odpowiednich wartości wymiaru zanurzenia d oraz 
opóźnienia czasowego r istnieje taka funkcja g : Rd —> Rd, że:
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*7+r = g(Xr)> (12)

gdzie xT = ) to wektor w zrekonstruowanej przestrzeni sta­

nów.
Bardzo często funkcję g określa się jako funkcję topologicznie sprzężoną 

z pierwotną funkcją/, co m.in. oznacza, że g zachowuje własność ciągłości trajek­
torii w przestrzeni stanów. Zatem dla każdej pary punktów (x(,x ) zrekonstru­

owanej przestrzeni stanów powinny istnieć dowolnie małe wielkości a.,ß > 0 
takie, że:

||x, - x, I < a => ||g(x, )- gif, J < ß, (13)

gdzie ||-|| to norma euklidesowa mierząca odległość między wektorami. Stąd 

wynika, że obrazy bliskich punktów układu powinny się znajdować blisko siebie 
w przestrzeni stanów, co oznacza ciągłość przestrzeni. Ciągłość odwzorowania 
jest cechą procesów deterministycznych i może być wykorzystana do odróżnia­
nia procesów losowych od chaotycznych.

Miara determinizmu DETM pozwala ustalić, w jakim stopniu zrekonstru­
owana przestrzeń stanów zachowuje własność ciągłości procesu. Przyjmuje się, 
że proces zachowuje własność topologicznej ciągłości, gdy jest spełniona impli­
kacja (13).

Rozważmy zrekonstruowaną przestrzeń stanów, której elementami są punk­
ty w postaci xr = (x,,xt_T,...,x,_((M)r ), gdzie doznacza wymiar zanurzenia, na­

tomiast r - opóźnienie czasowe. Niech xK oznacza najbliższego sąsiada punk­

tu xT, a xA+r będzie najbliższym sąsiadem jego obrazu x.y.+r. Niech 

t/7 = ||x7. — xK II oraz dT+l = ||x7+l — xÆ+11| oznaczają minimalne odległości mię­

dzy dowolnym punktem xt i innym punkiem przestrzeni stanów. Wówczas można 
ustalić dowolnie małe wartości a,ß > 0, dla których jest spełniony warunek:

dr < a => r/7.+1 < ß. (14)

W obliczeniach zazwyczaj przyjmuje się wartości parametrów 

a- ß = — a, gdzie cr oznacza odchylenie standardowe odległości między 

punktami w zrekonstruowanej przestrzeni stanów.
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Miara detcrminizmu procesu może być wyrażona wzorem:

DETM = (15)

gdzie
A — {(a y, . d/■ < cx => d r ( i < /?},

A moc zbioru A,
N liczba obserwacji szeregu, 
d wymiar zanurzenia.

Wartość współczynnika DETM oblicza się dla różnych wartości wymiaru 
zanurzenia. Dla szeregu czasowego o charakterze deterministycznym DETM 
powinien być istotnie większy od 0, przy zwiększanym wymiarze d. Dla proce­
sów ściśle chaotycznych można ustalić dokładną zależność pomiędzy wartością 
DETM a wymiarem zanurzenia. Dla dowolnych procesów deterministycznych 
niestety jest to niemożliwe.

4. Badania empiryczne

W opracowaniu pod uwagę wzięto szeregi czasowe utworzone przez indeks 
giełdowy WIG oraz notowania kursów walut: euro EUR, dolar amerykański 
USD, jen japoński JPY, funt brytyjski GBP oraz frank szwajcarski CUF w okre­
sie od 1.01.2005 roku do 30.04.2007 roku. W badaniach wykorzystano dzienne 
stopy zwrotu dane wzorem:

x, = In P, - In Pt_x.

W tabeli 1 umieszczono wymiary zanurzenia otrzymane za pomocą metody 
fałszywego sąsiada oraz opóźnienia czasowe dla wybranych szeregów czaso­
wych otrzymane za pomocą metody całki korelacyjnej C-C.
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Tabela 1

Wymiar zanurzenia oraz opóźnienie czasowe dla wybranych szeregów czasowych

Szereg Wymiar zanurzenia Opóźnienie czasowe

CHF 7 3

GBP 3 3

EUR 2 2

JPY 5 2

USD 6 3

WIG 7 4

Analizując dane przedstawione w tabeli 1, można wnioskować, że zrekon­
struowane przestrzenie stanów dla kolejnych szeregów czasowych będą opisane 
wzorami:

Cl IF
X,7 = (x,,X,_,,X,_6,X,_9,X(. 12,Xz_15,X,_lg), * = 19,...,588 ,

G BP
x,’ = (x,,x,_3,x,_6), i = 7,...,588,

EUR
x,2 = (xz,xz_2), z = 3,...,588,

JPY

x,3 = (x,,xť.2,x(_4,x(_6,x,_g), i = 9,...,588,

USD

x,6 = (xz,xz 3,x,_6,x/_9,x,_12,x,_15), z = 16..... 588,

WIG

x,7 = (xz,x,_4 X,-S xi-n Xi-]6’Xi- 20 xz_24), z = 25,...,585.

W tabeli 2 przedstawiono wartości miary DETM otrzymane dla badanych 
szeregów czasowych pizy stopniowym zwiększaniu wymiaru zanurzenia. W ob­
liczeniach przyjęto wartości parametrów a = ß = 0,5cr, gdzie cr oznacza od­
chylenie standardowe.
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Tabela 2

Współczynnik DETM dla wybranych szeregów czasowych

Szereg
Wymiar zanurzenia

2 3 4 5 6 7 8 9

CIII- 0,0317 0.0556 0.1041 0.0929 0.0853 0,1049 0.0783 0.0812

lilJR 0.0261 0.0677 0.0343 0.0918 0.0682 0,0839 0,0512 0.0697

GBP 0.0238 0.0449 0.1214 0.0976 0.0816 0.0876 0.0968 0,0791

JPY 0.0934 0,0754 0,1001 0.0917 0,0874 0,0912 0.0765 0.0532

USD 0,0743 0,1034 0.0915 0.0801 0,0668 0.0712 0.0698 0.0447

WIG 0,0529 0,0638 0,0598 0.0649 0,0597 0,0623 0.0701 0.0625

Tabela 2 pokazuje, że współczynniki DETM dla logarytmicznych stóp 
zwrotu badanych szeregów w prawie wszystkich przypadkach nie przekraczają 
wartości 0,1. Może to oznaczać, że nie są one generowane przez niskowymiaro­
we układy chaotyczne. Jednak wyniki te nie są takie jednoznaczne. Wartości 
DETMsą niewysokie, ale są znacznie wyższe niż dla procesów losowych, a w kilku 
przypadkach przewyższają wartość 0,1. Zatem nie można jednoznacznie odrzu­
cić hipotezy o deterministycznym charakterze tych procesów.

Podsumowanie

W opracowaniu zastosowano twierdzenie Takensa do zrekonstruowania 
przestrzeni stanów na podstawie jednowymiarowych szeregów czasowych utwo­
rzonych z wybranych kursów walut (CHF, EUR, GBP, JPY, USD) oraz indeksu 
giełdowego WIG. Jego celem było zbadanie, czy w wybranych szeregach wystę­
pują zależności deterministyczne. Otrzymane wyniki nie wskazują jednak na 
jednoznaczne odrzucenie hipotezy o deterministycznym charakterze badanych 
szeregów. Powyższą tezę można weryfikować za pomocą innych metod po­
zwalających testować determinizm szeregu czasowego, np. za pomocą wy­
kładników Lapunowa, wymiaru korelacyjnego oraz stosowania opartego na 
tym wymiarze testu BDS, testu mieszania danych lub analizy przeskalowanego 
zakresu (R/S).
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THE APPLICATIONS OF THE TAKENS THEOREM 
TO NONLINEAR DYNAMIC SYSTEMS’ANALYSIS

Summary

I his paper describes the 'Fakens theorem and its applications to the time senes 
analysis. The Takcns theorem allows to préparé a phase space reconstruction on the basis 
ol i single observations séries. This paper also describes a measure of degree of deter- 
minism in the dynamie Systems using a one-dimensional time senes. The empirical re- 
search conducted on the basis of the real économie data.
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PODPISY CYFROWE - SCHEMAT

PODPISU ELGAMALA

Wstęp

/c względu na wzrost zastosowań Internetu coraz większe znaczenie mają 
podpisy cyfrowe. Ich rola w dzisiejszym święcie jest istotna ze względu na moż­
liwości zastosowania do różnego typu operacji dokonywanych wirtualnie. Roz­
wój i coraz to nowe możliwości wykorzystywania technik komputerowych po­
wodują, iż podpisy cyfrowe są i będą kluczowym narzędziem stosowanym przez 
firmy oraz instytucje, jak również przez prywatnych użytkowników.

Wśród praktycznych zastosowań podpisów cyfrowych można przede 
wszystkim wyszczególnić podpisywanie dokumentów przesyłanych droga elek­
troniczną. Można w ten sposób wymieniać dokumenty z partnerami biznesowy­
mi, przesyłać potwierdzone dokumenty do urzędów, uwierzytelniać transakcje 
w systemie bankowości elektronicznej czy uwierzytelniać faktury elektro­
niczne 111].

Kluczowym zagadnieniem dotyczącym składania podpisów cyfrowych jest 
ich bezpieczeństwo. W tej kwestii zasadniczą rolę odgrywa współczesna krypto­
grafia. Dzięki zaawansowanym pojęciom i strukturom matematycznym oraz na­
rzędziom informatycznym współczesna kryptografia rozwija się i wychodzi na­
przeciw praktycznym zastosowaniom.

Wobec stale rosnącego znaczenia podpisów cyfrowych zasadne wydajc się 
zaprezentowanie zagadnień przybliżających tę tematykę.

Celem opracowania jest przedstawienie schematu podpisu EIGamala-jed­
nego z najistotniejszych algorytmów kryptografii asymetrycznej, który bazuje na 
elementarnej teorii liczb, a ktorego bezpieczeństwo opiera się na trudności roz­
wiązywania problemu logarytmu dyskretnego.
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1. Podpis cyfrowy

Podpis cyfrowy jest stosowany do podpisywania dokumentów elektronicz­
nych. To dodatkowa informacja dodana do wiadomości w celu zweryfikowania 
źródła jej pochodzenia. Jest elementem charakterystycznym dla konkretnego 
użytkownika. Podpis cyfrowy jest stosowany do określenia autorstwa przesyła­
nych dokumentów lub wykonanej transakcji przeprowadzonej drogą elektro­
niczną. Musi jednak sprostać określonym wymaganiom:

musi istnieć możliwość zweryfikowania ważności podpisu nadawcy przez 
odbiorcę,
podpis powinien być nie do podrobienia,
w przypadku zaistnienia sporu między nadawcą a odbiorcą, gdy nadawca 
wypiera się autorstwa danej wiadomości, powinna istnieć możliwość jego 
rozstrzygnięcia [4, s. 28J.
Złożenie podpisu cyfrowego pod dokumentem (dyspozycją) ma zagwaran­

tować: autentyczność (brak wątpliwości co do autorstwa dokumentu), niezaprze- 
czalność (pewność, że podpis złożyła osoba będąca autorem dokumentu), inte­
gralność (pewność, ze po złożeniu podpisu przez autora, wiadomość nie była 
modyfikowana) [7|.

Według polskiej normy PN-I-02000, podpis cyfrowy to: „Przekształcenie 
kryptograficzne danych umożliwiające odbiorcy danych sprawdzenie autentycz­
ności i integralności danych oraz zapewniające nadawcy ochronę przed sfałszo­
waniem danych przez odbiorcę” [l 0], Praktycznie rzecz ujmując, podpis cyfro­
wy to dodatkowa informacja dołączona do dokumentu (wiadomości, transakcji), 
która jest pewną transformacją przesyłanych danych.

Narzędziami stosowanymi przy tworzeniu i składaniu podpisów cyfrowych 
są algorytmy kryptografii asymetrycznej. Kryptografia asymetryczna to rodzaj 
kryptografii, w którym używa się zestawu dwu lub więcej powiązanych ze sobą 
kluczy [8]. Przy wykorzystywaniu kryptografii asymetrycznej do podpisów cy­
frowych są wymagane dwa klucze - prywatny i publiczny (klucz prywatny po­
winien być nie do odtworzenia na podstawie klucza publicznego). Klucz pry­
watny jest stosowany do podpisywania wiadomości, a zadaniem klucza 
publicznego jest weryfikacja, sprawdzenie autentyczności podpisu.

2. Podpis EIGamala - schemat i pojęcia teoretyczne

EIGamal to jeden z najważniejszych algorytmów kryptografii asymetrycz­
nej, który jest m.in. wykorzystywany do podpisów cyfrowych. Algorytmy sto- 
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sowanc w kryptografii asymetrycznej opierają się na działaniach, które łatwo 
można przeprowadzić w jedną stronę, natomiast wykonanie działania odwrotne­
go jest bardzo trudne. W przypadku schematu EIGamala łatwym działaniem jest 
potęgowanie modulo p, zaś trudnym - znajdowanie wartości logarytmów dys­
kretnych w grupie multiplikatywncj” Zp reszt modulo p, gdzie p jest liczbą 
pierwszą — nie jest znana efektywna metoda wyznaczająca logarytmy dyskretne, 
ale nic istnieje dowód na to, ze takiej metody nic ma.

W celu przedstawienia schematu podpisu EIGamala niezbędne jest przyto­
czenie zasadniczych pojęć i twierdzeń wykorzystywanych w opisie tego algo­
rytmu. Kluczowym pojęciem jest określenie logarytmu dyskretnego.

Logarytmem dyskretnym liczby A przy podstawie g {a = logg A) nazy­
wamy wykładnik a kongrucncji:

A = g "(mod p), (i)

gdzie p to liczba pierwsza, natomiast g — pierwiastek pierwotny modulo p. 
Dla każdej liczby całkowitej A e {I, 2, ..., p - 1} istnieje taki wykładnik 
a e {0, 1, ...,/?-2}, który spełnia kongruencję (1).

Poniżej przytoczono określenia objaśniające pojęcie logarytmu dyskretnego.
Niech n będzie liczbą naturalną oraz a liczbą całkowitą taką, że N\VD(a, ri) = 1. 

Jeśli rząd elementu a modulo n wynosi <p(n), to a nazywamy pierwiastkiem 
pierwotnym modulo n.

Niech n będzie liczbą naturalną oraz a liczbą całkowitą taką, że NWD(a. n) = I. 
Rzędem liczby a modulo n nazywamy najmniejszą liczbę naturalną r taką, że 
a ' = 1 (mod w). Oznaczamy go jako r = rząd,, a.

Niech n będzie liczbą naturalną. Funkcją Eulera <p(n) nazywamy liczbę 
elementów naturalnych k takich, że k <n oraz względnie pierwszych z n (czyli 
NWD(ł, n}= 1).

Jeśli p jest dodatnią liczbą całkowitą oraz a, b są liczbami całkowitymi, wówczas mówi się, 
że a jest przystające do b modulo /?, co zapisuje się następująco:

a = b (mod p), (*)
jeśli a i h dają te same reszty przy dzieleniu przez p. Wyrażenie (*) nazywa się kongruencją. Dla 
dowolnego p> 2 każda liczba całkowita «jest równoważna dokładnie jednej z liczb 0, 1, 2....,/?-!, 
będącej resztą z dzielenia a przez p. I iczbę tę nazywa się resztą z liczby a modulo p, a zbiór reszt 
modulo p jest oznaczany jako Zp = {0, 1, 2 p - 1J (lub 7Jp'Z).

Grupą multiplikatywną reszt modulo p nazywamy grupę odwracalnych klas reszt modulo 
p i oznaczamy symbolem {ZJpZ)*. Klasę res.-t a + p7. (lub [«|;,), gdzie NWD(a. p) = 1, nazywamy 
klasą odwracalną modulo p.
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Ponadto zachodzą następujące twierdzenia:
Jeśli p jest liczbą pierwszą, to liczba elementów k takich, że k < p oraz 

względnie pierwszych zp wynosi p - 1, czyli <p(/?) -p - 1.
Jeśli g jest pierwiastl icm pierwotnym modulo p, to g1 = gk (mod/?) 

wtedy i tylko wtedy, gdy l = k (mod <p(/?)).
Schemat oparty na kryplosystemie EIGamala bazuje na przytoczonych 

wyżej określeniach i twierdzeniach. Podpis składa się etapami [6, s. 355-356]. 
Etap pierwszy to wygenerowanie klucza:
1. Wybiera się dużą liczbę pierwszą'/? i dwie losowe liczby całkowite: g takie, 

że 2 < g < p - 2 oraz takie, że I < x <p - 2. Możliwy jest taki dobór liczby 
g. by była ona pierwiastkiem pierwotnym modulo p. Ponadto liczba g nie 
powinna byc dzielnikiem liczby /?- 1.

2. Oblicza się wartość y z równości:

y = gx MOD p, (2)

gdzie MOD p jest nazwą funkcji dającą resztę z dzielenia argumentu przezp.
Po dokonaniu obliczeń otrzymuje się trójkę liczb (y, g,p) stanowiącą klucz 

publiczny. Kluczem prywatnym jest utajniona wartość x.
Drugi etap procedury składania podpisu to generowanie podpisu:

1. Wybiera się losowo liczbę całkowitą k e {1,2, ...,/?-2}, względnie pierw­
szą z liczbą p - 1. Istotne jest, aby liczba k dla każdego kolejnego podpisu 
była inna, inaczej istnieje możliwość obliczenia tajnego klucza nadawcy. 
Wybrana liczba k zostaje utajniona.

2. Podpisem pod wiadomością w jest para liczb (a, b\ których wartości są 
znajdywane według następujących wzorów:

ci = gk MOD p , (3)

b = k x(h(yv)-xa) MOD (/?-!), (4)

gdzie:
k■’ element odwrotny do k modulo p - 1,
iv wiadomość, pod którą składa się podpis, 
h — funkcja haszująca.

' Przy obecnie istniejących algorytmach obliczania logarytmów dyskretnych liczba/? powin­
na się składać co najmniej z 768 bitów [1, s. 191].
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Funkcje haszujące (funkcje ściągające, funkcje skrótu) to przekształcenia 
w postaci:

A:X* ->X", »e N,

gdzie:
X - zbiór wszystkich skończonych ciągów symboli ze zbioru X (łącznie z cią­

giem pustym) ,
X" - zbiór wszystkich »-elementowych ciągów symboli ze zbioru X.

Funkcje haszujące przekształcają więc ciągi symboli dowolnej długości 
w ciągi »-elementowe, W praktyce oznacza to przyporządkowanie każdej liczbie 
(liczbowej postaci wiadomości) pewnej wartości określanej jako hasz. Funkcja h 
musi być funkcją jednokierunkową, tzn. łatwo można obliczyć wartość haszu dla 
danego argumentu, ale znalezienie argumentu funkcji h na podstawie wartości 
haszu jest obliczeniowo niewykonalne**; czyli znając hasz, prawie niemożliwe 
jest odtworzenie odpowiadającej mu wiadomości wyjściowej (dowody na ist­
nienie funkcji jednokierunkowej nie istnieją). Stosowanie funkcji haszujących 
w podpisach cyfrowych dołączanych do wiadomości lub transakcji umożli­
wia wykrycie ewentualnych zmian, które po złożeniu podpisu mogły być do­
konane***.

Ostatnim etapem schematu składania podpisu cyfrowego jest jego weryfi­
kacja:
1. Odbiorca podpisanej wiadomości, używając klucza publicznego (y, g, p), 

sprawdza, czy jest spełniona nierówność: 1 < a < p - 1. Jeśli warunek nie 
jest spełniony, podpis jest odrzucany.

2. Jeśli spełniona jest powyższa nierówność, odbiorca sprawdza, czy jest speł­
niona kongruencja w postaci:

yaab = gh{'v'> (mod p). (5)

Jeżeli tak jest, otrzymana wiadomość z podpisem jest potwierdzona, jeśli 
zaś powyższa kongruencja nic jest prawdziwa, podpis jest odrzucany.

Zbiór E to tzw alfabet - niepusty skończony zbiór. W praktyce używa się najczęściej: 
zwykłego alfabetu złożonego z liter, alfabetu w postaci (0. 1}, zbioru znaków ASCII itp. 0, s. 57], 

Oznacza to, że dla A(a > = y znalezienie x na podstawie y przez jakikolwiek algorytm bę­
dzie w' magało zbyt wiele czasu i pamięci i niemal zawsze zakończy się niepowodzeniem.

Dla dwóch różnych liczb z dużym prawdopodobieństwem (gdyż funkcje haszujące nigdy 
nie są różnowartościowe) odpowiadające im wartości funkcji haszujących będą różne [1, s. 173- 
-174:6, s. 289-290:9],
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Poprawność zaprezentowanej weryfikacji pokazują poniższe obliczenia. 
Przyjmując, że podpis (a, b) został wygenerowany jak wyżej oraz przekształca­
jąc lewą stronę wzoru (5) za pomocą odpowiednich kongruencji powstałych 
z wyra/eń (2) i (3), mamy:

a podstawiając następnie wzór (4) i wykorzystując przytaczane w tym punkcie 
twierdzeńia, otrzymujemy:

p),

co po ostatecznych obliczeniach daje kongruencję:

y“ab = gxa g~xa ghW ^gh(w\moáp).

7. kolei jeśli kongruencja (5) jest spełniona przez parę (a, b) oraz k jest loga- 
rytmem dyskretnym liczby a przy podstawie g, zachodzi:

gxa+kb =gh(w} (modp),

a ponieważ g jest pierwiastkiem pierwotnym modulo p, z cytowanych wyżej 
twierdzeń mamy:

xa + kb = h(yv) (mod (p -1)),

a zatem sposób weryfikacji podpisu za pomocą wzoru (5) jest poprawny .

Chcąc wygenerować podpis, niektóre obliczenia można wykonać wcze­
śnie). a uzyskane wartości przechowywać w bezpiecznym miejscu. Elementem, 
który może być wyznaczony wcześniej, jest element odwrotny do k modulo 
p 1, a także pierwsza współrzędna podpisu, czyli element a (którego obliczenie 
wymaga potęgowania modulo p). Pozostałe obliczenia związane ze składaniem 
podpisu muszą być wykonywane na bieżąco, gdyż zależą od treści wiadomości, 
która ma być podpisana.

Dla względnie pierwszych liczb k i p - 1 jedynym sposobem wygenerowania podpisu jest 
dokonanie tego według wzorów (3)-(4).
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3. Podpis EIGamala - przykład

Załóżmy, że binarna postać wiadomości (operacji, transakcji) jest następu­
jącym ciągiem cyfr (wartość umowna) w — 1011010110 Składamy pod tą wia­
domością podpis tworzony według opisanego schematu.

Wybieramy liczbę pierwszą p. Następnie wyznaczamy liczby g oraz v, przy 
czym liczbę g można tak dobrać, by była ona pierwiastkiem pierwotnym modulo 
p. Dla dużych wartości p wyznaczanie liczb będących pierwiastkami pierwot­
nymi modulo p jest trudne, jeżeli natomiast liczba p ma charakterystyczną po­
stać: p = 2q + 1, gdzie q to liczba pierwsza, można skorzystać z następującego 
twierdzenia:

Niech n,p g N. Jeśli g" = 1 (modp) i g"d=\ (mod p) dla każdego dzielnika 
pierwszego d liczby w, to w jest rzędem elementu g. A zatem dla liczby p, dobra­
nej jak wyżej, sprawdzamy, czy element g spełnia następujące kongruencje:

g2 s 1 (mod p) oraz g'' =1 (mod p).

Jeśli obie kongruencje nie są spełnione, liczba g jest pierwiastkiem pier­
wotnym modulo p.

Do wyznaczenia wartości b będą potrzebne dodatkowe elementy: wartość 
k 1 modulo p — 1 liczona z kongrucncji:

k~x k = \ (mod^>-l) (6)

w zbiorze Zp i oraz wartość funkcji haszującej* (odpornej na kolizje ) dla wia­

domości w - zostanie wykorzystana funkcja h : {0,1} —> {1,2,..., p — 2} w po­
staci:

/?(w) = g " MOD (p -1). (7)

W praktyce stosuje się bardziej złożone i efektywne funkcje skrótu, takie jak np.: MD5, 
SHA-1, SHA-2, RIPEMD-160 [91.

Kolizją funkcji h nazywamy parę elementów (w. w’), dla których w ż w’ oraz h(w) = h(w'), 
natomiast funkcję h nazywamy odporną na kolizję, jeśli zadanie znalezienia dowolnej kolizji 
(w, w’) jest obliczeniowo niewykonalne (wymaga zbyt wiele czasu i pamięci i prawie zawsze jest 
niemożliwe).
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Dla przejrzystości, obliczeń dokonano dla bardzo malej liczby pierwszej /?; 
odpowiednie wartości zostały zamieszczone w tabeli 1.

Tabela 1

Przykład podpisu za pomocą schematu EIGamala

Opis Wybrane/obliczonc wartości

Wybrana wartość p p = 7

Wybrana wartość g g = 5
(g jest pierwiastkiem pierwotnym modulo 7, ponieważ kongru- 
cncje: 5 2 = 1 (mod 7). 53 = 1 (mod 7) nie zachodzą)

Tajny klucz a x = 4

Wartość y zc wzoru (2) y = 54 MOD 7 = 2

Klucz publiczny (2. 5. 7)

Wybrana wartość k k=5

Wartość a zc wzoru (3) a = 55 MOD 7 = 3

Wartość k 1 zc wzoru (6) A~‘-5 = l (mod 6) => A1 = 5

Hasz wiadomości h(w) œ 
wzoru (7)

/7(1011010110) = 510"010"0 MOD 6 = 1

Wartość b zc wzoru (4) 6 = 5 -(1-4 -3) MOD 6 = 5

Uzyskany podpis (a. b) (3, 5)

Odbiorca, który otrzymuje wiadomość, może dokonać weryfikacji podpisu. 
Znając klucz publiczny oraz postać funkcji haszującej, na podstawie wzoru (5) 
dokonuje obliczeń:

czyli:

23-35 =5‘ (mod 7),

1944 s 5 (mod7),

co jest prawdą. Zatem otrzymana wiadomość pochodzi od osoby, która ją nadała.
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Podsumowanie

Dzięki podpisom cyfrowym istnieje możliwość weryfikacji tożsamości au­
torów przesyłanych wiadomości lub dokonywanych transakcji. Ponadto, dzięki 
temu, iż podpis cyfrowy jest związany z dokumentem, pod którym został złożo­
ny, jest niemal niemożliwy do podrobienia. Podpisy cyfrowe, do tworzenia któ­
rych wykorzystuje się przedstawione zagadnienia, dają więc gwarancję bezpie­
czeństwa operacji przeprowadzanych w sieci.

Zc względu na coraz większą powszechność operacji dokonywanych drogą 
elektroniczną, rola podpisów cyfrowych jest coraz bardziej znacząca. Opisany 
w niniejszym opracowaniu schemat podpisu EIGamala ukazuje, w jaki spo­
sób narzędzia matematyczne, jakie daje teoria liczb, mogą być wykorzystane 
w praktyce.

Rozwój techniki komputerowej otwiera nowe możliwości zastosowań apa­
ratu matematycznego. Teorie, które przez długi czas były uważane za bezuży­
teczne, znajdują praktyczne zastosowanie. Stąd też istotne jest przybliżanie za­
gadnień, dla których znalazło się miejsce w nowych obszarach zastosowań.
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DIGITAL SIGNATURES - ELGAMAL SIGNATURE SCHEME

Summary

For the sake of many applications of the Internet, digital signatures become more 
and more important lt is an additional information attached to the message. A signature 
provides authenticity of a message — the message may be anything, from a common 
e-mail to an important contract. One of the most important things connected with such 
activitics as sending messages is safety of these actions. In this case, advanced mathe- 
matical and computer tools, such as modem cryptography, are of crucial importance.

The purpose of the article is to present ElGamal signature scheine, the main 
définitions and theorems and illustrate it with an example. It is an algorithm based on 
asymmetric cryptography - it uses a pair of cryptographie keys - a public key (which 
may be distributed) and a private key (which is secret). A message is signed with 
a sender’s private key and is verified by anyone who knows the public key. The ElGamal 
signature scheine is a digital signature scheine which is based on the difficulty of com­
puting discrète logarithms.
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ZASTOSOWANIE LOGIKI ROZMYTEJ

W FINANSACH - ZARZĄDZANIE RYZYKIEM

METODĄ PORTFELOWĄ

Wstęp

Rynek kapitałowy jest miejscem transakcji kupna i sprzedaży instrumentów 
finansowych, dokonywana jest więc alokacja kapitału w nadziei osiągnięcia 
określonego celu. Celem tym może być nadzwyczajny zysk - mówimy wówczas 
o inwestycji kapitałowej. W opracowaniu inwestycję kapitałową będziemy ro­
zumieć w sensie definicji Hirsch lei fera: „Inwestycja jest w istocie bieżącym wy­
rzeczeniem dla przyszłych korzyści. Ale teraźniejszość jest względnie dobrze 
znana, natomiast przyszłość to zawsze tajemnica. Przeto inwestycja jest wyrze­
czeniem się pewnego na rzecz niepewnego”.

W przyjętej definicji występują wszystkie istotne cechy procesu inwesto­
wania:

element psychologiczny - wyrzeczenie się pewnego na rzecz niepewnego.
element czasu — cci inwestowania osiągalny w przyszłości,
element niepewności - teraźniejszość jest dobrze znana, przyszłość jest zaw­
sze tajemnicą,
czynnik ludzki - człowiek, kierując się wiedzą, intuicją, a także emocjami, 
podejmuje decyzję.
Nadzieja, a nie pewność osiągnięcia celu wynika z faktu, że zjawiska i pro­

cesy na rynku kapitałowym są złożone, zależą od czasu, otoczenia, jak również 
od uczestników rynku. Teoria finansów formułuje zasady i prawa funkcjonowa­
nia rynku kapitałowego, które często są weryfikowane empirycznie. Badania 
empiryczne, w tym statystyczne, mają również znaczenie poznawcze - niejed- 
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nokrotnic prowadzą do wykrywania mechanizmów rynkowych, badania ich sta­
bilności w czasie i w tym znaczeniu maja wartość eksploracyjną.

Uwzględniając powyższe, możemy przyjąć następującą hipotezę: Teraźniej­
szość rynku kapitałowego jest dobrze określona, jego funkcjonowanie w przy­
szłości jest trudne, a czasami wręcz niemożliwe do określenia. Konsekwencją 
przyjętej hipotezy jest niepewność osiągnięcia celu inwestycji kapitałowej.

W 1921 roku F.H. Knight zaproponował podział niepewności na niepew­
ność niemierzalną oraz niepewność mierzalną - ryzyko. Z niepewnością mie­
rzalną (ryzykiem) mamy do czynienia tylko wówczas, gdy mechanizmy rynko­
we oraz czynniki kształtujące rynek są mierzalne w sensie probabilistyki. 
Oznacza to stabilność mechanizmów rynkowych oraz znajomość rozkładów 
prawdopodobieństwa przyszłych stanów rynku. Znane są zatem czynniki nie­
pewności, a co najważniejsze są one mierzalne. W tym miejscu należy zazna­
czyć. że założenie o kwantyfikacji czynników ucpewności w rzeczywistości jest 
rzadko spełnione. Zdarzają się natomiast sytuacje, w których czynniki niepew­
ności są określone nieostro. W przypadku gdy są znane czynniki niepewności, 
ale są mierzalne w sensie rozmytym, będziemy wyróżniać niepewność rozmytą 

ryzyko rozmyte. Wydajc się zatem oczywiste, że do zarządzania rozmytym ry­
zykiem powinny mieć zastosowanie modele decyzyjne uwzględniające logikę 
rozmytą.

1. Wybrane elementy logiki rozmytej

1.1. Zbiory rozmyte

Podstawowym pojęciem logiki rozmytej jest zbiór rozmyty, rozumiany jako 
obiekt zawierający element pewnej przestrzeni rozważań, przy czym każdy 
z tych elementów może w pełm należeć do zbioru rozmytego, wcale do niego 
mc należeć albo należeć w pewnym stopniu. Przykładem zbioru rozmytego jest 
obiekt, jaki tworzą instrumenty finansowe (akcje) przynoszące wysoką stopę zy­
sku. Własnością, która określa tutaj zbiór rozmyty, jest wysoka stopa zysku. 
Element finansowy należy do rozważanego zbioru w stopniu, który odpowiada 
pewnej skali ocen. Jeżeli skala ocen rozciąga się od zera do jeden, to instrument 
finansowy, który ma zdecydowanie niską stopę zwrotu, ma ocenę zero, zdecy­
dowanie wysoką stopę zwrotu - ocenę jeden, natomiast instrument posiadający 
średnią stopę zwrotu - ocenę z przedziału (0,1). Ostatecznie omawiany zbiór 
rozmyty tworzą te wszystkie instrumenty finansowe, które są rozważane przez 
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inwestora. Zatem do określenia zbioru rozmytego konieczne jest zdefiniowanie 
przestrzeni rozważań oraz funkcji określonej na tej przestrzeni o wartościach 
z przedziału <0,1 > określającej stopień przynależności elementu przestrzeni do 
zbioru rozmytego.

Formalnie zbiór rozmyty definiujemy następująco:

A = {(x,A.i (*)) : * e X,/JA (x) e< 0,1 >}

gdzie-
X - przestrzeń rozważań,
// ! : X —>< 0,1 >-funkcja przynależności.

Funkcja przynależności wprowadza uporządkowanie obiektów przestrzeni 
X ze względu na pewną własność skojarzoną z danym zbiorem rozmytym. Na 
ogól funkcja ta odzwierciedla wiedzę obiektywną oraz subiektywną o elemen­
tach rozważanej przestrzeni. Należy wyraźnie zaznaczyć, że rezultaty, w tym 
praktyczne, uzyskane na podstawie modeli rozmytych w decydującym stopniu 
zależą od adekwatnego wyznaczenia funkcji przynależności. W literaturze wiele 
miejsca poświęcono metodom wyznaczania funkcji przynależności (por. [5]); 
o tych metodach nie będzie mowy w niniejszym opracowaniu.

Dalej wprowadzimy pojęcia charakteryzujące zbiory rozmyte, ograniczając 
się do tych, które znajdą zastosowanie w tym opracowaniu:

mnożnikiem zbioru rozmytego (support) nazywamy zbiór ostry złożony 
z tych elementów przestrzeni, które należą do rozmytego zbioru w stopniu 
niczcrowym: tak więc sup(zl) = {x e X : f.iA{x) > O},

wysokością zbioru rozmytego (height) nazywamy supremum funkcji przy­
należności: hgt(A} = suppig(x).
Zbiór rozmyty, którego wysokość jest równa jedności, będziemy nazywać 

zbiorem normalnym.
Ważną własnością zborów rozmytych jest wypukłość oraz wklęsłość - wła­

sności tc dotyczą jedynie zbiorów rozmytych określonych na przestrzeni rze­
czywistej określonej nad ciałem R.

Zbiór rozmyty A określony na przestrzeni R nazywamy wypukłym, jeżeli 
dla dowolnych x,,x2 e R i dowolnej liczby a &< 0,1 > jest spełniona nie­
równość.

A 4 (^1 + O - À)X2 ) min{zZ/l (*l )> A/ (X2 )} 
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- Zbiór rozmyty A określony na przestrzeni R nazywamy wklęsłym, jeżeli dla 
dowolnych x,,x2 e R i dowolnej liczby a e< 0,1 > jest spełniona nierów­
ność:

VA (Àxt + (1 - Á)x2 ) < max^ (x, ), // | (x2 )}

Funkcję przynależności zbioru wypukłego będziemy nazywać wypukłą, 
a funkcję przynależności zbioru wklęsłego - funkcją wklęsłą. Należy wyraźnie 
podkreślić, że wprowadzone pojęcia wypukłości i wklęsłości funkcji przynależ­
ności istotnie różnią się od tak samo nazwanych własności funkcji analitycz­
nych.

1.2. Liczby rozmyte

Poprzez zbiory rozmyte definiuje się liczby rozmyte: Liczbą rozmytą na­
zywamy zbiór rozmyty określony na przestrzeni liczb rzeczywistych (X = R) 
normalny, wypukły o funkcji przynależności przedziałami ciągłej.

Dalej ograniczamy się tylko do liczb rozmytych typu L-R: Liczbą rozmytą 
L-R nazywamy zbiór rozmyty określony na przestrzeni liczb rzeczywistych, któ­
rego funkcja przynależności przyjmuje postać:

L(x) dla sL - sa < x < sL 

l dla < x<s"

R(x) dla s" < x < s11 + sß 

0 dla x pozostałych

(2)

przy czym:

L(x) = L

L{Qi) = 0, £(1) = 1, £(•) jest funkcją niemalejącą, 

7?(0) = 0 , 7?(1) = 1, £?(-) jest funkcją nierosnącą
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Dalej liczbę rozmytą L-R będziemy oznaczać symbolem:

gdzie s',s",sa,sfi są liczbami rzeczywistymi. Liczbę rozmytą L-R ilustruje 

rysunek I.

Rys. 1. Liczba rozmyta L-R

.leżeli np. przyjmicmy sL = 7,5 ; su = 8,5 ; sa = - 0,5 , wówczas licz­

bę rozmytą ? = (7,5;8,5;0,5;0,5) interpretujemy jako liczbę około 8. W szcze­

gólności jeżeli sL = s" i sa = sfi =0, wówczas liczba rozmyta s jest liczbą 
ostrą - liczbą rzeczywistą.

Działania arytmetyczne na liczbach rozmytych L-R sprowadzimy do dzia­
łań na przedziałach liczbowych; w tym celu wprowadzimy pojęcie przekroju 
zbioru rozmytego: ^-przekrojem zbioru rozmytego ? nazywamy zbiór ostry 
określony następująco:

.v£ ={ie/}=< s1'*,+ s'>.£ e< 0,1 > (3)

gdzie ,s£ = min{x : /zv (x) > ,

zeli > £}, to s1'1 c: .v£|.

's' = max{x : (x) > £’}. Zauważmy, że je-
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Rys. 2. Zbiór rozmyty i jego dwa przekroje

Używając operacji ^-przekroju, można dokonać dekompozycji funkcji 
przynależności zbioru rozmytego zgodnie zc wzorem:

//. (x) = supjť a Jsl (x)] (4)

gdzie
x & R, £ e< 0,1 >,

J J (x) - funkcja charakterystyczna zbioru se,

a algebraiczna operacja minimum.

zasada dekompozycji wyraża funkcję przynależności zbioru rozmytego po­
przez funkcje charakterystyczne zbiorów ostrych. Z kolei jeśli oznaczymy przez 

c\ sŁ,+ .v£] zbiór rozmyty o funkcji przynależności £• •./ „(■), wówczas zbiór 

rozmyty ? można zapisać następująco:

? = U 4^,+s*] fe<0,l> (5)

Równość (5) - zasada reprezentacji jest rekonstrukcją zbioru rozmytego 

z prostokątnych zbiorów rozmytych <f[ se,+ sl ].
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Uwzględniając zasadę dekompozycji oraz zasadę reprezentacji, działania 
algebraiczne na liczbach rozmytych sprowadza się do działania na przedziałach 
liczbowych. W szczególności jeżeli .sE — | -vE,+ ,vE | i rE = |“rE++rE] są prze­
krojami liczb rozmytych a oraz r , vmvjozas. dodawanie oraz odejmowanie 
przekrojów określamy wzorem:

(6)

natomiast mnożenie oraz dzielenie określamy następująco:

k-s*
[a óe,k* s£],k > 0

[A:+.se,AC.seJA:<0 (7)

s£ .r£ = |.v' •’ r£, + s£ + rE]

s'' :r£ -\se:+rc,+.si:~r';

(8)

(9)

We wzorach (8)-(9) granice przekrojów są liczbami dodatnimi. Analogicz­
nie określamy mnożenie oraz dzielnie przy różnych znakach granic przekrojów.

1.3. Programowanie liniowe

Zadanie programowania matematycznego, w którym zarówno funkcja celu, 
jak i warunki brzegowe przyjmują postać liniową, jest nazywane programem li­
niowym (PL). Klasyczna wersja programu liniowego zakłada dokładną znajo­
mość współczynników funkcji celu oraz warunków brzegowych — wówczas 
funkcja celu, jak również warunki brzegowe są określone ostro.

W przypadku gdy współczynniki funkcji celu bądź warunków brzegowych 
są określane nieostro (są liczbami rozmytymi), mówimy o rozmytym programie 
liniowym (RPL). Celem formalnego zapisu R.PL przyjmijmy następujące ozna­
czenia:

X — zbiór dopuszczalnych decyzji, 
n

C = ^c, ■ x, - funkcja celu,
/-i

a ■ x, j = 1 m - warunki brzegowe.
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Przy przyjętych oznaczeniach RPL zapisujemy w postaci: wyznaczyć 
x e X takie, że:

nc=Xc< 'x‘ ^C"
Z=l

(10)

z> 'x> x> -° (II)

gdzie Cn to akceptowalny poziom założonego celu; współczynniki a„, c„ bt nie­

koniecznie są liczbami ostrymi. Wężyk (~) oznacza rozmytą wersję symbolu, 
nad którym występuje.

Zadanie RPL (lO)-(ll) można sprowadzić do zadania PL przy następują­
cych założeniach:

funkcja przynależności rozmytego ograniczenia z, przyjmuje postać:

Odlaz, <b,-X,

Idlaz, >bt
L(z )dlaz; e(/?; - Æ ,b, ), j =

(12)

Rys. 3 Funkcja przynależności warunku brzegowego z.
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funkcja przynależności rozmytego celu C ma postać:

ldlaC<C„

j.i(c) OdlaC>C„+X

/?(C)dlaCe(C„,C„+X)
(13)

gdzie /?(•) jest malejącą funkcją liniową, a Af,A oznaczają poziom tolerancji.

Niech a oznacza minimalny poziom akceptacji warunków brzegowych 
oraz celu, tj. liczbę z przedziału <0,l> taką, że /j[z t . Wobec (12)

i ( 13) otrzymujemy:

z, >b/ -A,+Aa ^^z^a

V<C,+A-Aa=>v(C))a

Wówczas dla zadanych poziomów tolerancji, uwzględniając a przekroje 
dla warunków brzegowych oraz funkcji celu, otrzymujemy następujący program 
liniowy: znaleźć maksymalne a e (0,1) takie, że:

~*-,a . m (14)

C + 4<C„+2 (15)

Zadanie programowania liniowego (14)-(15) jest równoważne zadaniu 
rozmytego programowania liniowego (10)-(ll). Przedstawione podejście Zim- 
mermanna [8] transformacji zadania RPL do równoważnego zadania PL jest 
jednym z możliwych. Inną propozycję transformacji można znaleźć np. w pra­
cy Guo i I luong [2].

2. Portfel inwestycyjny rynku kapitałowego

Podstawy teoretyczne konstrukcji portfela inwestycyjnego zostały sformu­
łowane przez H. Markowitza. Najogólniej rzecz biorąc. teoria Markowitza 
umożliwia wyznaczenie tzw. portfela efektywnego, czyli takiego, który maksy­
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malizuje dochód przy zakładanym ryzyku bądź minimalizuje ryzyko przy zada­
nym dochodzie. Niezwykle ważnym założeniem w tej teorii jest znajomość roz­
kładów stóp zwrotu składników portfela (rozkład normalny), co w konsekwencji 
pozwala na wyznaczenie dochodu portfela (średnia stopa zwrotu) oraz ryzyka 
(odchylenie standardowe). Ponieważ dochód z portfela oraz ryzyko są jedynymi 
parametrami wchodzącymi do kryterium wyboru, przyjmuje się, że w okresie 
trwania inwestycji są one stabilne w czasie i ostro określone. Liczne sukcesy in­
westycji kapitałowych potwierdzają słuszność założenia o stabilności wymie­
nionych parametrów; ma to miejsce, gdy rynek jest stabilny. Jednak w przypad­
ku rynku niestabilnego, słabo określonego, założenie stabilności jest dyskusyjne, 
dyskusyjna jest również efektywność portfela. Gdy rynek jest niestabilny, słabo 
określony, można - uwzględniając wiedzę teoretyczną, historyczną oraz opinie 
ekspertów - wyznaczyć parametry składników portfela nieostro. Dochód z port­
fela, ryzyko, wyraża się wówczas w kategoriach rozmytych.

W celu konstrukcji portfela w kategoriach rozmytych przyjmijmy następu­
jące oznaczenia i założenia
I. Stopa zwrotu i-tego składnika portfela jest trójkątną liczbą rozmytą typu 

L — R.7' = (j’lP,f'"gdzie rf ,r"',r"oznaczają odpowiednio: pesymi­

styczną, najbardziej możliwą, optymistyczną wartość stopy zwrotu i-tego 
składnika.

Rys. 4. Trójkątna liczba rozmyta L-R
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2. x( oznacza udział i-tego składnika w portfelu, przy czym:

II
xt — 1 i xl> 0 (16)

<=i

Wobec powyższego stopa zwrotu z portfela n-składnikowego jest liczbą 
rozmytą i wyraża się wzorem:

1=1

(17)

Zakładając, że stopa zwrotu z portfela jest rozmytą liczbą trójkątną typu 
L — R, mamy:

(18)p

Ponadto ryzyko portfela określimy następująco:

(19)

natomiast skośność portfela wzorem:

(20)o, =

p ..m (t 
>p ’ p ’ p

____ p_
.<• — rm 
p p

m p= r — r 
p p

Można wówczas sformułować kryteria dla portfela efektywnego. Uznając 
stopę zwrotu z portfela określoną wzorem (17) za miarę dochodowości, nato­
miast różnicę określoną wzorem (18) za miarę ryzyka portfela, sformułowano 
kryteria dla konstrukcji portfela efektywnego.

W niniejszym opracowaniu ograniczono się jedynie do trzech, zdaniem au­
tora, zasadniczych kryteriów:
1. Minimalizacja ryzyka przy zadanym dochodzie. W tym kryterium inwestor 

wybiera miary dochodu i ryzyka określone odpowiednio wzorami (17) i (19), 
a następnie wybiera portfel o minimalnym ryzyku spośród portfeli, których 
dochód nie jest mniejszy od założonego poziomu.

2. Maksymalizacja dochodu przy zadanym ryzyku. W tym kryterium inwestor 
wybiera miary dochodu ryzyka określone odpowiednio wzorami (17) i (19), 
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a następnie spośród portfeli, których ryzyko nic przekracza zadanego po­
ziomu, wybiera ten, który ma maksymalny dochód.

3. Kryterium uwzględniające więcej niż dwa parametry. Przyjmując za para­
metry dochód, ryzyko i skośność, określone odpowiednio wzorami (17), 
(19) i (20), inwestor konstruuje portfel, który:

dla danego poziomu ryzyka i skośności ma maksymalny dochód.
dla danego poziomu dochodu i skośności ma minimalne ryzyko.

Zauważmy, że konstrukcja portfela efektywnego w sensie sformułowanych 
kryteriów sprowadza się do rozwiązania odpowiedniego rozmytego zadania pro­
gramowania liniowego.

Zakończenie

W opracowaniu przedstawiono koncepcję konstrukcji efektywnego portfela 
inwestycyjnego w przypadku nieostrych informacji o stanie rynku kapitałowego. 
Należy podkreślić, iż efektywność zarządzania ryzykiem metodą portfelową jest 
zdeterminowana poprawnym określeniem parametrów portfela W przypadku 
gdy parametry portfela są wyrażone w kategoriach rozmytych, o efektywności 
metody decyduje właściwy dobór funkcji przynależności. Funkcję tę szacuje się 
z uwzględnieniem szerokiej wiedzy, w tym wiedzy eksperckiej, co według prze­
konania autora jest kluczem do budowy modeli wystarczająco dokładnie opisu­
jących rzeczywistość.
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USE OF FUZZY LOGIC IN FINANCE - RISK MANAGEMENT 

THROUGH PORTFOLIO METHOD

Summary

The article présents the concept of creating a fuzzy Investment portfolio. The sé­
lection critena and the methodology of designating the effective portfolio hâve been 
formulated.



Joanna Trzęsiok

BADANIE ODPORNOŚCI

WYBRANYCH NIEPARAMETRYCZNYCH

MODELI REGRESJI

Wprowadzenie

Nieparametryczne metody regresji stanowią szeroką grupę zróżnicowanych 
i dynamicznie rozwijających się metod. Mają one często lepsze własności staty­
styczne mz np. klasyczna metoda najmniejszych kwadratów. Przeprowadzone 
badania porównawcze pokazują, że modele uzyskane za pomocą nieparame­
trycznych metod regresji charakteryzują się relatywnie dużą dokładnością pre­
dykcji (zob. [4]). Stawiana jest również hipoteza, iż modele te są bardziej odpor­
ne na występowanie w zbiorze uczącym szumu oraz wartości oddalonych.

W niniejszym opracowaniu zostanie zaprezentowana analiza wrażliwości 
nieparametrycznych metod regresji na występowanie w zbiorze danych wartości 
oddalonych oraz wartości zaburzonych wpływem zmiennych losowych.

Badanie odporności modeli regresji zostanie przeprowadzone dla dwóch 
wybranych nieparametrycznych metod:

wielowymiarowej metody krzywych sklejanych POLYMARS,
- metody rzutowania PPR.

Uzyskane wyniki będą również porównane z błędami predykcji dla kla­
sycznego modelu regresji liniowej.
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1. Wielowymiarowa metoda krzywych sklejanych 
POLYMARS

Twórcą popularnej, wielowymiarowej metody MARS (ang. multivariate 
adaptive régression splines) jest J. Friedman (zob. [2]). Została ona jednak zmo­
dyfikowana w 1997 roku przez Kooperberga, Bose’a i Stone’a. Jej modyfikację 
nazywamy metodą POLYMARS (ang. multivariate adaptive polynomial splíne 
régression) (zob. [3]).

Metoda POLYMARS, jako metoda nieparametryczna, nie wymaga znajo­
mości rozkładów badanych zmiennych ani analitycznych postaci związków 
między nimi. Ważną jej zaletą jest to, że pozwala ona na wprowadzanie do mo­
delu zarówno zmiennych metrycznych, jak i niemetrycznych.

Niech X = (Az ,...f K ) będzie N wymiarowym wektorem zmiennych ob­

jaśniających, zaś Y zmienną zależną. Przez oznaczmy ż-tą realizację zmien­

nej Xj (dla/= 1,..., A oraz i = 1,..., h).
Nieparametryczna metoda POLYMARS opiera się na funkcjach sklejanych 

pierwszego rzędu w postaci:

dla X, >
dla A, <£’ (1)

gdzie punkt Ę; jest węzłem, czyli punktem podziału dziedziny zmiennej X f 

(dla j = 1,..., A), w którym funkcje typu (1) zostają „sklejone”.

Model regresyjny w tej metodzie można przedstawić w postaci addytywnej:

M
/(X) = a0 +^a/„A„,(J)ď (2)

gdzie funkcje hm, przedstawione we wzorze (2), są iloczynami tensorowymi 

funkcji sklejanych (1):

/=l
(3)
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gdzie uiH g{—1,1}, Lm G {1,2} oznacza liczbę czynników (funkcji sklejanych 
pierwszego rzędu) tworzących m-ty składnik modelu, G {1,...,7V}
wskazuje numer zmiennej tworzącej /-ty czynnik /»-tego składnika modelu.

W omawianej metodzie algorytm budowy modelu regresyjnego składa się 
z dwóch głównych etapów: dołączania zmiennych do modelu oraz ich elimina­
cji. Procedury te zostały szczegółowo omówione w pracy [5].

2. Metoda rzutowania PPR

Metoda rzutowania PPR (ang. projection pursuit régression) została zasto­
sowana po raz pierwszy w zagadnieniu regresji przez J. Friedmana i W. Stu- 
ctzlc’a (zob. [1]). Jej celem jest transformacja danych z przestrzeni wielowymia­
rowej w przestrzeń o niższym wymiarze, w której łatwiej jest badaczowi 
zaobserwować pewne własności analizowanego zbioru obserwacji. Transforma­
cja ta odbywa się popizcz zrzutowanie wektora zmiennych objaśniających X 

w kierunkach ak . Otrzymujemy w ten sposób nowe zmienne:

Z, =a‘k X,dla k = \,...,K, (4)

gdzie ak g R" są unormowanymi wektorami, nazywanymi kierunkami rzutowania.

Model zbudowany za pomocą metody rzutowania PPR ma postać addytywną:

r = ./(X)=a0+XÄg»(<x). (5)
*=l

Funkcje składowe modelu - gk (dla k = są funkcjami jednej

zmiennej, natomiast ßk to parametry modelu.

Estymatory parametrów ßk, jak również kierunków rzutowania ak, 

otrzymujemy w kolejnych krokach algorytmu (zob. [6]) poprzez minimalizację 
błędu empirycznego:

Re„,P («> P) = - É (x - k(X, ))2 , (6)

n ,=i

gdzie a = (a,,a2,...,aA.) oraz ß = (ß},ß2,...,ßK)
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3. Przykład ilustrujący działanie metod
POLYMARS i PPR

Dla zilustrowania działania przedstawionych nieparametrycznych metod 
regresji zostaną zbudowane, za pomocą programu statystycznego R, dwa modele 
regresji na rzeczywistym zbiorze danych Clothing, dołączonym do biblioteki 
Ecdat programu R.

Dane w zbiorze Clothing opisują wartość sprzedaży konfekcji mę­
skiej w sklepach w Holandii. Zbiór len zawiera 400 obserwacji charakteryzowa­
nych przez 12 zmiennych objaśniający, do których należą m.in.: 
nown liczba osób zarządzających sklepem, 
nfull - liczba zatrudnionych pracowników pełnoetatowych, 
npart - liczba zatrudnionych pracowników w niższym wymiarze niż 1/1, 
hoursw - całkowita liczba godzin pracy, 
hourspw- liczba godzin pracy przypadająca na jednego pracownika. 
invl - inwestycje w nieruchomości, 
start - liczba lat istnienia sklepu.

Zmienną zależną tsales jest roczny dochód sklepu w guldenach holen­
derskich.

3.1. Zastosowanie metody POLYMARS

Za pomocą funkcji polymars z pakietu polspline został zbudowany 
model regresyjny.

Tabela 1

Kolejne kroki procedury polymars

Etap 0/1 Sizc RSS GCV

1 _ 2 3 4 5 1

1 1 1 I,36e+14 3,447e+H J

2 1 2 6.75e+l3 ł,74e+ll J

' 3 1 3 5,5fc+13 l,46e+ll |

II 4 1 4 3,55e+13 9,438e+10 |

5 1 5 2.48«+13 6.684e+10

6 1 6 2,15e+13 5,892e+10
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cd. tabeli 1

1 2 3 4
■■

5

7 1 7 Í.56C+13 4,33464-10

8 1 8 l,35e+13 3,824e4-10

9 1 9 l,24e+13 3,565e410

10 1 10 1.10e+13 3,204e410 J

11 1 11 l,04e+13 3,10164-10

12 1 12 9,13c+12 2,756e410 1

13 1 13 8.72e+12 2,677e+10

14 1 14 8.43e+12 2,63164-10

15 1 15 7.77e+12 2,465e+10 j

16 1 16 7,52e+12 2.427e+10 j

17 1 17 7.31C+12 2,40264-10

18 1 18 7.13e+12 2,38264-10

19 1 19 7,00e+12 2,3816410

20 1 20 6.90c+12 2,3876410 !j

21 0 19 6.93 dl 2 2,356e+10

22 0 18 7.01C+12 2.3436410 J

23 0 17 7.13c+12 2,342c4]0 J

24 0 16 7,33e+12 2,367e-H0 1

25 0 15 7,59e+12 2,408e410

26 0 14 7.83e+12 2.4446410

27 0 13 8.32e+12 2.554e410
28 0 12 8,90e+12 2.687e410
29 0 11 9,04e+I2 2.6866410 i
30 0 10 9.69C-I 12 2,8336410
31 0 9 l,07e+13 3,066c410
32 0 8 1.09e+13 3,0816410

33 0 7 1.39e+13 3,857e4IO
34 0 6 1,81e+l 3 4,962e410
35 0 5 2,17e+13 5,868e410
36 0 4 2,60e+13 6,8986410
37 0 3 3,88ct 13 1,01564)1

38 0 2 9,72e+13 2,503e41)
39 0 1 1.36e4 14 3.447e4)l J
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Tabela 2

Parametry modelu zbudowanego metodą POLYMARS dla zbioru danych Clothing

predl knotl pred2 knot2 coefs

1 0 NA 0 NA -4.48C+05

2 7 NA 0 NA -3,85e+03

3 1 NA 0 NA 1.50c+02

4 11 NA 0 NA 4,60e+03

5 11 340 0 NA -4,17e+03

6 4 NA 0 NA -l,37e+05

7 1 5833.84 0 NA -7.16e+01

8 11 136 0 NA -3,18c+03

9 7 88 0 NA 5,)8e+03

10 4 NA 11 NA l,18e+03

11 1 NA 4 NA -2.03 e-01

12 7 270 0 NA -2,39e+03

13 4 2 0 NA -4.25e+05

14 1 NA 4 2 4.26e+01

15 6 NA 0 NA 6.92e+04

16 11 450 0 NA -2.37C+03

17 1 10223 0 NA -3.26C+01

Wiersze tabeli 1 zawierają kolejne kroki procedury tworzącej model regre- 
syjny. W drugiej kolumnie tej tabeli występują wartości 0 lub 1, które wskazują, 
z jakim etapem użytkownik ma do czynienia. Wartość 1 informuje, że w proce­
durze dopasowania do modelu została dodana nowa funkcja bazowa, natomiast 
0 oznacza usunięcie funkcji bazowej z modelu. Kolumna RSS zawiera sumy 
kwadratów reszt liczone w kolejnych krokach procedury. W kolumnie GCV zo­
stały przedstawione kolejne wartości uogólnionego kryterium sprawdzania krzy­
żowego. W omawianym przykładzie najmniejsza wartość GCV to 2,342e+10 dla 
modelu zawierającego 17 funkcji bazowych, więc model ten zostaje wybrany ja­
ko najlepszy.

Wiersze tabeli 2 odpowiadają kolejnym funkcjom bazowym modelu . 

Ponieważ w metodzie polymars iloczyny tensorowe mogą zawierać co naj­
wyżej dwie funkcje sklejane, w każdym wierszu omawianej tabeli potencjalnie 
mogą występować dwie zmienne objaśniające: predl oraz pred2. W kolum- 
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nach knotl oraz knot2 przedstawiono wartości węzłów, natomiast coefs 
określa wartości współczynników odpowiednich funkcji bazowych. Na podsta­
wie tej tabeli można odczytać postać końcowego modelu.

Za pomocą funkcji sample zbiór Clothing został losowo podzielony na 
pięć części, które zostały wykorzystane do obliczenia współczynnika determina­
cji metodą sprawdzania krzyżowego:

R 2 =0,909.

3.2. Zastosowanie metody PPR

Dla tego samego zbioru danych został również zbudowany model regresji 
nieparametrycznej za pomocą funkcji ppr z biblioteki stats. Po wywołaniu 
lej funkcji na całym zbiorze Clothing uzyskano: wektory kierunków rzuto­
wania «Ä (tabela 3) oraz oszacowania współczynników ßk dla kolejnych funk­

cji grzbietowych:

/?, =820900,1; ^2 = 543882,4; ßy = 234501,1.

Tabela 3

Wektory kierunków rzutowania dla modelu uzyskanego metodą PPR

Zmienne «1 «2 «3

sales 4.67e-03 -2.31C-03 l,91e-04

margi n -5,95e-01 4,22e-01 7,28e-01

nown -2.48e-0I 3 65C-01 l,29e-01 1

nfull 4,47e-01 2.29C-01 -3,32e-02

npart 3,77e-01 5.37e-01 -l,33e-01

naux -2,88e-02 5,10e-01 -5,36e-02

hoursw 4,12e-02 -3,73e-02 -l,62e-02

hourspw -2.36S-01 1.31e-01 8.82e-02

mvl 4,17e-06 -7.95e-06 -3,70e-06

inv2 8 40e-07 l,19e-05 3,72e-06

ssi ze 1.63e-01 l,68e-01 2,91 e-02

start 3,98e-01 -2,03e-01 -6,50e-01



140 Joanna Trzęsiok

Analogicznie do poprzedniego przykładu, zbiór Clothing został losowo 
podzielony na pięć części, które zostały wykorzystane do obliczenia współczyn­
nika determinacji metodą sprawdzania krzyżowego:

R- =0,961.

Ponadto posługując się funkcją plot, przedstawiono na wykresach funkcje 
składowe dla modelu regresyjnego zbudowanego na całym zbiorze Clothing.

Rys. 1. Ilustracja zależności między każdą z trzech składowych, wyznaczonych w końcowym 
modelu metody rzutowania, a zmienną zależną

4. Badanie odporności modeli regresyjnych 
na występowanie szumu w zbiorze uczącym

Hipoteza badawcza głosząca, iż przedstawione nieparametryczne metody 
regresji są odporne na występowanie w zbiorze uczącym szumu, została zwery- 



Badanie odporności wybranych nieparametrycznych modeli regresji 141

Pikowana za pomocą symulacji komputerowych na zbiorach danych: Friedman 1, 
Friedman 2 i Friedman 3. Są to sztuczne zbiory danych, wygenerowane kompu­
terowo za pomocą funkcji dostępnych w pakiecie mlbench programu statystycz­
nego R, zgodnie z koncepcją Friedmana opisaną w artykule [2], Zbiory te są 
standardowo wykorzystywane do porównywania własności różnych funkcji re­
gresji. Fabela 4 pizedstawia ich wybrane charakterystyki. Składnik losowy e jest 
szumem gaussowskim o rozkładzie N(0,sdj, gdzie sd jest parametrem zada­

wanym przez użytkownika.

Tabela 4

Charakterystyki sztucznych zbiorów danych wykorzystanych w analizie

Zbiór danych Liczebność Liczba 
zmiennych

Postać funkcji generującej zmienną zależną y

Friedman 1 500 10*
/(x)=10 sin(/Dc, x2 ) + 20(x3 - 0,5)2

+ 10x4 +5x5 +e

Friedman 2 500 4
li 1 V

f (x) = x? + x2x3-----------+ e

hnedman 3 500 4

1 
x7x3----------

X-,XA 
f (x) = arc tg----------------- — + e

1

T ak jak już wspomniano, w pierwszej grupie eksperymentów testowano od­
porność wybranych metod nieparametrycznych na występowanie w zbiorze 
uczącym szumu, czyli wartości zaburzonych wpływem zmiennych losowych. 
Procedurę badawczą można przedstawić w następujących krokach:
1. Zbiór danych składał się z części uczącej oraz, testowej:

a) część ucząca zawierała 500 elementów i został do niej dodany szum na 
poziomic od 5% do 40% zmienności mierzonej wariancją; poziom szu­
mu był regulowany przez dobieranie odpowiednich wartości odchylenia 
standardowego sd składnika losowego w funkcji generującej dane, 
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b) zbiór testowy, w każdym z przypadków, składał się z 200 elementów 
i nie był zaburzony szumem.

2. Na każdym zbiorze uczącym został zbudowany model regresyjny z wyko­
rzystaniem wybranej nieparametrycznej metody regresji:
a) w metodzie rzutowania PPR przyjęto model złożony z pięciu funkcji 

składowych; modele uzyskano wykorzystując procedurę ppr z bibliote­
ki stats zawartej w programie R,

b) przy budov ic modeli regrcsyjnych metodą POLYMARS przyjęto warto­
ści parametrów standardowo zaimplementowane w pakiecie statystycz­
nym R; modele otrzymano za pomocą procedury polymars z bibliote­
ki polspline.

3. Ola każdego zbudowanego modelu regresyjnego obliczono na zbiorze te­
stowym współczynnik determinacji:

. (7)

i=i

4. Dla porównania otrzymanych wyników, na tych samych zbiorach uczących 
zaburzonych szumem zbudowano również klasyczne modele regresji li­
niowej.

Wyniki analizy przedstawiono w tabelach 5-7.

Tabela 5

Wartości współczynnika determinacji dla modeli otrzymanych metodą POLYMARS 
na zbiorach testowych przy różnych poziomach szumu

Zbiór danych
Poziom szumu

5% 10% 20% 30% 40%

Friedman 1 0 849 0.982 0,834 0.882 0,755

Friedman 2 0 999 0 999 0.997 0.996 0.998

Friedman 3 0.921 0.880 0.912 0,925 0,863
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Tabela 6

Wartości współczynnika determinacji dla modeli otrzymanych metodą rzutowania PPR 
na zbiorach testowych przy różnych poziomach szumu

Tabela?

Zbiór danych
Poziom szumu

5% 10% 20% 30% 40%

Friedman I 0 979 0.839 0,744 0,519 0.560

Friedman 2 0,994 0.983 0,970 0,975 0,921

Friedman 3 0.950 0.71 i 0,833 0.814 0.849

Wartości współczynnika determinacji dla modeli otrzymanych metodą liniową 
na zbiorach testowych przy różnych poziomach szumu

Zbiór danych
Poziom szumu

5% 10% 20% 30% 40%

Friedman 1 0,739 0.739 0,753 0,758 0,740

Friedman 2 0.875 0.876 0,868 0,877 0,876 I

Friedman 3 0.562 0.568 0,572 0,562 0,561 j

Wyniki przeprowadzonych analiz pokazują, iż rozpatrywane modele niepa­
rametryczne charakteryzują się wysokimi wartościami współczynników deter­
minacji odliczonych na zbiorach testowych. Na podstawie wyników przedsta­
wionych w tabelach 5 i 6 można zauważyć, że w większości przypadków 
zaburzenia zbiorów uczących, nawet szumem na poziomie 40%, pozwalają na 
otrzymanie modeli o niskich błędach predykcji.

5. Badanie odporności modeli regresyjnych 
na występowanie wartości oddalonych 
w zbiorze uczącym

W drugiej grupie eksperymentów testowano odporność omawianych metod 
nieparametrycznych na występowanie w zbiorze uczącym wartości oddalonych.
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1. Zbiór danych składał się z części uczącej (500 elementów) oraz testowej 
(200 obserwacji):
a) z każdego ze zbiorów uczących zostało wylosowanych 2% obserwacji, 

które zamieniono na wygenerowane komputerowo wartości oddalone,
b) zgodnie z ustaleniami zawartymi w funkcjach pakietu statystycznego R 

przyjęto, iż z wartościami oddalonymi y, mamy do czynienia, gdy

gdzie O| t° kwartyl pierwszy, Qy — kwartyl trzeci, zaś Q — odchylen-.c 

ćwiartkowe.
2. lak jak w poprzedniej analizie, na każdym zbiorze uczącym został zbudo­

wany model regresyjny z wykorzystaniem wybranych nieparametrycznych 
metod regresji oraz klasycznej metody liniowej.

3. Dla każdego zbudowanego modelu regresyjnego obliczono na zbiorze te­
stowym współczynnik determinacji R1.

Wyniki analizy przedstawiono w tabeli 8.

Tabela 8

Wartości współczynnika determinacji obliczonego na zbiorach testowych w przypadku występo­
wania wartości oddalonych dla różnych modeli regresji

Zbiór danych
Metoda

POLYMARS PPR liniowa

Friedman 1 0.823 0.729 0,704

Friedman 2 0.989 0,958 0,856

Friedman 3 0,932 0,876 0,555

Analizując wyniki przedstawione w tabeli 8, można zauważyć, że dla mo­
deli nieparametrycznych, zbudowanych z wykorzystaniem zbiorów uczących, 
w których występują wartości oddalone, otrzymano relatywnie wysokie wartości 
współczynnika determinacji. Przy czym najwyższe wartości zaobserwowano dla 
modeli zbudowanych metodą POLYMARS.
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Podsumowanie

Wyniki przeprowadzonych analiz pokazują, iż modele zbudowane zarówno 
za pomocą metody rzutowania PPR, jak i metody POLYMARS charakteryzują 
się wysokimi wartościami współczynników determinacji odliczonych na zbio­
rach testowych. Na podstawie wyników przedstawionych w tabelach 5 i 6 moż­
na zauważyć, żc nawet w przypadku zaburzenia obserwacji szumem na pozio­
mic 40% otrzymujemy modele o wysokich wartościach współczynnika 
determinacji. Wydajc się również, ze z zaburzeniem zbioru uczącego szumem 
lepiej radzi sobie metoda POLYMARS. Klasyczna metoda liniowa daje modele 
charakteryzujące się najniższymi wartościami R .

Do analogicznych wniosków można dojść analizując wyniki w przypadku 
modeli zbudowanych z wykorzystaniem zbiorów uczących, w których występują 
wartości oddalone. Tutaj również najwyższe wartości współczynnika determina­
cji otrzymano dla modeli zbudowanych metodą POLYMARS. Wysokie są rów­
nież wartości R2 dla modeli regrcsyjnych opartych na metodzie rzutowania 
PPR, natomiast najgorsze wyniki otrzymano dla klasycznej metody liniowej.

Wyniki przeprowadzonej analizy pokazują, iz modele zbudowane za pomo­
cą metod: rzutowania PPR i POLYMARS, są odporne na zaburzenia zbioru da­
nych szumem gaussowskim ora< wartościami oddalonymi.
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ROBUSTNESS OF SOME NONPARAMETRIC 

REGRESSION MODELS

Summary

The main goal of the paper was to show that some nonparametric régression mod- 
els such as POLYMARS and PPR were résistant to noise and outliers. The analysis was 
performed on benchmark data sets. The results confirmed the hypothesis of robustness 
of POLYMARS and PPR.
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ANALIZA WYBRANYCH FORMALNYCH

WŁASNOŚCI TAKSONOMICZNEJ METODY

WEKTORÓW NOŚNYCH

Wprowadzenie

Metoda wektorów nośnych (ang. SVM - Support Vector Machines) to me­
toda wielowymiarowej analizy statystycznej, która pierwotnie została zapropo­
nowana przez Vapnika 16] jako metoda dyskryminacyjna, tj. do zadań klasyfika­
cji w przypadku, gdy dany jest pewien zbiór obserwacji pogrupowanych - tzw. 
zbiór uczący. Może ona zostać przeformułowana tak, aby realizowała także za­
dania regresji oraz identyfikowała obserwacje oddalone. W 2001 roku Ben-Hur, 
Horn, Sicgelman i Vapnik przedstawili kolejny sposób przeformułowania pro­
blemu, tak by metodę SVM można było zastosować do zadań klasyfikacji bez- 
wzorcowej, czyli taksonomii.

Identyfikowanie obserwacji oddalonych metodą wektorów nośnych opiera 
się na koncepcji wyznaczania uogólnionego wielowymiarowego kwantyla roz­
kładu generującego dane z analizowanego zbioru. Przez uogólniony kwantyl 
rozkładu będziemy rozumieć taki obszar C R'z wielowymiarowej przestrzeni 
danych, który spełnia warunek, ze niemal wszystkie obserwacje wygenerowane 
z rozkładu należą do C, z drugiej strony niemal wszystkie obiekty niepochodzą- 
cc z rozkładu generującego dane należą do dopełnienia zbioru C. Wykorzystując 
funkcje jądrowe - standardową technikę stosowaną w metodzie wektorów no­
śnych — przenosimy poszukiwanie rozwiązania problemu w przestrzeń o wiele 
większym wymiarze i w tej nowej przestrzeni cech wyznaczamy optymalną 
hipcrkulę (o najmniejszym możliwym promieniu) zawierającą obrazy obserwacji 
ze zbioru poddanego analizie (tzw. kulę Czebyszcwa). Tej hiperkuli odpowiada 
(jako przcciwobraz) pewien zbiór w pierwotnej przestrzeni danych - jest nim 
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poszukiwany uogólniony kwantyl. Brzeg tego uogólnionego kwantyla jest prze- 
ciwobrazem wyznaczonej hipersfery. Przyjmując dostatecznie dużą wartość pa­
rametru funkcji jądrowej Gaussa, można spowodować, że przeciwobraz wyzna­
czone) hiperkuli nie jest zbiorem spójnym, lecz składa się z kilku komponentów, 
la obserwacja podsuwa w sposób naturalny koncepcję taksonomicznej metody 
wektorów nośnych. Wystarczy bowiem zinterpretować otrzymane pizy wyzna­
czaniu uogólnionego kwantyla spójne jego komponenty jako skupienia [1], Ilu­
strację idei taksonomicznej metody wektorów nośnych przedstawia rysunek 1.

Rys. 1. Ilustracja idei taksonomicznej metody wektorów nośnych: dane są przekształcane za po­
mocą nieliniowej transformacji w przestrzeń o większym wymiarze, gdzie jest wyznaczana 
optymalna hiperkula zawierająca ich obrazy. Hipersfera poprzez transformację odwrotną 
wyznacza w przestrzeni danych rozłączne kontury, które mogą być interpretowane jako 
brzegi skupień

Skonstruowana w ten sposób metoda taksonomiczna pozwala na poszuki­
wali.c skupień w analizowanym zbiorze danych bez nakładania a priori założeń 
dotyczących liczby skupień (jak np. w metodzie k-średnich) oraz ich kształtu.

Przy wyznaczaniu uogólnionego kwantyla rozkładu wszystkie obserwacje 
traktuje się tak, jakby reprezentowały tylko jedną klasę (klasę obiektów pocho­
dzących z jednego wielowymiarowego rozkładu). Oznacza to, że metoda wekto- 
róv nośnych wykorzystana do wyznaczenia uogólnionego kwantyla rozkładu 
daje opis konturów ograniczających zidentyfikowane skupienia, lecz nic rozróż­
nia poszczególnych skupień między sobą. Jedyny element wymagający uzupeł­
nienia, aby metodę SVM można było zastosować jako metodę taksonomiczną, to 
wskazanie, w jaki sposób algorytm może rozpoznawać, w którym skupieniu 
znajduje się dany obiekt. Ten ostatni krok taksonomicznej metody wektorów no­
śnych jest realizowany na podstawie obserwacji, że gdy dane są dwa punkty na­
leżące do dwóch różnych skupień, to odcinek łączący te punkty zawiera też 
punkty „pośrednie” nienależące do uogólnionego kwantyla.
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Taksonomiczna metoda wektorów nośnych jest bardzo elastyczną metodą 
w tym sensie, że w wyniku jej działania można otrzymać skupienia o bardzo nie­
regularnych kształtach bez przyjmowania ograniczających założeń dotyczących 
zarówno liczby klas, jak i ich kształtu.

1. Taksonomiczna metoda wektorów nośnych

Szczegółowy opis algorytmu taksonomicznej metody wektorów nośnych 
można znaleźć w [1], Pierwszy etap metody SVC jest bardzo podobny do dys­
kryminacyjnej metody SVM, która jest opisana w polskiej literaturze m.in. 
w [5J. Z tego powodu w tym punkcie opracowania zostały przedstawione jedy­
nie: główna idea metody oraz najważniejsze elementy formalnego, analityczne­
go zapisu zadania optymalizacyjnego, którego rozwiązanie jest najważniejszą 
częścią algorytmu metody wektorów nośnych. Bardziej szczegółowo omówiono 
drugi etap metody SVC związany z identyfikowaniem przynależności obiektów 
do skupień.

Niech dany będzie zbiór uczący D = |x*,...,xN}, gdzie X1 eRrf, dla 

i = 1,.... N . Taksonomiczna metoda wektorów nośnych, podobnie jak jej dys­
kryminacyjny odpowiednik, w pierwszym kroku transformuje dane z przestrzeni 
pierwotnej w przestrzeń o znacznie większym wymiarze za pomocą nieliniowe­
go przekształcenia (p:\ť —>Z. W nowej przestrzeni cech jest wyznaczana hi- 
pcrkula o najmniejszym możliwym promieniu, zawierająca obrazy wszystkich 
obserwacji ze zbioru D (kula Czebyszewa). Zadanie wyznaczenia takiej kuli 
oznacza poszukiwanie jej środka oznaczonego przez a (centrum Czebyszewa) 
oraz promienia R (promienia Czebyszewa), co można zapisać j4] w sposób ana­
lityczny jako zadanie optymalizacyjne w postaci: 

(1)

z warunkami ograniczającymi:

WeR.aeZ.i, >0
min R-

,e<ťS;HXÍ)-al|2 - Æ2 +ď'’ £>0, (2)

gdzie v e [0,1 J jest parametrem mechanizmu regularyzacji, za pomocą którego 
użytkownik określa górną granicę frakcji obiektów ze zbioru D, które mogą zo­
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stać sklasyfikowane jako obserwacje nietypowe (ich obraz w przestrzeni cech 
może się znajdować poza wyznaczaną hiperkulą - dla tych obserwacji zachodzi 
6 >0).

Rozwiązanie powyższego zadania optymalizacyjnego można wyznaczyć 
metodą mnożników Lagrange'a. Po przekształceniu funkcji Lagrange’a do po­
staci dualnej zadanie ( 1 )-(2) można zapisać następująco:

N N N

min
° /=| /=! /=]

dla 0 < a < —, 
vN

(3)

gdzie przez &l oznaczono współczynnik. Lagrange’a. zaś przez 

K(u, v) = ę>(u) • ę?(v) - funkcję jądrową definiującą iloczyn skalarny w nowej 
przestrzeni cech. Rozwiązanie zadania optymalizacyjnego (3) można pizedsta- 
wić w postaci:

.v
a = ^tż,ę9(x‘).

/=1
N N N

R = K(xs.xs) + ^^óz,óz/K(x’,xj)-2^óziK(x',xs), 
i=i ,/=r i i

(4)

gdzie xs jest dowolnym wektorem nośnym, czyli obserwacją, której w rozwią­
zaniu zadania (3) odpowiada niezerowy mnożnik Lagrange’a (zzv >0). Wyko­

rzystanie funkcji jądrowych jest charakterystyczną cechą metody wektorów 
nośnych. Pozwala ono na przeszukiwanie bardzo bogatej przestrzeni funkcji 
klasyfikujących, bez konieczności definiowania wprost nieliniowej transfor­
maci • <P ■

Wyznaczony środek i promień kuli pozwalają na zdefiniowanie funkcji f 
która zwraca wartość 1 dla obserwacji, których obraz w nowej przestrzeni cech 
znajduje się wewnątrz wyznaczonej hiperkuli, i wartość —1 w przeciwnym wy­
padku. Funkcję/można zapisać w następującej postaci:

N

/(x)-sgn R2 - K(x,x) + y^y^ćz)ćz|K(x',xJ)-2y^ćzlK(xl,x) . (5)
N A'
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Zbiór punktów hipersfcry, po przctransformowaniu z powrotem do prze­
strzeni pierwotnej, tworzy rozłączne kontury - obwiednie danych (zob. rysunek 
1). Tc kontury mogą być zinterpretowane jako brzegi skupień. Punktom hiperku- 
li z przestrzeni Z odpowiadają jedynie punkty ograniczone konturami w prze­
strzeni pierwotnej.

Przedstawiony pierwszy etap metody wektorów nośnych dąjc opis kontu­
rów ograniczających zidentyfikowane skupienia w przestrzeni pierwotnej, lecz 
nic rozróżnia poszczególnych skupień między sobą. W etapie drugim zostanie 
wskazane, w jaki sposób algorytm może rozpoznawać, w którym skupieniu 
znajduje się dany obiekt.

Ustalana przez badacza wartość parametru v pozwala na efektywne stoso­
wanie metody w przypadku, gdy skupienia nie są rozłączne, oraz w przypadku 
występowania w zbiorze obserwacji oddalonych, zaś parametr y funkcji jądro­
wej Gaussa metody SVM jest silnie dodatnio skorelowany z liczbą uzyskanych 
skupień i w głównej mierze decyduje o ich kształcie.

Jak zostało już wspomniane powyżej, metoda wektorów nośnych wykorzy­
stana do wyznaczenia uogólnionego kwantyla rozkładu daje opis konturów 
ograniczających zidentyfikowane skupienia, lecz nie rozróżnia poszczególnych 
skupień między sobą. Jedyny element wymagający uzupełnienia, aby przedsta­
wioną powyżej metodę można było zastosować do analizy skupień, to wskaza­
nie, w jaki sposób algorytm może rozpoznawać, w którym skupieniu znajduje 
się dany obiekt. W tym celu zauważmy, że gdy dane są dwa punkty należące do 
dwóch różnych skupień, to odcinek łączący te punkty zawiera też punkty „po­
średnie” nienalcżące do uogólnionego kwantyla, czyli punkty, których obraz 
w przestrzeni Z leży po „ujemnej” stronie hiperpłaszczyzny oddzielającej obrazy 
punktów ze zbioru uczącego od początku układu współrzędnych.

Oznaczmy przez x'x* odcinek łączący punkty x',x*. Zdefiniujmy ma­

cierz połączeń A = \ajk ]WxW , która będzie zawierać informacje, czy dana para 

punktów x', xA należy do tego samego skupienia:

0, gdy
a

ł, gdy

V/(x) = -l, 

i k X€=.X X

A/(x)=i.
XGx'x*

(6)

Należy tu jednak zaznaczyć, że wartość 1 w macierzy oznacza, że na pewno 
odpowiednie dwa punkty należą do tego samego skupienia, ale ze względu na 
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możliwość wyznaczenia skupień niewypukłych wartość 0 niekoniecznie ozna­
cza, że punkty należą do różnych skupień. Dlatego macierz A należy najpierw 
zmodyfikować tak, aby ilustrowała relację równoważności, tj. relację zwrotną, 
symetryczną i przechodnią. Dopiero po takim uzupełnieniu można z niej odczy­
tać strukturę skupień. Innymi słowy, skupienia są wyznaczone przez połączone 
fragmenty grafu generowanego przez macierz zi.

Klasyfikowane punkty odcinka w algorytmie metody są próbkowane. 
W przedstawionym w następnym rozdziale przykładzie numerycznym spraw­
dzano każdorazowo 8 punktów rozmieszczonych na odcinku równomiernie.

Do rozstrzygnięcia pozostaje jeszcze kwestia przynależności do skupień 
tych obiektów, które podczas budowy modelu SVC, w związku z ustaloną war­
tością parametru v, zostały sklasyfikowane jako obserwacje oddalone (niepo- 
chodzące z rozkładu P). Obscrwacie te, jako że nie należą do obszaru uogólnio­
nego kwantyla, nie zostaną przydzielone do żadnego skupienia. W niniejszym 
opracowaniu zastosowano jedną z możliwości uniknięcia wystąpienia wielu jedno- 
clcmcntowych skupień - o przynależności takiego obiektu do skupienia decy­
dowała odległość od wszystkich innych skupień. Obserwacje nietypowe zostały 
sklasyfikowane jako element najbliższego skupienia.

Część empiryczną badania przeprowadzono z wykorzystaniem funkcji z bi­
blioteki cl071 programu statystycznego R, jak również stosując autorskie funk­
cje napisane w języku programu R.

2. Analiza formalnych własności taksonomicznej 
metody wektorów nośnych

2.1. Definicje własności formalnych
metod taksonomicznych

Jest wiele metod taksonomicznych, nazywanych inaczej metodami klasyfi­
kacji bezwzorcowej. Wydaje się jednak, że niemożliwe jest wskazanie metody, 
która rozpoznawałaby poprawnie strukturę klas niezależnie od rozważanego 
problemu (analizowanego zbioru). Nawet sam problem wskazania kryteriów 
oceny wyników grupowania metodami taksonomicznymi nie ma jednoznaczne­
go rozwiązania i nie może mieć, gdyż z założenia celem metod klasyfikacji 
bezwzorcowej jest odkrycie nieznanej liczby i struktury skupień. Właśnie dlate­
go, że w przypadku metod taksonomii nie ma możliwości zweryfikowania jako­
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ści modelu na podstawie błędu klasyfikacji, ważna przy wyborze odpowiedniej 
metody analizy jest znajomość formalnych własności metod. Wśród tych włas­
ność należy wymienić: niewrażliwość na permutacje, wypukłość otrzymywa­
nych skupień, poprawność struktury według klas, powtarzanie punktów czy 
opuszczanie klas. Te formalne własności metod taksonomicznych są nazywane 
w literaturze warunkami dopuszczalności [2], Przytoczymy za Fisherem i Van 
Ncsscm definicje wymienionych pojęć:

Definicja 1. Powiemy, ze metoda ma własność niewrażliwości na permuta­
cje, kiedy wyniki jej zastosowania nie zmieniają się, jeśli zastosujemy ją po­
nownie na zbiorze danych różniącym się jedynie kolejnością obserwacji.

Definicja 2. Powiemy, że metoda ma własność wypukłości, kiedy w wyniku 
jej zastosowania otrzymujemy skupienia, których otoczki wypukłe są parami 
rozłączne.

Definicja 3. Powiemy, że metoda ma własność poprawnej struktury według 
klas, kiedy w wyniku jej zastosowania otrzymujemy skupienia, dla których 
wszystkie odległości wewnątrzklasowe są mniejsze od wszystkich odległości 
zewnątrzklasowych.

Definicja 4 Powiemy, ze metoda taksonomiczna, która ma swój odpowied­
nik w zbiorze metod dyskryminacji, ma własność powtarzania punktów, jeśli dla 
dowolnej obserwacji x ze zbioru danych D zachodzi warunek, że przynależność 
obiektu x do klasy otrzymana w wyniku zastosowania metody taksonomicznej 
jest taka sama, jak wskazanie przynależności do klasy dla tego punktu po zasto­
sowaniu odpowiadającej metody dyskryminacyjnej na zbiorze uczącym D\{x}, 
gdzie zmienna opisująca klasy obiektów została wyznaczona na podstawie wy­
ników zastosowania metody taksonomicznej (innymi słowy - metoda dyskrymi­
nacji daje wskazanie przynależności do klasy zgodne, czyli powtarzające klasy­
fikację obiektu w metodzie taksonomicznej).

Definicja 5. Powiemy, że metoda taksonomiczna ma własność opuszczania 
klas, jeśli wyniki zastosowania metody taksonomicznej na całym zbiorze oraz na 
zbiorze, z ktorego usunięto jedno, dowolne, zidentyfikowane skupienie, są nie­
mal takie same - różnią się jedynie liczbą skupień (o jeden), zaś kształty skupień 
pozostają takie same.

2.2. Wyniki analizy

Badania przeprowadzono na zbiorach danych sztucznych, Smiley, Circle, 
Twonorm Spircils. wygenerowanych za pomocą funkcji z biblioteki mlbench 
programu statystycznego R. Zbiory te zostały zaprojektowane do sprawdzania 
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własności metod wielowymiarowej analizy statystycznej. Symulacje przeprowa­
dzone na wymienionych zbiorach wskazują, że taksonomiczna metoda wekto­
rów nośnych ma podstawową własność niewrażliwości na permutacje. Końcowy 
model otrzymany w wyniku zastosowania metody wektorów nośnych jest w pełni 
opisany za pomocą wybranej funkcji jądrowej oraz zidentyfikowanych wekto­
rów nośnych. W przeprowadzanych analizach zawsze stosowano funkcję jądrową 
Gaussa, więc wystarczyło sprawdzać, czy zbiór wektorów nośnych zmienia się po 
permutowaniu obserwacji w zbiorze danych. Takich zmian nie odnotowano.

Nie znaleziono również kontrprzykładu na własność powtarzania punktów. 
Dyskryminacyjna metoda SVM zawsze „umieszczała” wyeliminowaną obser­
wację x z powrotem w tym samym skupieniu (klasie), z którego x zostało wzięte 
po zastosowaniu metody SVC.

Taksonomiczna metoda wektorów nośnych nie spełnia trzech pozostałych 
własności formalnych. Ponieważ definicje tych własności sformułowano za po­
mocą kwantyfikatora ogólnego, wystarczy wskazać kontrprzykład, by wykazać 
prawdziwość poprzedniego zdania. W tym celu posłużono się zbiorem Smiley, 
który może być wykorzystany jako kontrprzykład wszystkich trzech własności 
formalnych. Rysunek 2 przedstawia ilustrację uzasadniającą, że metoda SVC nie 
spełnia warunku wypukłości, rysunek 3 ilustruje kontrprzykład na poprawność 
struktury według klas metody SVC, zaś rysunek 4 - kontrprzykład na własności 
opuszczania klas.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Rys. 2. Kontrprzykład na własność wypukłości metody SVC - przedstawione na rysunku otoczki 
wypukłe dwóch skupień nie są rozłączne
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Rys. 3. Kontrprzykład na własność poprawnej struktury według klas w metodzie SVC - na rysun­
ku dłuższy odcinek reprezentuje jedną z odległości wewnątrzklasowych, a krótszy - jedną 
z odległości zewnątrzklasowych

Rys. 4. Kontrprzykład na własność opuszczania klas - na prawym rysunku wyraźnie widać zmia­
ny w kształtach skupień po usunięciu jednej z czterech zidentyfikowanych klas
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Wyniki analizy formalnych własności taksonomicznej metody wektorów 
nośnych oraz wybranych innych metod taksonomicznych zostały zebrane i ze­
stawione w tabeli 1.

Tabela 1

Formalne własności taksonomicznej metody wektorów nośnych (SVC) 
oraz wybranych innych metod taksonomii

Źródło: Opracowanie własne na podstawie [3; 7] oraz obliczeń własnych dla SVC.

Metoda takso- 
nomiczna

Własność

nicwrazliwość 
na permulacje wypukłość poprawność struk­

tury według klas
powtarzanie 

punktów
opuszczanie 

klas

SVC TAK NIE NIE TAK NIE

Pojedynczego 
połączenia TAK NIE TAK TAK TAK

Kompletnego 
połączenia TAK NIE TAK NIE TAK

Średniej klaso­
wej TAK NIE TAK NIE TAK

Warda TAK TAK TAK NIE TAK

Podsumowanie

Taksonomiczna metoda wektorów nośnych pozwala na wyznaczenie sku­
pień o bardzo różnorodnych, nieliniowych kształtach, jednocześnie nie wymaga­
jąc przyjmowania żadnych założeń dotyczących liczby klas.

Stojąc przed zadaniem przeprowadzenia analizy skupień, badacz musi do­
brać odpowiednie narzędzie (metodę taksonomiczną) do rozwiązania postawio­
nego problemu. Wobec wielości metod taksonomii i braku jednoznacznych kry­
teriów wyboru metody warto przy wyborze kierować się wiedzą o własnościach 
formalnych poszczególnych metod. W ten sposób w zależności od indywidual­
nych preferencji i oczekiwań badacza można dobrać metodę, która rozpoznaje 
skupienia wypukłe bądź nic, mające własność opuszczania klas bądź nie itd. 
W zależności przecież od problemu dana własność otrzymanych wyników klasy­
fikacji może być pożądana lub niechciana.
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Taksonomiczna metoda wektorów nośnych nie spełnia trzech spośród roz­
ważanych pięciu własności formalnych. Można by powiedzieć, że są to własno­
ści geometryczne wyznaczanych skupień, a brak ich spełnienia dodatkowo 
wzmacnia wniosek o tym, że metoda SVC jest bardzo elastyczna i umożliwia 
wyznaczanie skupień o bardzo różnorodnych nieliniowych kształtach. Wynika 
stąd, ze wykorzystując metodę wektorów nośnych, możemy skutecznie rozpo­
znać liczbę i strukturę klas, nawet jeśli nie są one liniowo separowane.
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ON SONIE SELECTED PROPERTIES 
OF SUPPORT VECTOR CLUSTERING

Summary

Thcre arc many different methods of unsupervised learning. It is impossible to pre- 
dict which method is the „best” in general. Given a spécifie problem the user can décidé 
which method to apply considering some properties of clustering methods. These proper- 
ties are known as admissibility conditions. The reasonably new Support Vector Cluster­
ing method is analysed in terms of the satisfying admissibility conditions. The results are 
compared within a group of different clustering methods.



Katarzyna Zeug-Żebro

METODY ODRÓŻNIANIA

DETERMINISTYCZNYCH SZEREGÓW

CZASOWYCH OD LOSOWYCH

Wprowadzenie

Wiele badań dotyczących analizy deterministycznych systemów dynamicz­
nych pokazało, że trajektorie niektórych tych systemów wyglądają jak losowe sze­
regi czasowe. Ponieważ okazało się również, że nie tylko trajektorie deterministycz­
nych systemów są podobne do trajektorii losowych szeregów czasowych, podjęto 
badania dotyczące sprawdzenia, czy system jest losowy czy deterministyczny.

Zasadniczym celem opracowania było omówienie kilku metod odróżniania 
szeregów generowanych przez deterministyczne, chaotyczne systemy dyna­
miczne od szeregów losowych, tj. wymiar korelacyjny, test mieszania, twierdze­
nie o resztach. Metody te posłużyły do analizy finansowych szeregów czasowych 
złożonych z cen akcji. Pod uwagę wzięto 15 spółek, których akcje są notowane na 
Giełdzie Papierów Wartościowych w Warszawie co najmniej od 17.05.1995 roku. 
Obliczenia przeprowadzono z użyciem programów napisanych przez autorkę 
w języku programowania Visual Basic oraz pakietu Microsoft Excel.

1. Metody odróżniania deterministycznych szeregów 
czasowych od losowych

1.1. Wymiar korelacyjny

Wymiar korelacyjny po raz pierwszy wprowadzony przez Grassbergera 
i Procaccia [3; 4] dostarcza wstępnych informacji na temat złożoności systemu 
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dynamicznego, tzn. wskazuje minimalną liczbę zmiennych opisujących system 
dynamiczny. Można go obliczyć w przypadku, gdy nie wiemy, jaki jest wymiar 
przestrzeni stanów i gdy znany jest tylko jednowymiarowy szereg informacji.

Definicja. Wymiar korelacyjny atraktora/i systemu dynamicznego jest zde­
finiowany jako granica:

A = lim-------—
'“>0 In r

gdzie C(d.r) jest całką korelacyjną określoną jako prawdopodobieństwo znale­
zienia pary wektorów, których odległość od siebie w zrekonstruowanej d- wy mia­
rowej przestrzeni nie jest większa od r:

r >0,

I(x) jest funkcją wskaźnikową (funkcja Heaviside’a) w postaci:

/(«) =
dla a < 0 

dla a > 0 ’

n = N — d + 1 jest liczbą wektorów w <7-wymiarowej przestrzeni, a N jest liczbą 
danych:

*=0

Istnieje wiele sposobów wyznaczania wymiaru korelacyjnego. Najczęściej 
stosuje się regresję liniową do przybliżania linią prostą wykresu zależności loga- 
rytmu sumy korelacyjnej In C(d,r} od logarytmu wielkości otoczenia Inr. Da­

je to równanie w postaci:

In C(d. r) = Dc In r + b.

Powyższe równanie pozwala na oszacowanie wartości wymiaru korelacyj­
nego 1J(. jako współczynnika nachylenia prostej aproksymującej tę zależność.
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Po raz pierwszy powyższa miara została zastosowana w celu odróżnienia 
systemów deterministycznych od losowych w 1986 roku przez W.A. Brocka [1]. 
Algorytm metody można przedstawić następująco:
1. W pierwszym kroku dla jednowymiarowego szeregu obserwacji {x,} obli­

cza się całkę korelacyjną CA. (ć/,r).

2. Następnie wyznacza się wielkość C(ć/,r) jako granicę całki CA (ć/,r) przy

—> oo .
3. Ostatecznie oblicza się wymiar korelacyjny Dc, który jest równy granicy

In C\(d,r) ,
dorazu ------ —----- - przy r —> oo, dla rożnych wartości wymiaru zanurzę-

Inr
nia d.

4. W przypadku gdy system jest deterministyczny, wymiar korelacyjny Dc 

jest niezależny od wymiaru zanurzenia. Natomiast gdy system jest stocha­
styczny, występuje równość pomiędzy tymi wymiarami (rysunek 1).

Rys. 1. Zależność wymiaru korelacyjnego 
tycznego oraz stochastycznego

Dl od wymiaru zanurzenia d dla szeregu determinis-

Miara ta jednak nie jest niezawodna i do najbardziej istotnych wad można 
zaliczyć następujące:
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1. Dla niskiej liczby obserwacji N nie występuje zbieżność wymiaru korelacyj­
nego do rzeczywistego wymiaru atraktora. Warunek ten jest zagwarantowa­
ny tylko wtedy, gdy N —> °o .

2. W przypadku występowania szumu prawic zawsze zachodzi równość 
Dc = d , zatem szacowanie wymiaru korelacyjnego jest bezsensowne.

3. Wyznaczanie wymiaru korelacyjnego na podstawie jednowymiarowego sze­
regu czasowego nie wskazuje nam, w jaki sposób należy odtworzyć dyna­
mikę pierwotnego systemu (odrzuca się informacje o uporządkowaniu cza­
sowym obserwacji).
Ponieważ tak wiele wątpliwości dostarcza procedura odróżnienia szeregów 

deterministycznych od losowych oparta na wyznaczaniu wymiaru zanurzenia, 
więc Brock udowodnił twierdzenie o resztach (Brock’s residual theorem), które 
pozwala odrzucić tezę o deterministycznym czy losowym charakterze badanego 
systemu.

1.2. Twierdzenie o resztach

Kolejną metodę odróżniania deterministycznych szeregów czasowych od 
losowych zaproponował w 1986 roku W. Brock [1], udowadniając twierdzenie 
o resztach:

Twierdzenie o resztach [1], Jeżeli do szeregu obserwacji {x(} dopasujemy 

model autoregresji AR(q):

X, = + CZ2X,„2 + ... + « X, + U,, /=Ç + 1,..., (1)

gdzie ctt .a2,....a są oszacowanymi parametrami modelu, to wymiar korela­

cyjny szeregu reszt {i/,} będzie równy wymiarowi korelacyjnemu szeregu ob­

serwacji.

Brock w swojej pracy pokazał, że wymiar korelacyjny reszt modelu dopa­
sowanego do pewnego szeregu czasowego różni się znacznie od wymiaru kore­
lacyjnego tego szeregu. Na tej podstawie sformułował wniosek, że jeżeli nie jest 
zachowana równość wynikająca z powyższego twierdzenia, należy odrzucić tezę 
o deterministycznym charakterze badanego ciągu informacji.

Metodę odróżniania deterministycznego szeregu czasowego od losowego 
opartą na twierdzeniu o resztach można przedstawić w oostaci następującego al­
gorytmu:
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1. W pierwszym kroku do jednowymiarowego szeregu obserwacji } dopa­

sowuje się model autoregresji AR(q).
2. Następnie dla wyznaczonych reszt modelu oraz dla pierwotnego szeregu 

czasowego oblicza się wymiar korelacyjny.
3. Jeżeli wymiar korelacyjny szeregu czasowego będzie równy wymiarowi ko­

relacyjnemu szeregu reszt, badany ciąg obserwacji będzie deterministyczny.

1.3. Test mieszania

Po raz pierwszy algorytm zwany testem mieszania zastosowali w swoich 
pracach J. Scheinkman i B. LeBaron |6]. Algorytm ten przedstawia procedurę 
tworzenia losowych permutacji szeregu obserwacji i porównanie wymiaru kore­
lacyjnego szeregu „potasowanego” z wymiarem szeregu oryginalnego.

W przypadku gdy badany szereg jest deterministyczny, jego „pomieszanie” 
powoduje znaczny wzrost wymiaru korelacyjnego. Natomiast gdy szereg jest 
stochastyczny, takie „pomieszanie” nie zmienia wartości tego wymiaru.

Stosując test mieszania dla szeregów czasowych, w których liczba elemen­
tów była mała (100-300), krank i Stengos [2] nie otrzymali dobrych wyników 
i dlatego odrzucili możliwość wystąpienia determinizmu. Jednakże rok później 
J. Scheinkman i B. LeBaron [6] zastosowali z powodzeniem tę samą metodę 
w analizie szeregów czasowych utworzonych z codziennych i cotygodnio­
wych stóp zysku portfela akcji (dane pochodziły z okresu od 1963 roku do 
1987 roku)

2. Zastosowanie metod odróżniania deterministycznych 
szeregów czasowych od losowych do analizy szeregów 
czasowych utworzonych z cen wybranych spółek 
notowanych na GPW w Warszawie

Przeprowadzone badania empiryczne pozwoliły, za pomocą wyżej przed­
stawionych metod, zweryfikować hipotezę o deterministycznym, chaotycznym 
charakterze badanego szeregu czasowego.

W obliczeniach pod uwagę wzięto 15 spółek, których akcje były notowane 
na Giełdzie Papierów Wartościowych w Warszawie co najmniej od 17.05.1995 
roku. Razem przeanalizowano 2700 obserwacji, którymi były dzienne logaryt­
miczne stopy zwrotu:
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R, = In 7^ - ln7’ ,.

Obliczając wymiar korelacyjny, przyjmowano różne wymiary zanurzenia 
(cl 2,..., 10) oraz różne wartości r (0.25ít,0.5ít,0.75ít,ít) [5 |, gdzie <y jest 

odchyleniem standardowym z próby. Otrzymane wyniki przedstawia tabela 1.

Tabela 1

Zestawienie wartości wymiaru zanurzenia i wymiaru korelacyjnego dla szeregów czasowych 
utworzonych z notowań wybranych spółek

Wymiar 
zanurzenia

Wymiar korelacyjny

2 3 4 5 6 7 8 9 10

BPHPBK 2.3211 3.0122 3,9956 5,1233 6,4562 6,9912 8.2321 9.4539 10,0021

BZWBK 2,1121 2,9128 3,5403 4,1229 4,9456 5,3432 5,5432 5,8913 6,2345
DI-B1CA 2.1495 2.9913 3.9127 5,8765 6,0012 6,8054 8,1227 9,7854 10,1977

ELEKTRIM 2.4325 3,1121 4.0129 5,2345 6,2101 7,1231 8.2121 9.2324 9.8761

INGBSK 2.0981 3,4532 4,2318 5.1349 6,4301 6,8976 8.2003 9.6754 10.3221

JUTRZENKA 1,9879 3,0012 4,1131 4,5421 4,7311 4,9612 5,2231 5,6742 5,8712
KABLE 1.9981 3.1112 4.3232 5,1975 6,1211 7,2398 7,9954 8.7891 9,1234

KREDYIB 2,4343 3.1004 3,8761 5,1233 6,1234 6,9777 8,2911 9,4121 10,9872
MILLENIUM 2.3211 2,9211 4.1012 4,9989 6,0023 7,0011 8,2003 9.3524 9,8881

OPTIMUS 2.1006 3.2807 4,1342 5,3251 5.7892 7,3232 8,1231 9,2342 10,3452

RA1-AKO 1,8923 2.6789 4,0003 5,1231 6,2123 7.2349 8,2398 9.4312 10,0123
SWARZI-DZ 2.0342 3.0042 4,5621 5,3219 6,3214 7.3209 8,0021 9.3456 10,3241

VISTULA 2.0321 3.7845 4,8933 6,0012 6,7634 7.0965 8,9340 10,0334 11,0093
WIG 1,76543 3,5432 4,1232 4,3242 4,6784 5,3452 5,7832 5,9001 6,1002
ŻYWIEC 2,3201 2,5647 3,0021 3,3321 3,7865 4,0123 4,2341 4,5643 4,8001

Analizując otrzymane wyniki, zaobserwowano brak wyraźnej zbieżności 
wymiaru korelacyjnego do jakiejś liczby, co może być spowodowane:

brakiem chaosu deterministycznego,
zbyt małą liczbą obserwacji.
Jednakże dla niektórych spółek (BZWBK, Jutrzenka, WIG, Żywiec) wy­

miar zanurzenia jest wyraźnie mniejszy od wymiaru korelacyjnego. Może to 
świadczyć o tym, że nic są one czysto losowe i istnieje możliwość, że są deter­
ministyczne.
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JUTRZENKABZWBK

WIG ŻYWIEC

Rys. 2. Zależność wymiaru korelacyjnego od wymiaru zanurzenia dla akcji BZWBK, Jutrzenka, 
WIG i Żywiec

W drugiej części badań empirycznych tworzono losowe permutacje szere­
gów czasowych i obliczano wymiar korelacyjny dla nowo powstałych szere­
gów. Jeśli szereg nie był częścią chaotycznego atraktora, wymiar korelacyjny 
się nic zmienił, w przeciwnym przypadku wymiar ten wzrósł. Wyniki przed­
stawia tabela 2.
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Tabela 2

Zestawienie wartości wymiaru zanurzenia i wymiaru korelacyjnego dla szeregów czasowych 
utworzonych z notowań wybranych spółek oraz wymiaru korelacyjnego 

dla „potasowanych” szeregów

Wymiar 
zanurzenia

Wy m i ar korę 1 acyj ny
2 3 4 5 ry 7 8 9 10

BPIIPBK 2.3211 3.0122 3.9956 5,1233 6,4562 6,9912 8,2321 9.4539 10,0021

BPIIPBK 2,3209 3,0123 3,9956 5,1234 6,4561 6,9912 8,2321 9,4531 10,0009
BZWBK 2,1121 2.9128 3,5403 4,1229 4,9456 5,3432 5,5432 5,8913 6,2345

BZWBK 3,7621 4,1977 5,3211 5,7564 6,4353 6,7644 6,9888 7,2312 7,7893
DĘBICA 2,1495 2,9913 3.9127 5,8765 6.0012 6,8054 8,1227 9,7854 10,1977

DĘBICA 2,2495 2,9813 3,9113 5,8764 6,0022 6,8054 8,2021 9,8734 10,2327
ELEKTRIM 2,4325 3.1121 4.0129 5,2345 6,2101 7.1231 8,2121 9,2324 9,8761

ELEKTRIM 2,6743 3,6354 4,3546 5,5387 6,2422 7,3243 8,6238 9,7311 9,8345
INGBSK 2.0981 3,4532 4,2318 5,1349 6,4301 6,8976 8,2003 9,6754 10,3221

INGBSK 2,7311 3,4564 4,8463 5,6411 6,4431 6,7419 8,2431 9,7431 10,7837
JUTRZENKA 1,9879 3,0012 4,1131 4,5421 4,7311 4.9612 5,2231 5,6742 5.8712

JUTRZENKA 2,7841 3,7532 4,1341 4,3221 4,2741 4,7896 5,9083 5,9289 5,6832
KABLE 1,9981 3,1112 4,3232 5,1975 6,1211 7,2398 7,9954 8,7891 9,1234

KABLE 2,8431 4,7382 5,3290 6,9023 8,7232 9,9412 9,9983 10,3842 10,4242
KREDYTB 2,4343 3,1004 3,8761 5,1233 6.1234 6,9777 8,2911 9,4121 10.9872

KREDYTB 2,4657 3,6421 3,7226 5,8432 6,1327 6,9292 8,8782 9,4842 10,9822
MILLENIUM 2.3211 2.9211 4,1012 4,9989 6.0023 7,0011 8,2003 9,3524 9,8881
MILLENIUM 2,4138 2,1331 4,8341 5,3121 6,1111 7,4831 8,1417 9,8119 9,1334
OPTIMUS 2,1006 3,2807 4.1342 5,3251 5.7892 7,3232 8,1231 9,2342 10,3452

OPTIMUS 2,1326 3,2832 4,2322 5,3321 5,9282 7,3203 8,7311 9,1991 10,2311
RAFAKO 1,8923 2,6789 4,0003 5.1231 6,2123 7.2349 8,2398 9,4312 10,0123

RAFAKO 1,1381 2,8191 4,1391 5,1189 6,2931 7,1881 8,1312 9,8932 10,9101
SWARZĘDZ 2,0342 3,0042 4,5621 5.3219 6,3214 7,3209 8.0021 9.3456 10.3241

SWARZĘDZ 2,1289 3,2341 4,3213 5,2132 6,8422 7,8242 8,2394 10,2430 10,4928
VISTULA 2,0321 3.7845 4,8933 6.0012 6.7634 7,0965 8.9340 10.0334 11.0093
VISTULA 2,3111 3,6888 4,7863 6,7909 6,8787 7,9876 9,8765 10,7654 11,6754
WIG 1.7543 3,5432 4,1232 4,3242 4,6784 5,3452 5,7832 5.9001 6,1002
WIG 3,4932 5,8242 6,1112 6,2452 7,4432 8,3452 8,7832 8,9301 8,9922
ŻYWIEC 2,3201 2,5647 3.0021 3,3321 3,7865 4,0123 4,2341 4,5643 4.8001
ŻYWIEC 2,4111 2,4217 3,7021 3,5422 3,3992 4,9213 4,9322 4,8632 4,9282
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Na podstawie otrzymanych wyników można wnioskować, że w szeregach 
czasowych utworzonych z cen akcji BZWBK, Kable i indeksu WIG istnieje 
pewna deterministyczna struktura (wartość wymiaru korelacyjnego dla szeregu 
„potasowanego” nieznacznie wzrosła). Niestety dwa szeregi czasowe (Jutrzenka, 
Żywiec), które w pierwszej metodzie wskazywały na istnienie struktury deter­

ministycznej, po utworzeniu losowych permutacji szeregu i porównaniu wymia­
rów korelacyjnych szeregu „potasowanego” z wymiarem szeregu oryginalnego 
wykazały losowy charakter.

W kolejnym kroku badań wykorzystano twierdzenie Brocka o resztach 
i dopasowano obserwowane szeregi do modelu autoregresji rzędu drugiego, a na­
stępnie wyznaczono szeregi reszt i obliczono ich wymiar korelacyjny. Otrzyma­
ne wyniki przedstawia tabela 3.

Tabela 3

Zestawienie wartości wymiaru zanurzenia i wymiaru korelacyjnego dla szeregów czasowych 
utworzonych z notowań wybranych spółek oraz wymiaru korelacyjnego szeregu reszt

Wymiar 
zanurzenia

Wy m i ar korć lacyj ny

2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

BPIIPBK 2,3211 3.0122 3.9956 5,1233 6,4562 6.9912 8.2321 9,4539 10,0021

BPIIPBK 5,2132 7,1398 8,3189 11,8132 13,4501 14,7842 16,2348 19,3231 21,0009 Î
BZWBK 2.1121 2,9128 3.5403 4,1229 4,9456 5.3432 5,5432 5,8913 6,2345 i

BZWBK 2,7843 2,1638 3,3722 4,2884 4,7198 5,7138 5,0189 5,5089 6,8117
DĘBICA 2,1495 2,9913 3.9127 5.8765 6.0012 6,8054 8,1227 9,7854 10,1977

DĘBICA 5,7389 7,2739 9,7128 14,7452 16,0459 17,8205 23,2182 25,7823 29,8237
ELEKTRIM 2,4325 3,1121 4,0129 5.2345 6,2101 7,1231 8,2121 9,2324 9,8761

ELEKTRIM 3,8239 4,3646 5,9871 6,7584 7,2422 8,3243 9,6238 10,7311 11,8345
INGBSK 2.0981 3.4532 4,2318 5,1349 6.4301 6,8976 8.2003 9,6754 10,3221
INGBSK 4,7311 6,4564 7,8463 9,6411 12,4431 13,7419 15,2431 17,7431 18,7837
JUTRZENKA 1.9879 3.0012 4,1131 4,5421 4,7311 4.9612 5,2231 5,6742 5.8712

JUTRZENKA 2,1231 3,7002 4,7655 4,8969 5,0076 5,0268 5,3788 5,8996 6,0907
KABLE 1.9981 3.1112 4.3232 5.1975 6.1211 7.2398 7.9954 8,7891 9,1234

KABLE 5,8431 6,7382 8,3290 8,9023 9,7232 10,9412 10,9983 11,3842 12,4242

KREDYTB 2,4343 3,1004 3,8761 5,1233 6,1234 6.9777 8.2911 9,4121 10,9872

KREDYTB 4,4657 5,6421 5,7226 7,8432 8,1327 8,9292 10,8782 11,4842 12,9822
MILLENIUM 2,3211 2.9211 4.1012 4.9989 6.0023 7,0011 8,2003 9,3524 9,8881 [

MILLENIUM 3,4138 3,1331 5,8341 5,3121 7,1111 8,4831 9,1417 10,8119 11,1334 J
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cd. tabeli 3

1 2 3 4 5 6 7 8 9 10

OPTIMUS 2,1006 3.2807 4,1342 5,3251 5,7892 7,3232 8,1231 9,2342 10,3452

OPTIMUS 6,1326 7,2832 8,2322 9,3321 9,9282 11,3203 12,7311 13,1991 14,2311
RAFAKO 1.8923 2,6789 4,0003 5,1231 6,2123 7.2349 8,2398 9.4312 10.0123

RAFAKO 3,1381 4,8191 6,1391 7,1189 8,2931 9,1881 10,1312 11,8932 12,9101
SWARZĘDZ 2,0342 3.0042 4.5621 5.3219 6,3214 7,3209 8,0021 9,3456 10.3241

SWARZĘDZ 4,1289 5,2341 6,3213 7,2132 8,8422 9,8242 10,2394 12,2430 13,4928
VI STULA 2,0321 3,7845 4,8933 6,0012 6,7634 7.0965 8,9340 10,0334 11,0093

VISTU LA 3,3111 4,6888 5,7863 6,7909 7,8787 9,9876 10,8765 11,7654 12,6754
WIG 1,7543 3,5432 4,1232 4,3242 4,6784 5.3452 5.7832 5,9001 6.1002

WIG 2,3562 3,8969 4,0009 5,7552 5,4354 5,6543 6,2865 6,7751 6,9897
ŻYWIEC 2,3201 2,5647 3,0021 3,3321 3,7865 4,0123 4,2341 4,5643 4,8001

ŻYWIEC 2,4111 2,4217 3,7021 3,5422 3,3992 4,9213 4,9322 4,8632 4,9282

Analiza otrzymanych rezultatów wykazała, że dla niektórych spółek wy­
miar korelacyjny szeregu obserwacji jest wyraźnie bliski wymiarowi korelacyj­
nemu szeregu reszt. Dzieje się lak w przypadku spółek BZWBK, Jutrzenka, 
Żywiec i indeksu WIG. Przemawia to za istnieniem jakiejś struktury w badanych 

danych, czyli nie są one czysto losowe. Nie można jednak stwierdzić, że są one 
deterministyczne.

Podsumowanie

Na podstawie przeprowadzonych badań widać wyraźnie, że formułowanie 
wniosków o istnieniu bądź nieistnieniu w szeregach finansowych determini­
stycznych, chaotycznych struktur jest bardzo trudne. Możliwość istnienia pew­
nej nieliniowej, deterministycznej struktury należy traktować z ostrożnością, 
gdyż długość rozpatrywanych szeregów obserwacji może być za mała. Informa­
cje laką należy przyjąć jako wstęp do dalszych badań z zastosowaniem innych 
metod odróżniania deterministycznych szeregów czasowych od losowych 
(np. test BDS, Analiza R/S itd.). Być może potwierdzą one istnienie chaosu na 
giełdzie lub mu zaprzeczą.



168 Katarzyna Zeug-Żebro

Literatura

1. Brock W. A.: Distinguishing Random and Deterministic Systems: Abridged Version. 
„Journal of Economie Thcory” 1986, No. 40, s. 168-195.

2. Frank M., Stengos T.: Some Evidence Concerning Macroeconomic Chaos. „Journal 
of Monetary Economics” 1988a, Vol. 22, s. 423-438.

3. Grassberger P., Procaccia L: Characterization of Strange Attractors. „Phys. Rev. Lett.” 
1983, Vol. 50, s. 346-349.

4. Grassberger P., Procaccia 1.: Measuring lhe Strangeness of Strange Attractors. 
„PhysicaD” 1983a.

5. Kim I LS, Eykholt R., Salas J.D.: Nonlinear Dynamics, Delay Time, and Embed- 
ding Windows. „Physica D” 1999, 127.

6. Schcinkman J. A., LeBaron B.: Nonlinear Dynamics and Stock Returns. „The Jour­
nal of Business” 1989a, Vol. 62, No. 3, s. 311-337.

7. Schuster H.G.i Chaos deterministyczny. Wydawnictwo Naukowe PWN, Warszawa 
1995.

8. Fakens F.: Detecting Strange Attractors in Turbulence. Lecture Notes in Mathe- 
matics. Red. D.A. Rand, L.S. Young. Springer, Berlin 1981.

9. Zawadzki H.: Chaotyczne systemy dynamiczne. AE, Katowice 1996.

THE METHODS USED IN DISTINGUISHING RANDOM 
AND DETERMINISTIC SYSTEMS

Summary

In this páper we discuss some rccent techniques ušed in distinguishing between 
probabilistic and deterministic behavior in stock price: the corrélation dimension, 
Brock’s residual theorem, the „shuffle diagnostic”. Our data set has been composed 
of daily data obtained from GPW in Warsaw.
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