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Bartłomiej Jabłoński

ALTERNATYWNE SPOSOBY KONSTRUKCJI 
PORTFELI PAPIERÓW WARTOŚCIOWYCH

Wstęp

Doradcy inwestycyjni pracujący w funduszach inwestycyjnych czy też 
departamentach asset management starają się w taki sposób skonstruować port­
fele papierów wartościowych, aby osiągnąć jak najlepsze wyniki. Do podstawo­
wych problemów, z jakimi mają do czynienia, należą:
- dobór odpowiednich walorów do portfela inwestycyjnego według analizy 

fundamentalnej oraz technicznej,
- określenie wielkości pozycji, czyli jakie kwoty aktywów przeznaczyć na 

wcześniej wybrane walory.
W przypadku wyboru odpowiednich walorów do portfela inwestycyjnego 

pomocna jest analiza fundamentalna, która ukazuje determinanty wyceny akcji.
Analiza fundamentalna jest złożonym procesem obejmującym kilka eta­

pów. Najczęściej wyróżnia się:
- analizę makroekonomiczną,
- analizę sektorową,
- analizę sytuacji spółki,
- analizę finansową spółki,
- wycenę akcji [10, s. 85],

Rozpatrując problem tworzenia portfela spośród wcześniej wytypowanych 
akcji, przeważnie stosuje się podejście zaproponowane przez Markowitza. Idea 
budowania portfeli inwestycyjnych według Markowitza opiera się na wyznacza­
niu portfeli efektywnych, czyli maksymalizujących oczekiwaną stopę zwrotu 
przy jednoczesnej minimalizacji ryzyka.

Zgodnie z pracami Markowitza, podczas konstruowania portfela papierów 
wartościowych największą wagę przywiązuje się do jakościowych korzyści osiąga­
nych przez dywersyfikację inwestycji w papiery wartościowe. Model Markowitza 
jest oparty na metodach ilościowych. Jego podstawowe założenia są następujące:
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- stopa zwrotu inwestycji należycie wyraża czerpane z niej dochody, a inwesto­
rzy znają rozkład prawdopodobieństwa osiągnięcia danych stóp zwrotu,

- szacunki inwestorów dotyczące ryzyka są proporcjonalne do rozkładu ocze­
kiwanych stóp zwrotu,

- inwestorzy decydują się na oparcie swoich decyzji wyłącznie na dwóch pa­
rametrach funkcji rozkładu prawdopodobieństwa, czyli na spodziewanej sto­
pie zwrotu i prawdopodobieństwie jej osiągnięta,

- inwestorzy skłaniają się do podejmowania minimalnego ryzyka przy danej 
stopie zwrotu, natomiast przy danym stopniu iyzyka wybierają projekt 
o największej rentowności [27, s. 75].

Model wyboru portfela akcji Markowitza, mimo że teoretycznie jest bar­
dzo atrakcyjny, to praktycznie trudny do zastosowania. W marcu 2002 roku na 
Giełdzie Papierów Wartościowych w Warszawie notowano 231 spółek. Oznacza 
to, że chcąc skorzystać z modelu Markowitza, konieczna jest znajomość 231 
stóp zwrotu, 231 odchyleń standardowych od stóp zwrotu oraz 26 565 
(231*(231-l)/2) wartości współczynników korelacji. Liczby te stawiają pod 
znakiem zapytania możliwość zastosowania klasycznej teorii wyboru portfela 
akcji w sposób bezpośredni, zwłaszcza że liczba akcji na rynku będzie rosła 
w miarę postępowania procesu prywatyzacji w Polsce [27, s. 82].

Biorąc pod uwagę stopień skomplikowania procedur obliczeniowych, ja­
kie trzeba wykonać, aby móc dokonać wyboru optymalnej ilości poszczególnych 
akcji do portfela papierów wartościowych metodą Markowitza, należy zastano­
wić się nad alternatywami. Metody zarządzania wielkością pozycji zapropono­
wane przez K. van Tharpa stanowią alternatywę w obszarze konstrukcji portfeli 
papierów wartościowych składających się z akcji różnych firm.

Metody te z punktu widzenia zarządzającego aktywami będą możliwe do 
zastosowania wobec zasobniejszych portfeli z możliwością wykorzystania dźwi­
gni finansowej dzięki nabyciu części akcji na kredyt. Należy podkreślić, że me­
tody te dają odpowiedź na pytanie, jaki procentowy udział poszczególnych akcji 
powinien składać się na cały portfel inwestycyjny, a niejakie walory wybrać.

1. Wariancja, odchylenie standardowe oraz średni 
prawdziwy zakres zmiany jako miary ryzyka

Z inwestowaniem w akcje nierozerwalnie wiąże się ryzyko, które jest 
podstawową kategorią nowoczesnych finansów, a w szczególności problematyki 
inwestowania w akcje.

Niemożliwe jest jednak określenie jednoznacznego podejścia do ryzyka. 
Według podejścia Krzysztofa Jajugi, podstawowe rodzaje ryzyka to:
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- ryzyko stopy procentowej (interest rate risk),
- ryzyko kursów walut (foreign exchange risk),
- ryzyko rynku (market risk, bull-bear market risk),
- ryzyko niedotrzymania warunków (default risk),
- ryzyko zarządzania (management risk),
- ryzyko biznesu (business risk),
- ryzyko finansowe (financial risk),
- ryzyko bankructwa (bankruptcy risk),
- ryzyko płynności (liquidity risk, marketability risk),
- ryzyko zmiany ceny (holding period risk),
- ryzyko reinwestowania (reinvestment risk),
- ryzyko wykupu na żądanie (cali risk, callability risk),
- ryzyko zmienności (convertibility risk),
- ryzyko polityczne (political risk),
- ryzyko wydarzeń (event risk) [10, s. 99-101],

Rozważając ryzyko nie w odniesieniu do konkretnej instytucji, lecz ogólnie 
jako ryzyko finansowe, stwierdzono, iż zarządzanie ryzykiem następuje poprzez:
- poznanie ryzyka, czyli identyfikację,
- pomiar i analizę ryzyka [30, s. 161],

Powszechnie stosowaną metodą pomiaru ryzyka jest wariancja stopy 
zwrotu (variance of retums), nazywana również krótko wariancją. Określona jest 
ona za pomocą następującego wzoru:

m

v = 2p.(R,-R)2 a,
1=1

gdzie:
R - oczekiwana zmiana kursu,
Ri- i-ta możliwa do osiągnięcia wartość zmiany kursu,
Pi - prawdopodobieństwo osiągnięcia pewnej zmiany kursu,
V - wariancja stopy zwrotu [10, s. 102],

Popularnym sposobem kwantyfikacji ryzyka jest także odchylenie stan­
dardowe, określone według wzoru:

- = (2)

gdzie:
N - liczba obserwacji,
K - oczekiwany dochód,
Pi - prawdopodobieństwo i-tego dochodu,
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Kj - możliwy i-ty dochód,
o — odchylenie standardowe stopy zwrotu [7, s. 73).

Ryzyko mierzy się na podstawie rozrzutu stóp zwrotu wokół wartości 
oczekiwanej. Im większe fluktuacje stóp zwrotu, tym większe ryzyko. Zróżni­
cowanie może być mierzone za pomocą odchylenia standardowego [7, s. 73].

Ryzyko inwestycji można także mierzyć za pomocą zmienności. Problem 
zmienności został omówiony przez Wildera, który opracował koncepcję praw­
dziwego zakresu zmiany (true range - TR). Prawdziwy zakres zmiany to naj­
wyższa z następujących wielkości:
1. Odległość między dzisiejszym maksimum a minimum.
2. Odległość między wczorajszą ceną zamknięcia a dzisiejszym maksimum.
3. Odległość między wczorajszą ceną zamknięcia a dzisiejszym minimum.

Prawdziwy zakres zmiany sam w sobie jest po prostu liczbą. By zyskała 
ona sens, trzeba uśrednić wartość TR z kilku dni i stworzyć w ten sposób średni 
prawdziwy zakres zmiany (average true range - ATR). Wzrost tego wskaźnika 
oznacza wzrost zmienności [12, s. 148].

Rysunek 1 przedstawia graficzne podejście do liczenia wskaźnika ATR na 
przykładzie dwóch sesji. Pokazuje on sposób liczenia zakresu dziennego oraz 
zakresu prawdziwego.

Rys. 1. Dzienny i prawdziwy zakres zmiany 
Źródło: Opracowanie własne na podstawie: [12].

Inwestycje na rynku kapitałowym są nierozerwalnie związane z ryzykiem. 
Mówi się, że ryzyko inwestowania w obligacje jest bardzo niskie, przy akcjach 
wspomina się o dużym ryzyku, zaś opcje i kontrakty terminowe są powszechnie 
uznawane za kwintesencję ryzyka. Takie podejście - pojawiające się, niestety, 
niemal w każdej pracy o inwestowaniu na rynku kapitałowym - sugeruje, jakoby 
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ryzyko było zawarte w samym rynku. Tymczasem należałoby powiedzieć, że 
ryzyko zależy od zachowania się osoby, która podejmuje jakąś działalność oraz 
zachowania wielu tysięcy innych inwestorów. Ryzyko nie zależy od gry, w któ­
rej będziemy uczestniczyć, lecz od naszego nastawienia do niej. Można powie­
dzieć, że ryzyko jest funkcją chciwości i rozsądku [31, s. 85].

2. Założenia wyboru akcji do portfeli papierów 
wartościowych

Sposoby wyboru akcji, które mogą mieć duży potencjał wzrostowy, mogą 
przybierać przeróżny charakter.

Dla celów porównania modeli zarządzania wielkością pozycji opracowa­
no sygnał nabycia akcji według reguły przecięcia średniej kroczącej przez kurs 
akcji, czyli proste wybicie z kanału określone przez prostą średnią kroczącą 
opóźnioną o jeden okres, czyli dzień.

Prostą średnią kroczącą oblicza się dodając do siebie ceny z badanego okresu, 
a następnie oblicza się ich średnią. Gdy pojawia się nowa wartość, wartość najstar­
sza wypada z wzoru. Wzór na prostą średnią kroczącą przyjmuje postać:

. z . (7? + Pt i + Pt_2 + + Pt-n)MAt = (3)
n

gdzie:
MAt —bieżąca wartość średniej kroczącej,
Pt, Pt-i - ceny sprzed n okresów,
n - liczba okresów użytych do obliczeń [12, s. 240],

Formuła będzie przyjmować postać:

Close>ref(Mov(c,45,s),-l)

Jest to prosta średnia krocząca liczona na podstawie notowań z 45 dni. Ja­
ko ochronę danej pozycji założono, że początkowym momentem sprzedania 
z zyskiem lub ze stratą w przypadku załamania się kursu akcji będzie przekro­
czenie poziomu 3% wartości portfela. Natomiast w przypadku ruchu w oczeki­
wanym przez zarządzającego kierunku będzie to linia podążającego stopu, tzw. 
Trailing Stop. Jest to zmienny poziom ceny, przy którym powinna nastąpić 
sprzedaż, jeśli cena spadającego kursu akcji osiągnie daną wartość.

Analizę oparto na notowaniach spółek wchodzących w skład indeksu 
WIG 20. Spośród spółek wchodzących w skład indeksu wybrano spółki z róż­
nych branż, których cena wybiła się ponad średnią ruchomą z 45 dni przesuniętą 
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o 1 dzień wstecz. Zakres badanych danych obejmuje notowania od czerwca do 
września 2005 roku. Dla porównania wyników portfeli przedstawiono także 
wynik benchmarku w postaci samego indeksu spółek blue chips.

3. Wybór akcji wchodzących w skład portfeli
i n westycyj nych

Spośród spółek wchodzących w skład indeksu WIG 20 wybrano te, które 
według reguły średniej kroczącej dały sygnał nabycia. Tabela 1 prezentuje dane 
spółek wraz z indeksem WIG 20.

Tabela 1
Wykaz badanych instrumentów

Instrument Cena (zł)
Okres

Zysk
zakupu sprzedaży (zł) (%)

BZWBK 94,50 zł 107,50 zł czerwiec - sierpień 13,00 zł 13,8%
KGHM 30,80 zł 32,00 zł czerwiec - lipiec 1,20 zł 3,9%
MOL 269,00 zł 331,50 zł czerwiec - sierpień 62,50 zł 23,2%

SOFTBANK 24,50 zł 31,60 zł czerwiec - sierpień 7,10 zł 29,0%
WIG 20 1 921,00 zł 2 198,00 zł czerwiec - sierpień 277,00 zł 14,4%

Rysunek 2 przedstawia akcjogram spółek wraz z ukazanymi dniami zaku­
pu oraz sprzedaży akcji. Linia gładka (przerywana) prezentuje średnią kroczącą, 
a szarpana (ciągła) poziom, przy którym należy pozbyć się akcji z portfela.

Rys. 2. Wykresy wytypowanych papierów wartościowych
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Rysunek 3 przedstawia, jak zachowywał się kurs indeksu WIG 20 będący 
benchmarkiem dla modelowych portfeli papierów wartościowych

Rys. 3. Wykres indeksu giełdowego WIG 20

4. Alternatywne modele budowania portfeli 
papierów wartościowych

Omawiane modele konstrukcji portfeli papierów wartościowych K. van 
Tharpa scharakteryzowano w następujący sposób:
- model pierwszy - jednostki o równej wartości,
- model drugi - strategia ryzyka procentowego,
- model trzeci - model procentowej zmienności.

Dla celów porównawczych analizy wielkość środków własnych przezna­
czonych do konstrukcji modeli portfelów będzie stała i równa 500 tys. zł. 
W obliczeniach nie uwzględniono prowizji od nabycia i zbycia pakietów akcji.

Model pierwszy — jednostki o równej wartości

Budowa modelu opartego na jednostkach o równej wartości polega na po­
dziale całego portfela na równe części i przeznaczeniu tych części aktywów na 
zakup poszczególnych walorów. Wartość aktywów przeznaczoną na dany walor 
dzieli się przez cenę przypuszczalnego nabycia i w wyniku otrzymuje się liczbę 
walorów do zakupu.
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Tabela 2 prezentuje wyliczenia liczby akcji, jakie należy nabyć stosując 
model konstrukcji portfela na podstawie jednostek o równej wartości. Zaprezen­
towano również wartość zakupu oraz sprzedaży pakietów wraz z ukazaniem 
zyskowności wszystkich transakcji.

Wynik pierwszego modelu portfela papierów wartościowych

Tabela 2

Instrument
Cena Liczba Wartość

zakupu sprzedaży akcji zakupu sprzedaży

BZWBK 94,50 zł 107,50 zł 1322 124 929,00 zł 142 115,00 zł
KGHM 30,80 zł 32,00 zł 4058 124 986,40 zł 129 856,00 zł
MOL 269,00 zł 331,50 zł 464 125 085,00 zł 154 147,50 zł

SOFTBANK 24,50 zł 31,60 zł 5102 124 999,00 zł 161 223,20 zł
Sumy: 499 999,40 zł

Wynik (zł):
Wynik (%):

587 341,70 zł 
87 342,30 zł

17,47%

Model drugi - strategia ryzyka procentowego

W momencie kiedy zarządzający portfelem inwestycyjnym zamierza za­
kupić walory, powinien określić poziom, przy którym w razie niepowodzenia 
akcje zostaną sprzedane, aby chronić kapitał przed dalsząjego aprecjacją. Jest to 
ryzyko pozycji, czyli strata, jaką ponosimy w trakcie najgorszego scenariusza.

W przypadku modelu strategii ryzyka procentowego należy określić ryzy­
ko, które w tym modelu powinno zależeć od szerokości stopów stosowanych 
w celu ochrony kapitału. Zatem na samym początku należy założyć, ile możemy 
zaryzykować w każdej transakcji w odniesieniu do całego portfela, po czym 
ustalić dla każdego waloru, ile możemy zaryzykować na spadku ceny. Dla celów 
analizy założono dopuszczalną stratę w wysokości 2% wartości portfela.

Na każdej transakcji ryzykujemy 2% wartości początkowej portfela, czyli:

2% * 500 000 zł = 10 000 zł

Każdorazowo liczy się ilość akcji, jaką można nabyć w ramach strategii 
tworzenia portfela papierów wartościowych według reguły:

Ryzyko na każdej transakcji/stop początkowy = liczba akcji (4)
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W przypadku zastosowania wielkości możliwej początkowej straty (Trai- 
ling Stop) w modelu strategii ryzyka procentowego często wartość zakupu prze­
wyższa początkowy kapitał, co wymaga wykorzystania kredytu na zakup akcji. 
W przypadku kiedy doradca inwestycyjny trafnie wytypuje grupy akcji do port­
fela inwestycyjnego, wykorzystanie kredytu znacznie powiększy stopę zwrotu 
osiągniętą z inwestycji. W modelu założono koszt kredytu na poziomie 12% 
w skali roku. Z uwagi na długość inwestycji całego portfela (czerwiec-sierpień) 
obliczono koszt kredytu dla 3 miesięcy. Sytuację przedstawia tabela 3.

Wynik drugiego modelu portfela papierów wartościowych
Tabela 3

Instrument
Cena

Stop
Liczba 

akcji

Wartość

zakupu sprzedaży zakupu sprzedaży

BZWBK 94,50 zł 107,50 zł 3,50 zł 2857 269 986,50 zł 307 127,50 zł
KGHM 30,80 zł 32,00 zł 0,99 zł 10101 311 110,80 zł 323 232,00 zł
MOL 269,00 zł 331,50 zł 7,00 zł 1428 384 132,00 zł 473 382,00 zł

SOFTBANK 24,50 zł 31,60 zł 1,10 zł 9090 222 705,00 zł 287 244,00 zł
Sumy: 1 187 934,30 zł 1 390 985,50 zl

Kwota kredytu (zł): 687 934,30 zł
Roczny koszt kredytu (%): 12%

Kwartalny koszt kredytu (zł): 20 638,03 zł
Wynik (zł): 182 413,17 zł
Wynik (%): 36,48%

W przypadku wykorzystania kredytu na zakup akcji zysk na całym portfe­
lu znacznie wzrasta. Jednocześnie ze wzrostem zaangażowania w portfelu kapi­
tału obcego rośnie ryzyko całego portfela. W przypadku nieodpowiedniego za­
bezpieczenia portfela przed stratami, dodatkowe wykorzystanie kredytu na 
zakup akcji spowoduje znaczne zmniejszenie jego wartości.

Model trzeci — model procentowej zmienności

Trzeci model tworzenia portfela papierów wartościowych opiera się na 
wskaźniku zwanym zmiennością. Zmienność to przeciętna wielkość dziennej 
zmiany instrumentu bazowego w określonym czasie. Jest to bezpośrednia miara 
zmienności cen, z jaką możemy mieć do czynienia w przypadku danej pozycji. 
Jeśli porówna się zmienność wszystkich utrzymywanych pozycji, przedstawiając 
jako procent całego kapitału, można zrównać wahania wartości każdego elemen­
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tu portfela. W większości przypadków zmienność to różnica między najwyższą 
a najniższą ceną dnia.

Na każdej transakcji ryzykujemy 2% wartości początkowej portfela, czyli:

2% * 500 000 zł = 10 000 zł

Każdorazowo liczy się ilość akcji, jaką można nabyć w ramach strategii 
tworzenia portfela papierów wartościowych według reguły:

Ryzyko na każdej transakcji/zmienność (ATR) = liczba akcji (5)

Do obliczenia średniego prawdziwego zakresu zmiany ryzyka akcji wy­
brano 3-dniową średnią ATR (3). Przy wyborze kierowano się liczbą dni noto­
wań w ciągu tygodnia. Dodatkowo starano się zachować w miarę krótki czas 
uśrednienia ze względu na małą wagę historycznych wartości wskaźnika sprzed 
n dni oraz dużą wagę ostatnich dni notowań. Wyniki inwestycji osiągnięte we­
dług zasad trzeciego modelu przedstawia tabela 4.

Tabela 4

Wynik trzeciego modelu portfela papierów wartościowych

Instrument Cena ATR 

(3 dni)

Liczba 

akcji

Wartość

zakupu sprzedaży zakupu sprzedaży

BZWBK 94,50 zł 107,50 zł 1,75 zł 5714 539 973,00 zł 614 255,00 zł
KGHM 30,80 zł 32,00 zł 0,83 zł 12048 371 078,40 zł 385 536,00 zł
MOL 269,00 zł 331,50 zł 6,20 zł 1612 433 628,00 zł 534 378,00 zł

SOFTBANK 24.50 zł 31,60 zł 0,53 zł 18867 462 241,50 zł 596 197,20 zl 1
Sumy: 1 806 920,90 zł 2 130 366,20 zł

Kwota kredytu (zł): 1 306 920,90 zł
Roczny koszt kredytu (%): 12%

Kwartalny koszt kredytu (zł): 39 207,63 zł
Wynik (zł): 284 237,67 zł
Wynik (%): 56,85%

5. Porównanie modeli

W każdym modelu obowiązują rożne metody określania ilości akcji 
wchodzących w skład portfela, co jednocześnie przekłada się na różną wartość, 
jaką należy zainwestować w celu budowy portfela według jednej z trzech metod 
analizy portfelowej. Tabela 5 ukazuje porównanie omawianych modeli kon­
strukcji portfeli papierów wartościowych.
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Tabela 5

Podsumowanie wyników portfeli

Portfele Zys 
(zł)

k
(%)

Jednostki o ownej wartości 8 7 342,30 zł 17,47%
Strategia ryzyka procentowego 182 413,17 zł 36,48%
Mode', nrocentowt zmienności 284 237 07 zł 56 85%

Model tworzenia portfela papierów wartościowych na podstawie jedno­
stek o równej wartości jest najprostszym sposobem konstrukcji portfela inwesty­
cyjnego. Dwa ostatnie modele są dopasowane do większego portfela, w którym 
są środki przeznaczone także na dywersyfikację ryzyka poprzez inwestycję 
w papiery opatrzone minimalnym ryzykiem. Wtedy można część środków prze­
znaczyć na zakup większej ilości akcji, rezygnując po części z inwestycji w ob­
ligacje. Takie krótkotrwałe zachwianie struktury procentowej portfela opłaca się, 
albowiem gdyby zaciągnąć kredyt pod zakup akcji, inwestycja nie wykazywała­
by już tak dużej rentowności.

Indeks WIG 20 osiągnął w badanym okresie stopę zwrotu równą 14,4%. Po­
równanie wyniku indeksu WIG 20 z badanymi portfelami, szczególnie drugim 
i trzecim modelem, ukazuje, jak wielkie znaczenie w tworzeniu portfeli papierów 
wartościowych ma odpowiedni dobór ilości poszczególnych pakietów akcji. Dla 
wytrawnego inwestora najodpowiedniejszy wydaje się być trzeci model, który 
-jak wynika z symulacji - łączy wysoką stopę zwrotu z wyższym ryzykiem.

Tabela 6 zawiera podsumowanie wszystkich modeli tworzenia portfeli pa­
pierów wartościowych.

Tabela 6

Źródło: Opracowanie własne na podstawie: [28, s. 236],

Katowic®

£ Biblioteka 
É Głowna

Wynik trzeciego modelu portfela papierów wartościowych
Model Zalety Wady

Model równych 
jednostek

Ryzyko jako 
procent kapitału

Model 
procentowej 
zmienności

- Każda jednostka zyskuje 
taką samą wagę w portfelu

- Umożliwia stopniowy wzrost niezależnie 
od wielkości rachunku

- Równoważy ryzyko w obrębie portfela, 
odnosząc je do określonej lyzykowanej sumy

- Umożliwia stopniowy wzrost niezależnie 
od wielkości rachunku

- Równoważy ryzyko w obrębie portfela, 
odnosząc je do zmienności

- Może służyć do równoważenia transakcji 
w systemie stosującym bliskie linie stop

- Drobny inwestor może powiększyć 
pozycję dopiero po długim czasie

- Ryzyko dla poszczególnych jednostek może 
być równe

- Nie wszystkie aktywa dają się równo 
dopasować do równej jednostki

- Należy zrezygnować z niektórych 
transakcji, ponieważ są zbyt ryzykowne 
- może to być wadą

- Procentowy próg ryzyka nie musi być 
identyczny z faktycznym ryzykiem

- Należy zrezygnować z niektóiych 
transakcji, ponieważ są zbyt ryzykowne

- Dzienna zmienność to nie to samo, 
co faktyczne ryzyko

lam
ie,
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Wnioski

Modele ukazują ważny aspekt analizy portfelowej odnoszący się do dy­
wersyfikacji ryzyka, poprzez nabycie bezpieczniejszych od akcji walorów 
- obligacji. Występuje alternatywa w stosunku do kredytu na zakup akcji. Jest to 
możliwe w momencie, kiedy początkowo zakłada się dywersyfikację ryzyka 
poprzez przekazanie np. 40% wartości portfela na inwestycje obarczone mniej­
szym ryzykiem, czyli wspomniane obligacje. Jednak w momencie rezygnacji 
z przekazania kwoty na nabycie obligacji, większą część gotówki można prze­
znaczyć na zakup akcji, co przełoży się na niższe koszty pozyskania dodatkowe­
go - obcego kapitału. Należy mieć na uwadze, że spowoduje to wzrost ryzyka 
całego portfela. Praktyka wskazuje, że w krótkich okresach podobne sytuacje są 
wykorzystywane przez zarządzających, szczególnie w przypadku funduszy 
zrównoważonych o podwyższonym poziomie ryzyka.

Analiza portfelowa — obok sztuki wyboru akcji o dużym potencjale wzro­
stowym-jest najważniejszą umiejętnością profesjonalnego doradcy inwestycyj­
nego. Jednak czas, jaki należy poświęcić na zbudowanie portfela metodą Mar- 
kowitza oraz założenia, jakie są wymagane przy budowie takiego portfela 
powodują, że praktycznie nie jest to satysfakcjonujący sposób budowy zdywer­
syfikowanego portfela akcji. Zakładając częste zmiany grup akcji, konstrukcja 
portfela papierów wartościowych zgodnie z założeniami Markowitza jest bez­
podstawna, gdyż model taki należałoby bardzo często aktualizować.

Należy brać pod uwagę inne sposoby określane także mianem analizy 
portfelowej, które pomogą określić procentowe zaangażowanie w poszczególne 
walory. Nie tylko są one mniej czasochłonne, lecz także można przypuszczać, iż 
dużo efektywniejsze. Przedstawione alternatywy udowadniają, że można kon­
struować portfele w inny sposób, aniżeli za pomocą tradycyjnych metod, dający 
także godziwe zyski pod warunkiem oczywiście, iż w skład tak skonstruowane­
go portfela będą wchodzić akcje o potencjale wzrostowym.
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ALTERNATIVE WAYS OF STRUCTURING THE SECURITIES PORTFOLIO

Summa ty

In the article we presented the portfolio analysis issues that show the alternative methods 
of the securities portfolio Investment structures. By analysing the Investment process, in particular 
the problem of the capital venture risk, we paid attention to the risk estimators. The very important 
problem mentioned in the article is the connection of the risk together with the size of the entry. 
This is the détermination of the adéquate volume of the given share groups included in the Invest­
ment portfolio.

The article also présents the comparison of the securities portfolio création models, con- 
centrating in particular on both the equity and borrowed capitals. We hâve also included examples 
of the borrowed capital influence on the final outcome, which resulted from the usage of models 
based on the percentage and variable risks.

The article includes the analysis of the possible results gained depending on the preferred 
approach to the analysis of the securities portfolio création and the assets allocated for the Invest­
ment.

The study includes a theoretical description of risk estimation issues through variance, 
standard déviation and the true average range of changes. Thanks to the description of the portfolio 
analysis issues, examples présentation and description we hâve solved the problem of the securi­
ties portfolio création by means of models other than that of Markowitz.
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PROGRAMOWANIE WIELOETAPOWE 
A //-OSOBOWE GRY Z KOALICJAMI

Wstęp

Pojęcie «-osobowej gry z koalicjami wprowadzili Neumann i Morgenstern 
[8], We wczesnych latach 50. ubiegłego wieku Gelles użył pojęcia rdzenia (jądra) 
gry jako narzędzia do studiowania stabilności koalicji w «-osobowych grach. Na­
stępnie Shapley i Shubik rozwinęli to pojęcie, proponując koncepcję rozwiązania 
tych gier. Idea «-osobowych gier z koalicjami w sytuacjach bez wypłat ubocznych 
(transferu wypłat) należy do Shapley’a i Shubika [12] oraz Luce’a i Reiffa [11] 
Idea modelowania systemów sterowania jako hierarchicznych dynamicznych gier 
koalicyjnych była zapoczątkowana przez Novikovą [9] oraz Krutova i Novikovą 
[4], Koncepcja modelowania dyskretnych procesów przemysłowych jako wieloeta­
powych «-osobowych gier koalicyjnych należy do Kahiskiego [3],

Niniejsza praca jest poświęcona metodzie programowania wieloetapowe­
go (MPW) w zastosowaniu do rozwiązywania «-osobowych gier koalicyjnych.

W związku z powyższym w punkcie 1 pracy szczegółowo przedstawiono 
metodę MPW, zaś w punkcie 2 na potrzeby niniejszej pracy opisano wieloeta­
pową «-osobową grę koalicyjną. Powiązania pomiędzy metodą MPW i wielo­
etapową «-osobową grą koalicyjną zostały przedstawione w punkcie 3. W punk­
cie 4 pracy pokazano przykładowe rozwiązanie wieloetapowego problemu 
decyzyjnego modelowanego za pomocą wieloetapowych «-osobowych gier 
z koalicjami, stosując algorytm szeregowania metody MPW.

1. Metoda programowania wieloetapowego
Koncepcja metody programowania wieloetapowego (MPW) pochodzi od 

Mareckiego [6; 7]. Metoda ta opiera się na idei programowania dynamicznego 
oraz metodzie podziału i ograniczeń. Istnieją 4 algorytmy tej metody: binarny, 
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sekwencyjny, alokacji oraz algorytm szeregowania. W wieloetapowym procesie 
decyzyjnym rozróżnia się: stany, decyzje oraz funkcje transformacji stanów. Dla 
systemu stan obrazuje sytuację w wybranej chwili. W procesach deterministycz­
nych na podstawie danego stanu i podjętej decyzji w tym stanie za pomocą funk­

cji transformacji można otrzymać kolejny stan. W wyniku podejmowania decyzji 
w kolejnych etapach przechodzi się od stanu początkowego do stanu końcowego. 
W ten sposób otrzymuje się ciąg stanów, który tworzy trajektorię. Natomiast ciąg 
podjętych decyzji będzie strategią w danym postępowaniu decyzyjnym. Z każdego 
stanu można, rzecz jasna, wygenerować wiązkę trajektorii. W problemach kombi- 
natorycznych, takich jak np. harmonogramowanie, wiązka trajektorii wychodząca 
ze stanu początkowego przedstawia drzewo decyzyjne. Węzłami tak powstałego 
drzewa są stany, zaś łukami odpowiednio decyzje powstałe w wyniku transformacji 
stanów. Dla wyznaczenia optymalnej trajektorii, tzn. optymalnego stanu końcowe­
go, są generowane wszystkie możliwe trajektorie. W celu znalezienia optymalnego 
rozwiązania i skrócenia czasu obliczeń trajektorie nieperspektywiczne są elimino­
wane. Algorytmy programowania wieloetapowego są różnicowane ze względu na 
sposób eliminacji trajektorii nieperspektywicznych.

Algorytmy programowania wieloetapowego opierają się na odpowiednim 
zdefiniowaniu stanu, wartości stanu, procedury generowania stanów oraz reguł 
eliminacji stanów nieperspektywicznych. Na podstawie pracy Mareckiego [6] 
przedstawiono podstawowe definicje i procedury metody programowania wielo­
etapowego.

1.1. Definicja stanu

Rozpatrzono wieloetapowy proces decyzyjny, który ukazano na rys. 1.

Rys. 1. Ilustracja ogólnego algorytmu metody programowania wieloetapowego 
Źródło: [6].
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W tym procesie wyróżniono etapy decyzyjne 0,l,...,£ - !,£,£ + I.-.-jE’. 
Każdy etap <f z P-etapów (<f = 1,2, ...,£) ma stanów P^. Stany są numerowane 
w przedziale jednego etapu (/ = 1,2,..., £f). Stan procesu decyzyjnego jest ma­
cierzą o wymiarze nxd. Każdemu obiektowi zzrz, i=\,2,...,n jest przyporządkowa­
ny i-ty wiersz macierzy stanu. Liczba kolumn d zależy od struktury systemu. 
W i-tym wierszu macierzy stanu P/f jest zapisana informacja o numerze agregatu 
Am, w którym podejmuje się decyzje o obiekcie ej;-, sposobie realizacji tej decy­
zji, tj. wykonaniu operacji. Zapisywane są tu również chwile rozpoczęcia i za­
kończenia operacji.

1.2. Klasyfikacja stanów

W wieloetapowym procesie decyzyjnym (rys. 1) wyróżnia się następujące 
stany:
1. Początkowy stan P1,0. Stan ten interpretuje początkowe warunki decyzyjnego 

procesu przed rozpoczęciem harmonogramowania. Stan P1'0 jest macierzą ze­
rową, jeżeli wszystkie obiekty, co do których podejmujemy decyzje, są przed 
systemem, w którym wykonuje się pewne operacje nad tymi obiektami. 
W przeciwnym przypadku niektóre elementy macierzy PL0 są dodatnie.

2. Aktywny stan Pl'i, tzw. stan perspektywiczny, pozwala na generację innych 
stanów.

3. Wybrany stan P1'^' jest stanem aktywnym, który został wybrany dla genero­
wania następnych stanów.

4. Wygenerowanym stanem P jest stan, który został otrzymany ze stanu P^~x. 
Stan ten jest testowany ze względu na jego perspektywiczność, tzn. możli­
wość generacji następnych stanów. Nieperspektywiczny stan jest eliminowa­
ny z dalszego procesu decyzyjnego.

5. Wyczerpany stan P^ jest stanem wygenerowanym P, z którego nie można 
otrzymać żadnego stanu końcowego.

6. Końcowy stan P^ jest najlepszym stanem otrzymanym w skończonym czasie 
(np. w skończonym czasie obliczeń na komputerze).

7. Lokalnie optymalny stan^>/,”i jest najlepszym stanem otrzymanym ze stanu 

F*
8. Globalnie optymalny stan P° jest najlepszym stanem końcowym.

Podczas generowania stanów można otrzymać identyczne stany o tych 
samych współrzędnych. Przy tym różne strategie mogą prowadzić do różnych 
lub identycznych stanów.
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Załóżmy, że 5 jest lokalnie optymalnym harmonogramem otrzymanym na 
podstawie wygenerowanej trajektorii. Mówimy, że dwa stany P,’í i są alter­
natywne, jeżeli harmonogram 4 otrzymany ze stanu P1^ może być zrealizo­
wany.

1.3. Wartość stanu

Każdy końcowy stan PiE wprost określa dopuszczalny harmonogram S>,E. 
Stąd każdy stan P1^ dla £<E określa harmonogram Ś’{. Do estymacji harmono­
gramu 5 są określone kryteria optymalizacji Qk, k = 1,.../,• W sposób analo­
giczny do estymacji stanu P1^ określa się wartość stanu V1^. Wartość stanu w tym 
przypadku jest zapisywana w postaci następującego wektora:

1 y/.i
C (1)

gdzie:
c - cykl, tzn. systematyczny czas między chwilami podejmowania decyzji 

o wykonaniu operacji na obiekcie,
[•] - część całkowita.

Współrzędne tego wektora są określone na podstawie funkcji wartości 
Funkcje wartości odpowiadają kryterium QK. Znając stan P^, możliwe 

jest otrzymanie jego wartości Używając wartości wydłużamy jed­
nak czas podjęcia decyzji (wykonania obliczeń). W celu uniknięcia takiej sytu­
acji podczas generowania stanu P stanu P^^~x, równocześnie obliczmy jego 
wartość. W tym celu korzystamy z formuł rekurencyjnych, które dla addytyw- 
nych funkcji kryterialnych obliczamy ze wzoru:

v*=v£’i-1+Av* (2)

z warunkiem początkowym K/’°. Analogicznie można użyć formuł rekurencyj­
nych dla kryteriów minimalizujących i maksymalizujących. Formuła rekuren- 
cyjna (2) zmniejsza czas obliczeń (czas podjęcia decyzji w algorytmie). Wymaga 
to jednak zapamiętania nie tylko stanu P^, ale również wartości tego stanu F^.

Jest oczywiste, że dla problemu jednokryterialnego wartość stanu jest ska­
larem. W tym przypadku globalny optymalny stan jest wyznaczany z warunku:

(min VEE = V'n'E )^> [p'a'E = P°)
\śl<E > ' ' (3)
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Dla problemów wielokryterialnych na podstawie wartości stanu jest moż­
liwe wyznaczenie zbioru Pareto-optymalnych stanów. Stan P*'E dominuje nad 
stanem P^, gdy spełniony jest następujący warunek:

V 3 min v?'E 
lš/<7 J*k\JślśLE

r.E 
= vk (4)

Zbiór stanów Pareto-optymalnych tworzą stany niezdominowane. Kon­
cepcja dominacji stanów, zdefiniowana przez warunek (4), może być rozszerzo­
na na stany alternatywne P*"E i P*'E dla etapów £<E.

Dla wyznaczenia stanu polioptymalnego jest stosowana metoda dialogo­
wa lub sam problem wielokiyterialny jest redukowany do jednokryterialnego 
problemu za pomocą funkcji użyteczności.

Założymy, że mamy do czynienia z hierarchią kryteriów QK i QL. Niech 
tolerancje wskaźników wynoszą qK. Wówczas stan polioptymalny może być 
otrzymany z następujących zależności:

Jeżeli qK = 0, można wyznaczyć tylko jeden stan polioptymalny z zależ­
ności (5). Ponadto warunek (5) pozwala określić, który stan z dwóch stanów jest 
lepszy, w przypadku gdy kolejno generujemy stany końcowe.

W metodzie programowania wieloetapowego stany polioptymalne są wy­
znaczane po jednokrotnym wygenerowaniu trajektorii.

1.4. Generowanie stanów

Celem generowania stanów jest znalezienie kompletnej wiązki trajektorii 
(rys. 1). Każda trajektoria ma początek w danym stanie startowym P1’0, z które­
go są otrzymywane stany Pi’1, l=ï,...L\. Ogólnie z wybranego stanu P^~x są 
generowane stany etapu W ten sposób otrzymuje się stany końcowe E*’e,

Lista stanów aktywnych, reguły wyboru, reguły podziału oraz procedury 
generowania stanów mają podstawowe znaczenie dla generowania stanów. Do 
generowania stanów są wykorzystywane stany aktywne Pl’( umieszczone na 
odpowiedniej liście. Lista stanów aktywnych jest uporządkowanym zbiorem 
stanów. Uporządkowanie to polega na wyborze z listy k(, stanów f-etapu, 
<f = 0,1,...E - 1, oraz odpowiednim ponumerowaniu stanów znajdujących się na 
tych listach. Sposób numerowania stanów aktywnych ma wpływ na efektywność
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algorytmu. Generowanie stanów polega na wyborze pewnego stanu P^~}, uży­
wając go jako stanu bazowego.

Po wygenerowaniu wszystkich stanów ze stanu P^~' stan ten jest usuwa­
ny z listy k^. Wygenerowane stany są wprowadzane na listę Ze stanu p*E~l 
są generowane stany końcowe. Stany te nie są aktywne. Generowanie stanów 
jest przerywane, jeżeli lista stanów aktywnych jest pusta.

Reguły wyboru stanu aktywnego są używane do znajdowania stanu P^~l. 
Ze stanu tego będą generowane kolejne stany. Przykładami klasycznych reguł 
wyboru są znane z teorii masowej obsługi reguły FIFO, LIFO oraz LLB. Szcze­
gółowy opis reguł wyboru można znaleźć w pracy [6].

Stosowane reguły podziału wyznaczają z kolei wiązki (pęczki) trajektorii 
generowanych z wybranego stanu P^~l. Z tego stanu są generowane wszystkie 
jego bezpośrednie następne stany (następniki) P**, jeżeli podział jest zupełny. 
Wówczas stan P^~l przestaje być aktywny. Gdy dokonamy podziału częściowe­
go, ze stanu P*^ również otrzymamy tylko część bezpośrednich następników. 
Stąd stan P^~x nadal pozostaje aktywny. Reguły częściowe pozwalają na 
uwzględnienie ograniczeń wielkości list stanów aktywnych. W przypadku 
szczególnym tylko jeden stan P,’i jest generowany. Pozwala to na zapamiętanie 
w trakcie obliczeń tylko jednego stanu aktywnego. Zauważmy, że stosowanie 
reguł częściowego podziału wymaga zapamiętywania dodatkowych informacji 
określających stan, które nie sąjednak potrzebne przy podziale całkowitym.

Procedury generowania stanów tworzą zdanie logiczne, tzn. przy spełnie­
niu określonego warunku logicznego można wygenerować stan. Precyzuje się 
przy tym warunki wyznaczania elementów macierzy nowego stanu. Wyróżnia­
my jednokrokowe i wielokrokowe procedury generowania stanów. W jednokro- 
kowej procedurze ze stanu p*’(~l otrzymujemy stan P1^. Procedura wielokrokowa 
ze stanu P*'(~l pozwala otrzymać stan Pi’*, k>£.

1.5. Reguły eliminowania stanów

Dla zwiększenia efektywności algorytmów programowania wieloetapo­
wego stany nieperspektywiczne są usuwane. Stan jest nieperspektywiczny, jeżeli 
nie pozwala na wygenerowanie rozwiązania optymalnego. W ten sposób już na 
wczesnych etapach generowania stanów, wiązki trajektorii nieperspektywicz- 
nych są eliminowane. W przeciwnym przypadku stan P jest umieszczany na 
liście stanów aktywnych.

Do usuwania stanów nieperspektywicznych wykorzystuje się reguły wy­
czerpywania dominacji oraz sondowania. Reguła wyczerpywania jest warun­
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kiem logicznym, jaki musi spełnić stan P. Warunek ten wynika z ograniczeń 
procesu.

Twierdzenie 1
Jeżeli w stanie P nie można podjąć jakiejś decyzji (np. wykonania opera­

cji) bez naruszenia ograniczeń procesu, to wyczerpane zostały możliwości gene­
rowania rozwiązań dopuszczalnych (stanów końcowych).

Skrót dowodu jest zamieszczony w pracy [6].
Reguła dominacji pozwala na usunięcie jednego z dwóch stanów aktyw­

nych P , P , dla którego odpowiedni lokalnie optymalny stan jest gorszy. 
Jeżeli wspomniane stany spełniają warunek (4), to stan P1''^ dominuje nad sta­
nem P'2’ś . Podczas obliczeń na ^-etapie stany P*^ i P1 ’E są nieznane. Wów­

czas decyzja o stanie zdominowanym jest podejmowana na podstawie twierdze­
nia 2.

Twierdzenie 2
Jeżeli stan P1^ jest alternatywny ze stanem P1^ oraz

vi — v, » z = , to stan P^ dominuje nad stanem P1^.

Ideę dowodu tego twierdzenia również można znaleźć w [6],
Ostatnimi regułami używanymi w programowaniu wieloetapowym są re­

guły sondowania. Reguła sondowania eliminuje stan P1^, z którego lokalnie 
optymalny stan jest gorszy od aktualnie najlepszego stanu. W tym celu dla stanu 
pĄ-E wyznacza się dolne ograniczenie i// ,E. Jeżeli znany jest stan aktualnie 

najlepszy P, wówczas stan jest nieperspektywiczny, gdy:

' ai (6)

Oprócz tego, jeżeli ze stanu P1^ jest wyznaczony pewien stan końcowy, 
spełniający ograniczenie:

V V?'E<dP.E
lśi<l ' ai (J)

wówczas ten stan jest lokalnie optymalny. Stąd generowanie wiązki trajektorii ze 

stanu ť jest niepotrzebne, gdyż stan " dominuje nad pozostałymi koń- 

cowymi stanami Ł
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W zakończeniu tego punktu, dla przykładu, przedstawiono algorytm sze­
regowania metody programowania wieloetapowego. W algorytmie tym są dane 
współrzędne stanu dla chwili zakończenia wykonywania operacji. Zakładamy, 
że:

t^gdyoperacjaGJi jest wykonywana
P‘ę = ■ (8)

0, w przypadku przeciwnym

oraz że przyrost wartości stanu wynosi:

Z, dla j = i

0 w przeciwnym przypadku

(9)

Ze stanu P° => : => if, tzn. optymalny harmonogram wykonania operacji.

Chwile tt otrzymujemy z zależności:

T^’1 + Ą, gdy + Ą)
c

c w przypadku przeciwnym

gdzie 7^ jest chwilą zakończenia wszystkich operacji ze zbioru operacji 
(w stanie P1^). Stąd:

y/.i = max tj 
a), (11)

Dla p,-°57’10 = o. Natomiast wartość stanu jest skalarem vl,i podanym 
wzorem:

(10)

c
(12)
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2. Wieloetapowa n-osobowa gra z koalicjami

W pracach Fudenberga i Tirole’a [1] oraz Osbome’a i Rubinsteina [10] 
jest omawiana klasa gier, tzw. „wieloetapowe gry z obserwowaną akcją”. W tych 
grach:
1. Wszyscy gracze znają akcje (ruchy) na wszystkich poprzednich etapach 

0,1,2,\,E,E + 1, gdy wybierają akcję na etapie Ę.
2. Wszyscy gracze wykonują swoje akcje jednocześnie na każdym etapie Ę.

Pierwszym etapem w tych grach jest etap „0” dla uproszczenia notacji 
w przypadku, gdy etapy są interpretowane jako cykle (okresy). Mówi się, że 
gracze wykonują swoje akcje równocześnie na etapach £,, jeżeli każdy gracz 
wybiera swoja akcję bez wiedzy na tym etapie o posunięciach pozostałych gra­
czy. Przeciwieństwem do Jednoczesnego” wykonywania akcji przez graczy jest 
naprzemienne wykonywanie akcji. Dla przykładu gra Stackelberga ma 2 etapy, 
a gracze naprzemiennie wykonują swoje akcje.

Należy zauważyć, że często w naturalny sposób pojęcie „etapu” gry jest 
utożsamiane z czasem. Nie jest to jednak konieczne dla istnienia etapu, tzn. etap 
nie musi być utożsamiany z czasem.

Tak więc w naszym przypadku zakładamy, że wieloetapowe «-osobowe 
gry z koalicjami są podobne do „wieloetapowych gier z obserwowaną akcją”. 
Na pierwszym etapie tej gry (etap 0) wszyscy gracze i&J,J = {1,2,...,«} równo­
cześnie wybierają akcję ze zbioru 0 gdzie jest określony podzbiorem 
zbioru J (jest to zbiór złożony ze struktur koalicyjnych na danym etapie). Na 
końcu każdego etapu wszyscy gracze mają możność zaobserwowania profilu 
wykonywanych akcji. Ogólnie akcje z-tego gracza osiągalne do realizacji na 
Z-tym etapie mogą zależeć od akcji na poprzednich etapach.

Jako przykład omawianej gry rozpatrzono problem Balansowania Linii 
Montażowej (BLM) jako wieloetapową «-osobową grę z koalicjami. Pokazano, 
że problem BLM, gdzie występuje decydent centralny z ustaloną liczbą asemble­
rów (montażystów), jest systemem hierarchicznym, a w grze, w której centralny 
decydent podejmuje decyzje co do alokacji montażystów do określonych miejsc 
(stanowisk) linii montażowej, jest wieloetapowym problemem decyzyjnym.

Wieloetapowe hierarchiczne «-osobowe gry z koalicjami były zapocząt­
kowane przez Novikovą [9]. W swojej pierwszej pracy autorka przeanalizowała 
strukturę informacyjną dwuosobowej gry, a w dalszych otrzymane wyniki roz­
szerzyła na przypadek «-osobowej gry z wybranymi strukturami hierarchiczny­
mi oraz «-osobowej gry z ustaloną sekwencją ruchów graczy. Rozwinięta (eks­
tensywna) forma zapisu gry zawiera następujące informacje:
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1. Zbiór graczy.
2. Kolejność ruchów graczy.
3. Wypłaty dla graczy zależne od ruchów graczy.
4. Jakie plany mają gracze wykonując dany ruch?
5. Co każdy gracz wie, kiedy dokonuje wyboru?
6. Rozkład prawdopodobieństwa zdarzeń zewnętrznych.

W niniejszej pracy aspekty probabilistyczne w rozpatrywanej grze nie bę­
dą omawiane. Dla dalszej formalizacji rozpatrywanego problemu przytoczono 
pewne wyniki, które były otrzymane w pracy [3], dotyczące modelu BLM.

Teoriogrowy model funkcjonowania systemu linii montażowej z zadany­
mi uczestnikami gry i jednym centrum zarządzania określono w następujący 
sposób:
1. Zadany jest zbiór elementów systemu Jo = {0,1,2,...«} nazywanych dalej 

graczami, |^o| = N = n+1. Gracza z numerem "0" oznaczamy Go i nazywamy 

decydentem. Gracz ten nie bierze bezpośredniego udziału w grze. W jego 
jednak interesie gra jest prowadzona. Gracze z numerami od 1 do n tworzą 
zbiór J= {1,2,3,...«} graczy Gj, i = 1,2,...,«, którzy bezpośrednio biorą udział 
w grze przy linii montażowej. Każdy gracz Gj charakteryzuje się czasem wy­
konania i9„ i - 1,...,«, określonego zadania. Decydent ustala kolejność wy­
konywania poszczególnych zadań. Zadany jest cykl linii montażowej c.

2. Gra przebiega w taki sposób, że w kolejnych następujących po sobie cyklach, 
których liczba z góry nie jest znana, ale jest skończona, bierze udział okre­
ślony podzbiór zbioru J graczy. Oznaczmy liczbę cykli potrzebnych do wy­
konania całej pracy przez L$, £ = 0,1... . Liczba ta jest również liczbą eta­
pów dynamicznej «-osobowej gry. Jeżeli nie będzie to wprowadzało nieporo­
zumień, to niekiedy zamiast oznaczenia będzie stosowane oznaczenie L.

3. Gracz G,, i = 1,..., « wykonuje swoje zadanie na agregacie znajdującym się 
na m-tym stanowisku pracy, m = 1,...,M. Liczba M stanowisk pracy nie jest 
również z góry znana.

4. Każdy gracz ma określony zbiór V^r strategii w grze w zależności od 

numeru etapu oraz ustalonej kolejności w grze zadanej macierzą G = [/w], 
k,i = 1,...,«. Dla gracza Go będziemy pisali e^°, a jego strategie nie zale­

żą od yeG Elementy macierzy G są liczbami binarnymi:

1, jeżeli operacja a>k jest bezpośrednim

Yk.i poprzednikiem operacji
0, w przypadku przeciwnym

(13)
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Wieloetapowy proces przydziału zadań do stanowisk na linii montażowej 
może być opisany przez następujący układ równań:

<=(U- (14)

xo=A, (15)
^e^°, ^r&V[y, i&J,y<=G, £=0,1,... (16)

gdzie jest r-wymiarowym wektorem stanu systemu w chwili Ę (na etapie Ę), 
a r = 0,1,2,... jest liczbą różnych struktur koalicyjnych, którą można utworzyć na 
danym etapie gry. Stan Xo = A odzwierciedla stan gry na zerowym etapie gry. 
Jest to również stan zaawansowania prac na linii montażowej w końcowym eta­
pie poprzedniej gry. W szczególnym przypadku Xo = 0. Cele C graczy Gj, ze 
są opisywane funkcjami skalarnymi stanu końcowego linii montażowej:

C'(i°, v/,...,v/) = gý{XL(+]), i (eJ0, y eG (17)

gdzie ={vó.r>—to realizowane przez i-tego gracza zadanie, zaś 

x = .2Tii+| J  odpowiadająca temu zadaniu trajektoria. Cele graczy są wyra­

żone ich wypłatami g/(-). Funkcja wypłat gracza G, jest funkcjonałem w postaci:

g/ =gri(,EL(v0,vrl...,Vrn)), J = yeG (18)
L 

określonym na zbiorze kartezjańskim V° x---xE", E'= eJ za
<=o

pomocą odwzorowania:

ieJa <=0
(19)

gdzie X£+i to zbiór wszystkich możliwych końcowych punktów trajektorii dy­
namicznego systemu. Analogicznie do (19) zdefiniowano odwzorowanie: 

r=o,i,...,£-i
ZŁ/o <--0

(20)

oraz:
T = (To,...,Tz) (21)

gdzie X r+ ] to zbiór wszystkich możliwych końcowych punktów Xr+ ! kawałków 
(Xo,.. .^Vrn) trajektorii X = 'F(v) generowanych przez układ ( 14)-(l6).
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Założono dalej, że każdy z graczy stara się zwiększyć swoją wypłatę, 
używając dostępnych dla siebie strategii Założono również, że gracze mają 
dokładną informację o parametrach linii montażowej.

Centrum uwzględnia możliwość tworzenia się koalicji poszczególnych 
graczy, tzn. w pierwotnej grze T pewne zespoły graczy (zbiory) Kę&J, na etapie 
£ 0 < £ < L mogą łączyć się ze sobą w koalicje Kę& aą, gdzie to ustalona 
klasa podzbiorów zbioru J (zbiór struktur koalicyjnych na danym etapie). Gracz 
GO nie należy do żadnej koalicji. Koalicja K$ ma określony zbiór fizycznie do­

stępnych wyborów — z którego jest wybierana

na zasadzie dążenia do maksymalizacji funkcji wypłat dla koalicji. Na danym 
etapie podzbiory koalicji są tworzone w taki sposób, że utworzone dwie różne 
koalicje powinny się różnić co najmniej jednym graczem lub kolejnością wystę­
powania graczy. W ten sposób:

= D, k, i e J}/ V e J, (22)

gdzie K'^r to koalicja, która w chwili Ę składa się z graczy G, spełniających 

warunek kolejnościowy. Zbiór wszystkich możliwych podzbiorów złożony ze 
struktur koalicyjnych na etapie Ę oznaczmy przez:

e aĘ œ j},ykJ e G,k,i e j) oraz

Wynikiem (v;N) eFx3 dynamicznej gry z koalicjami nazwiemy ciąg 
(v;N) = {vo;No},...,(vz.; ^z.}, gdzie N = No,..., N/) jest programem struktur ko­
alicyjnych. Każdemu wynikowi (v;K) przyporządkowujemy wektor wypłat 
graczy Gi5 ieJ. Oznaczmy wobec tego przez g? (^(v)) wypłatę gracza Gj 
w sytuacji, gdy 'PL(v)eXL+1.

Podsumowując, hierarchiczną dynamiczną grę z koalicjami można zdefi­
niować w postaci uporządkowanej czwórki w następujący sposób:

W tej grze nie ma możliwości dodatkowych wypłat dla graczy.
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3. Powiązanie między metodą programowania 
wieloetapowego a wieloetapową n-osobową 
grą koalicyjną

W poprzednich punktach pracy sformułowano metodę programowania 
wieloetapowego jako wieloetapowego procesu podejmowania decyzji oraz wie­
loetapową «-osobową grę z koalicjami. Łatwo zauważyć, że taka gra jest także 
wieloetapowym procesem decyzyjnym, w którym na każdym etapie gry gracze 
podejmują decyzję o przynależności do określonej koalicji. Można sformułować 
wobec tego następujące dwa wnioski:

Wniosek 1
Każda wieloetapowa «-osobowa gra z koalicjami generuje wieloetapowy 

proces decyzyjny, wobec tego grę taką można rozwiązać metodą programowania 
wieloetapowego.

Wniosek 2
Metoda programowania wieloetapowego generuje wieloetapowy proces 

decyzyjny, któryjest wieloetapową «-osobową grą koalicyjną.

4. Przykład
Jako przykład rozpatrzono teoriogrowy opis procesu montażu na szere­

gowej linii montażowej z uwzględnieniem określonej kolejności operacji monta­
żowych. Dane do przykładu pokazano na rys. 2 [3], Na rysunku tym węzły dia­
gramu obrazują operacje. Numery operacji zapisano w węzłach, a czasy operacji 
- obok węzłów. Łuki przedstawiają ograniczenia kolejności wykonania operacji. 
Stąd łatwo już zbudować macierz kolejności G Założono cykl montażu c = 20.

Rys. 2. Diagram kolejności wykonywania operacji
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Drzewo gry z możliwymi strukturami koalicyjnymi w zależności od etapu
gry przedstawiono na rys. 3.

Rys. 3. Drzewo gry 
Źródło: [3].

Rozwiązując omawiany przykład za pomocą algorytmu szeregowania, 
otrzymano sieć stanów pokazaną na rys. 4.
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Rys. 4. Sieć stanów algorytmu szeregowania

Analizując sieć widzimy, że w końcowym 8 etapie decyzyjnym znalezio­
no jedną optymalną sekwencję wykonywania operacji: (1,2,3,5,4,6,8,7) z mini- 
malnym czasem 90. Biorąc pod uwagę cykl c = 20, natychmiast znajdujemy 
optymalne podzbiory operacji w postaci: fii = {1}, Q2 = {2}, Q3 = {3,5}, Q4 = 
{4,6,8}, Q5 = {7}. W odpowiedniej «-osobowej grze koalicyjnej zbiory te sta­
nowią koalicje wieloetapowej gry omówionej wcześniej.
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MULTI-STAGE PROGRAMMING AND N-PERSON GAMES WITH COALITIONS

Summa ry

In the paper an n-stage decision process has been used to model an «-person game with 
coalitions. As an «-stage decision process the multi-stage programming method has been con- 
sidered. The multi-stage programming method bases on the ideas of branch and bound and dy­
namie programming methods. The fundamental construction éléments of these programming 
algorithms are: a state of decision process, a value of the state, state génération procedures and 
rules of élimination of the unperspective States.
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MODEL UWZGLĘDNIAJĄCY PREDYSPOZYCJE 
PRZEDSIĘBIORSTWA DO INTERAKCJI 
OPARTY NA AUTOMATACH KOMÓRKOWYCH

Wstęp

W działalności przedsiębiorstw mamy do czynienia ze współpracą i interak­
cjami między nimi. Wiele przedsiębiorstw realizuje wspólne przedsięwzięcia 
w przekonaniu, że wymiana wiedzy i umiejętności przyniesie wzajemne korzyści.

W niniejszym artykule przedsiębiorstwo decyduje, czy wejść w interakcję 
z innym przedsiębiorstwem opierając się na wiedzy zdobytej o nim poprzez 
wcześniejszą interakcję oraz korzystając z informacji dodatkowych dostępnych 
na rynku dotyczących tego przedsiębiorstwa. Są to sygnały, które dane przedsię­
biorstwo wysyła tworząc swój wizerunek na rynku.

Głównym komponentem wizerunku i reputacji przedsiębiorstwa jest zda­
niem konsumentów reklama [3]. Konsumenci uważają również, że kreowanie 
wizerunku jest dla przedsiębiorstw konieczne, jeżeli chcą utrzymać się na kon­
kurencyjnym rynku [3],

W przedstawionym w artykule modelu wykorzystano automaty komór­
kowe, o których szerzej w pracach [4; 6],

Automat komórkowy [4] to obiekt matematyczny składający się z :
- sieci komórek {i} przestrzeni D-wymiarowej,
- zbioru stanów pojedynczej komórki {sj, zawierającego k elementów,
- reguły F określającej stan komórki w chwili t+1 w zależności od stanu 

w chwili t tej komórki i komórek ją otaczających Si(t+1) = F({sj(t)}), jeO(i), 
gdzie O(i) jest otoczeniem i-tej komórki.

Ważne parametry dla automatu komórkowego to wymiar sieci D i ilość 
stanów pojedynczej komórki k.
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1. Model uwzględniający predyspozycje 
przedsiębiorstw do interakcji

W rozważanym modelu przedsiębiorstwa wchodzące ze sobą w interakcje 
mogą wysyłać różne sygnały, które wskazują na ich przypuszczalne zachowanie 
podczas interakcji (może to być reklama tworząca wizerunek danego przedsię­
biorstwa na rynku). Symulacje interakcji między przedsiębiorstwami oparto na 
modelu wyboru zachowania na podstawie wcześniejszych zachowań innych 
osób, który można znaleźć w pracy [2],

W modelu wykorzystano automaty komórkowe dwuwymiarowe z otocze­
niem von Neumanna. Otoczenie takie przedstawia rys. 1.

Rys. 1. Otoczenie von Neumanna komórki (i, j) automatu dwuwymiarowego

Symulacje przeprowadzono wykorzystując funkcje i procedury dostępne 
w programie Mathematica 4.0 [1],

W modelu jest używana kwadratowa krata n na n, dana jest również gę­
stość p populacji przedsiębiorstw (zwanych dalej jednostkami) zajmujących 
komórki kraty. Wśród populacji występują „pozytywni” (przedsiębiorstwa, 
z którymi współpraca przynosi korzyści) oraz „negatywni” (przedsiębiorstwa, 
z którymi współpraca przynosi straty). Symulacja obejmuje t etapów.

Kratę zapełniamy w następujący sposób:
- wartość pustej komórki wynosi 0,
- wartość komórki zajętej składa się z czterech elementów {a, b, c, r/}.

Elementy komórki zajętej oznaczają kolejno:
-a - kierunek, w którym jest zwrócona jednostka, wartość całkowitą od 1 do 

4, wskazującą na kierunek (odpowiednio wschód, zachód, północ, południe),
- b - zachowanie przedsiębiorstwa przyjmujące wartość 0 lub 1 (0 wskazuje, 

że przedsiębiorstwo jest negatywne, 1 - pozytywne),
- c- natężenie sygnału emitowanego przez przedsiębiorstwo, 0 < c < 1 (im wyż­

sza wartość c, tym bardziej prawdopodobne jest, że dojdzie do interakcji),
- d- liczbę całkowitą wskazującą na poziom informacji (suma „wypłat” z po­

przednich etapów).



MODEL UWZGLĘDNIAJĄCY PREDYSPOZYCJE PRZEDSIĘBIORSTWA...
39

W każdym wypadku jednostka otrzymuje „wypłatę” pozytywną (nagrodę) 
lub negatywną (karę). Macierz wypłat przedstawia tabela 1.

Do opisu macierzy wypłat wykorzystano klasyczny Dylemat Więźnia [5],

Tabela 1

Macierz wypłat dla każdego przedsiębiorstwa, które ma wybór między postępowaniem 
pozytywnym a negatywnym

Pozytywne Negatywne

Pozytywne R
R

T
S

Negatywne
~~s\

T
P

P

Według tej macierzy wypłat interakcja między przedsiębiorstwami może 
przebiegać na 4 możliwe sposoby:
- obustronna wygrana, w przypadku gdy oba przedsiębiorstwa są pozytywne 

i każdy dostaje nagrodę R,
- jedna wygrana i jedna przegrana, gdy w interakcję wchodzi przedsiębiorstwo 

pozytywne i negatywne; pozytywne otrzymuje wypłatę S („wypłatę naiwne­
go”), a przedsiębiorstwo negatywne wypłatę T („pokusę”),

- obie przegrane, czyli dwa przedsiębiorstwa negatywne wchodzą ze sobą 
w interakcję i każde otrzymuje karę P.

Jeśli nie dochodzi do interakcji, jednostka ponosi koszt uchylenia się od 
interakcji W.

W początkowej konfiguracji jednostki są przypadkowo rozmieszczone na 
kracie i zwrócone w przypadkowych kierunkach, posiadają zerowe zakresy po­
siadanych informacji, a sygnały mają przypadkowo wybrane wartości natężenia 
z przedziału (0, 1).

Podczas każdego z etapów:
- każda jednostka zwrócona w stronę innej jednostki w przyległej komórce 

analizuje sygnały wysyłane z tej jednostki i na podstawie ich natężenia decy­
duje, czy powinna wejść w interakcje, czy nie (im silniejszy sygnał, tym 
większe prawdopodobieństwo interakcji),

- zwrócone ku sobie jednostki, które zdecydowały się na interakcję wchodzą 
w interakcję, pozostałe nie,

- każda jednostka przemieszcza się do wolnej komórki z otoczenia najbliższe­
go sąsiada, w którego stronę jest zwrócona.

W celu przeprowadzenia symulacji podaje się następujące wartości:
- n - rozmiar kraty,
- p- gęstość zaludnienia,
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- {P, R, S, T, W} - wartości przypisanych atrybutów,
- t - liczba etapów.

Przyjęto następujące wartości:
~ n = 50,
- p = 70% (krata jest zaludniona przez tyle samo pozytywnych przedsię­

biorstw, co negatywnych),
- {P, R, S, T, W} wynoszą odpowiednio {-1, 1, -2, 2, 0},
- t = 500.

a)

Sygnał

Rys. 2. Powyższe wykresy złożone z pojedynczych rozproszonych punktów pokazują 
rozkład posiadanych informacji po ostatnim etapie symulacji dla przedsiębiorstw 
pozytywnych (rys. a) i negatywnych (rys. b). Każdy punkt na wykresie oznacza 
wartość sygnału dla danej jednostki i poziom posiadanych informacji

Źródło: Wynik symulacji przeprowadzonej w programie Mathematica 4.0.
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Wnioski:
- niskie wartości wysyłanego sygnału dają niewielki poziom posiadanych in­

formacji,
- w miarę jak wartość sygnału jednostki rośnie, zwiększa się znaczenie jej 

zachowania.
Oznacza to, że jeżeli ilość interakcji przedsiębiorstwa z innymi przedsię­

biorstwami jest niewielka, to zakres posiadanych informacji na jego temat też 
jest znikomy, co zmniejsza jego szanse na interakcje. Większe wartości wysyła­
nego przez przedsiębiorstwo sygnału zwiększają prawdopodobieństwo interak­
cji. Ponadto im wyższa wartość sygnału, tym znaczenie zachowania danego 
przedsiębiorstwa jest większe. Wynika stąd, że znane na rynku przedsiębiorstwa 
mają większe szanse na interakcje, ale w interakcji muszą uważać na swe za­
chowanie, bo będzie ono bardziej krytycznie ocenione.

W celu weryfikacji symulacji zachowań przedsiębiorstw przeprowadzono 
badania w formie ankiety wśród 20 osób prowadzących małe i średnie przedsię­
biorstwa.

Wyniki badań:
1. 85% przedsiębiorców bierze pod uwagę reputację przedsiębiorstwa, z którym 

zamierza współpracować.
2. 95% przedsiębiorców nie podejmuje dalszej współpracy w przypadku nieza­

dowolenia z pierwszego kontaktu z danym przedsiębiorstwem.
4. 75% badanych wybiera współpracę ze znanymi przedsiębiorstwami, z któ­

rymi miało już kontakt i z kontaktu tego są zadowoleni.
Przeprowadzone badania ankietowe potwierdziły wyniki symulacji. 

Większość przedsiębiorców nie podejmuje współpracy z firmami, z którymi 
współpraca wcześniej się nie powiodła. Większą szansę na interakcję mają 
przedsiębiorstwa o dobrej reputacji.
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MODEL BASED ON CELLULAR AUTOMATA TAKING INTO CONSIDERATION 
THE READINESS OF A COMPANY TO INTERACTION

Summary

In this paper a model of interaction between Companies has been described. In the con- 
sidered model interacting Companies can transmit varions signais indicating their probable behav- 
iour during the interaction (e.g. advertisements).

In order to perform the simulation the cellular automata are used. Simulations are per- 
formed using the functions available in the program Mathematica 4.0.

It tums out that if the number of interactions of a company with other Companies is small, 
the range of information they hâve got on it is also insignificant, which lowers iis chance for inter­
action. Higher values of the signal sent by the company increase the probability of interaction. 
Moreover, the higher the value of the signal is the more significant the importance of a given 
company behaviour is. Companies known in the market hâve greater chance for interaction but 
during the interaction, they hâve to be careful about their behaviour as it will be assessed in a more 
critical way.

The results of the simulation were confirmed by the surveys conducted among people run- 
ning small and medium-size Companies.
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ENTROPIA I WYKŁADNIK HURSTA
A KLASYCZNE MIARY RYZYKA

Wstęp

W literaturze przedmiotu z zakresu zarówno matematyki finansowej, jak 
i teorii portfelowej istnieje wiele różnych miar ryzyka. W niniejszym artykule 
omówiono dwie niekonwencjonalne miary: entropię i wykładnik Hursta i po­
równano je z klasycznymi miarami ryzyka.

Zasadniczą przyczyną podjęcia tematu jest propozycja uwzględnienia nie­
konwencjonalnych metod pomiaru ryzyka podczas analiz. Celem artykułu jest 
charakterystyka entropii jako miary ryzyka oraz porównanie prezentowanej me­
tody z klasycznymi miarami ryzyka. Pytanie, jakie nasuwa się podczas omawia­
nia wspomnianych miar, jest następujące: czy entropia - miara ilości informacji 
oraz wykładnik Hursta - miara pamięci szeregu, porządkują szeregi według 
rosnącego ryzyka w analogiczny sposób, jak miary klasyczne? Okazuje się, że 
ocena ryzyka z użyciem nieklasycznych miar daje porównywalne wyniki, co 
wykorzystanie miar klasycznych dla rozkładu normalnego, jednakże już w przy­
padku rozkładu logarytmiczno-normalnego porządek ten może być odmienny.

Artykuł składa się z trzech części. Rozdział pierwszy poświęcono entro­
pii, jej definicji, własnościom, interpretacjom oraz przykładom obliczeń zarów­
no dla rozkładów dyskretnych, jak i ciągłych. W rozdziale drugim definiuje się 
wykładnik Hursta i jego własności, zaś rozdział trzeci ma charakter empiryczny. 
Na podstawie wybranych walorów notowanych na Giełdzie Papierów Warto­
ściowych w Warszawie obliczono miaiy ryzyka, dokonano ich porównania i z 
przeprowadzonych analiz wyciągnięto wnioski.
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1. Entropia jako miara ilości informacji

Pojęcie „entropia” występuje w wielu dziedzinach nauki, m.in. w termo­
dynamice, teorii prawdopodobieństwa, teorii informacji, teorii układów dyna­
micznych (w której wyróżniamy teorię procesów stochastycznych, teorię ergo- 
dyczną i dynamikę topologiczną).

Jako pierwszy pojęcia entropii użył niemiecki fizyk zajmujący się termo­
dynamiką - Rudolf Clausius w 1854 roku. Jednakże w niniejszym artykule sku­
pimy się na entropii pochodzącej z teorii informacji. Teoria ta zrodziła się ponad 
pięćdziesiąt lat temu i została zaprezentowana w książce „Matematyczna teoria 
komunikacji”, jako przedruk artykułów pisanych przez Clauda Elwooda Shan- 
nona w „Bell System Technical Journal”.

Entropia w teorii informacji wprowadzona przez C.E. Shannona to miara 
nieokreśloności, chaotyczności, stopnia nieuporządkowania. Jest to miara nie­
określoności doświadczenia (próby), którego wynik nie jest jednoznaczny. En­
tropię określa się także jako funkcję prawdopodobieństw wyników doświadcze­
nia. Entropia zmiennej losowej charakteryzuje niepewność (losowość) wyników 
a priori (przed doświadczeniem). W cybernetyce entropia to miara chaotyczności 
układu, tym większa, im jego stany są bardziej prawdopodobne, a tym mniejsza, 
im jeden ze stanów jest statystycznie wyróżniony. W fizyce to wielkość charak­
teryzująca stan układu ciał materialnych; im większe jest prawdopodobieństwo 
stanu, tym większa entropia.

W literaturze pojawia się także pojęcie entropii topologicznej dla układów 
dynamicznych. Zostało ono wprowadzone przez R.L. Adlera, A.G. Konheima 
i M.H. McAndrewa w 1965 roku. Entropia jest parametrem liczbowym układu 
dynamicznego charakteryzującym szybkość „mieszania” punktów przez prze­
kształcenie.

1.1. Definicja entropii

Poniżej podano definicję Shannona entropii zmiennej losowej, zarówno 
w przypadku zmiennej dyskretnej, jak i ciągłej [3; 4; 5],

Entropią dyskretnej zmiennej losowej X nazywamy wielkość H(X) zde­
finiowaną w poniższy sposób:

H(x) = -£pi loga Pi (1)
i=l

gdzie Xj jest przyjmowane z prawdopodobieństwem p;.
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Podstawą logarytmu może być dowolna liczba dodatnia. W poniższych 
analizach będziemy przyjmować a = 2. Im większa wartość H(X), tym większe 
ryzyko, czyli możliwość wystąpienia sytuacji innej aniżeli oczekiwana. Dla 
zmiennej dyskretnej entropia jest dodatnia. Entropia H(X) = 0 świadczy o roz­
kładzie stałym (jest tylko jedna możliwa wartość zmiennej losowej), zatem nie 
ma nieokreśloności i ryzyka.

Można także podać interpretację entropii w zależności od prawdopodo­
bieństwa zaistnienia poszczególnych zdarzeń losowych. Entropia jest miarą nie­
określoności, zatem im mniejsze prawdopodobieństwo zajścia danego zdarzenia, 
tym wyższa entropia, większe ryzyko. Im większe prawdopodobieństwo zajścia 
zdarzenia (większa częstość występowania określonej wartości zmiennej loso­
wej), tym mniejsza entropia, mniejsze ryzyko. W potocznym rozumieniu entro­
pia to rosnąca funkcja prawdopodobieństwa zajścia zdarzenia.

Entropią ciągłej zmiennej losowej X nazywamy wielkość H(X) zdefi­
niowaną wzorem:

+00

H(x) = - Jf(x)log2 f(x)dx (2)
— CO

gdzie f(x) jest funkcją gęstości rozkładu.
Z powyższego wzoru można wnioskować, że w przypadku zmiennej 

o rozkładzie jednostajnym na skończonym przedziale <a, b> entropia jest zależ­
na jedynie od długości przedziału i wyraża się wzorem:

H(x) = log2(b-a) (3)

dla zmiennej losowej o rozkładzie normalnym entropię liczymy następująco:
H(x) = ^log2(27teo2) (4)

zaś dla rozkładu logaiytmiczno-normalnego zgodnie ze wzorem:
«(xh-í-tíR + O+llog^™2) (5)

21n2 2
gdzie R jest średnią wartością zmiennej losowej, a o2jest wariancją tej zmiennej.

Entropia zmiennej losowej ciągłej może przyjmować zarówno wartości 
dodatnie, jak i ujemne. Im większa wartość H(X), tym większe ryzyko.

1.2. Przykłady obliczania entropii dla zmiennej dyskretnej 
oraz ciągłej

■ Zmienna losowa dyskretna X przyjmuje wartość x z prawdopodobieństwem 
1, wówczas:
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H(x) =-1 • log21 = 0

• Zmienna losowa dyskretna X przyjmuje wartość Xi z prawdopodobieństwem 
% oraz X2 także z prawdopodobieństwem %, wówczas:

H(X) = “(i log2 2 + 2 log2 2 ) = -(log2 2 ) = log2 (2 ) * = log2 2 = 1

■ Zmienna losowa ciągła X ma rozkład jednostajny na odcinku <2, 6>, wów­
czas jej funkcja gęstości ma postać:

0 dla x<2
f(x) = < 1/4 dla x e (2,6]

0 dla x > 6

wtedy: 

+00

H(X) = - f f(x)log2 f(x)dx =
—00

0+J (1 / 4) log2 (1 / 4)dx+0 = — J (1 / 4) log2 (1 / 4)dx =
2 J 2

= [-1/4- log2(l/4)- xg = -l/41og2(l/4X6-2)=-log2(l/4) - log^lM)"1 =log2 4 =

wzór 3
= log2(6-2) = 2

2. Wykładnik Hursta jako miara pamięci szeregu

Miarą zmienności szeregu jest wykładnik Hursta H [2]. Wykładnik bada 
długość pamięci w szeregu, czyli informuje, w jakim stopniu obserwacje z prze­
szłości mają wpływ na wartości teraźniejsze w szeregu. Jego wartość zawsze 
zawiera się w przedziale (0,1), im większa, tym dłuższa pamięć, mniejsze ryzy­
ko zmiany. Szereg o wykładniku bliskim jedynki jest „gładki”, występują małe 
zmiany jego wartości, a występujące zmiany mają ten sam kierunek, tzn. po 
wzroście wartości następuje z prawdopodobieństwem H kolejny wzrost, po 
spadku - spadek. Szereg o małym H jest bardzo „poszarpany”, z prawdopodo­
bieństwem (1-H) po wzroście wartości nastąpi jej spadek i na odwrót. W przy­
padku większości szeregów giełdowych wykładnik ten mieści się w przedziale 
(0,4; 0,7). Do poniższych obliczeń wykładnika Hursta użyto metody przeskalo- 
wanego zakresu opisanej np. w pracy [2].
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3. Porównanie wybranych miar ryzyka 
na podstawie notowań cen akcji i indeksów 
GPW w Warszawie

Poniżej dla wybranych szeregów notowanych na Giełdzie Papierów War­
tościowych w Warszawie wyznaczono klasyczne miary ryzyka oraz wykładnik 
Hursta i entropię. Z uzyskanych wyników wyciągnięto wnioski.

3.1. Analiza empiryczna wybranych indeksów giełdowych

Do badań posłużyły notowania wybranych indeksów GPW w Warszawie 
w okresie 31.12.1997-06.02.2004.

Obliczono kolejno:
- oczekiwaną stopę zwrotu indeksu R,

• • f 2- wariancję stop zwrotu o ,
- entropię H(X) indeksu przy założeniu, że rozkład stóp zwrotu jest rozkładem 

normalnym,
- H(X) indeksu, zakładając, iż rozkład stóp zwrotu jest rozkładem logaryt- 

miczno-normalnym.
Wyniki obliczeń przedstawiono w tabeli 1, gdzie uporządkowano indeksy 

według rosnącej wariancji.

Uporządkowanie indeksów według rosnącej wariancji

Tabela 1

INDEKS
Oczekiwana stopa 

zwrotu 
R

Wariancja H(X) 
rozklad 

normalny

H(X) rozklad 
logarytmiczno- 

-normalny

WIRR 9,6653E-05 0,000187134 -4,144725613 -4,144586172

MIDWIG 0,00036574 0,000196882 -4,108094618 -4,107566969

WIG SPOŻYWCZY 0,00028424 0,000242407 -3,958044463 -3,957634389

WIG-PL 0,00041331 0,000269132 -3,882602472 -3,882006194

WIG 0,00041568 0,000269155 -3,882541164 -3,881941467

WIG BUDOWNICTWO 0,00012227 0,000283018 -3,846313076 -3,846136672

WIG BANKI 0,00075874 0,000302571 -3,798123169 -3,797028534

WIG 20 0,000274187 0,00040812 -3,582264204 -3,581868635

WIG TELEKOMUNIKACJA 9,9631E-O6 0,000688211 -3,205335113 -3,205320739

NIF -7.1359E-05 0,000708299 -3,184581258 -3,184684207
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Z przeprowadzonych dla rozpatrywanego okresu badań empirycznych 
można wyciągnąć następujące wnioski:
- kolejność indeksów ze względu na rosnącą wariancję jest dokładnie taka 

sama, jak w przypadku entropii dla rozkładu normalnego (jest to konsekwen­
cją wzoru 4; entropia przy założeniu rozkładu normalnego jest monotoniczną 
funkcj ą wariancj i),

- ranking indeksów ze względu na rosnącą wariancję (w tym przykładzie) jest 
także analogiczny w przypadku entropii dla rozkładu logarytmiczno- 
-normalnego (pomimo że w przypadku tego rozkładu entropia jest zależna za­
równo od oczekiwanej stopy zwrotu, jak i od wananc stóp zwrotu (wzór 5)).

3.2. Porównanie miar ryzyka wybranych akcji notowanych 
na GPW w Warszawie

Do badań posłużyły notowania wybranych akcji GPW w Warszawie 
w okresie 16.04.1991-08.06.2005.

Obliczono cztery miary ryzyka wymienione w przykładzie 3.1 oraz do­
datkowo wykładnik Hursta. Wyniki obliczeń przedstawiono w tabeli 2.

Uporządkowanie akcji według rosnącej wariancji

Tabela 2

KROSNO
ŚLĄSKA 

FABRYKA 
KABLI

PRÓCHNIK TONSIL

Oczekiwana stopa zwrotu R 0,001632 0,001179 0,000655 0,000546
Wariancja o2 0,001382 0,001806 0,002708 0,004439

H(X) rozklad normalny -2,70243 -2,50959 -2,21709 -1,86074

H(X) rozklad 
logarytmiczno-normalny

-2,70007 -2,50789 -2,21615 -1,85996

H - wykładnik Hursta 0,6242 0,6328 0,6185 0,6070

Z obliczonych w tabeli wielkości można wysunąć następujące wnioski:
1. Dla wybranych akcji GPW ranking według wzrastającej wariancji jest taki 

sam, jak w przypadku rosnącej entropii zarówno dla rozkładu normalnego 
stóp zwrotu, jak i dla rozkładu logarytmiczno-normalnego. Jest to konse­
kwencją pobranych do badań bardzo długich szeregów danych (ponad trzy 
tysiące). W przypadku długich szeregów rozkład stóp zwrotu aproksymuje 
się rozkładem normalnym.
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2. Występuje ujemna korelacja pomiędzy wartością entropii a wykładnikiem 
Hursta, co jest zrozumiałe, bowiem im większa entropia, tym większa nie­
pewność (większe ryzyko), a im mniejszy wykładnik Hursta, tym większe 
ryzyko. Zatem najmniej ryzykowną akcją wśród badanych jest KROSNO, 
zaś największym ryzykiem jest obarczony TONSIL.

3. W przypadku gdy rozkłady empirycznych stóp zwrotu są zbliżone do rozkła­
du normalnego, ryzyko mierzone wariancją i entropią (rozkładu normalnego) 
będzie wprowadzało ten sam porządek w grupie badanych walorów.

Wykładnik Hursta jest liczony w tym przypadku dla całego badanego 
okresu. Zakładamy tym samym, że w badanym okresie szereg był stacjonarny 
(jego własności nie zmieniały się pod wpływem czasu). Badania empiryczne 
dowodzą jednak, że szeregi giełdowe nie są stacjonarne, istnieje zatem koniecz­
ność badania ich własności lokalnie, nie zaś globalnie. Ponadto w literaturze 
przedmiotu wielokrotnie badano rozkłady empirycznych stóp zwrotu i okazuje 
się, iż w praktyce są one dalekie od rozkładu normalnego.

Nie w każdym przypadku ranking według rosnącej wariancji pokrywa się 
z rankingiem według także rosnącej entropii oraz malejącego wykładnika Hur­
sta. Przypadek ten zaprezentowano w przykładzie 3.3.

3.3. Niestacjonarne szeregi akcji na GPW w Warszawie

Globalny wykładnik Hursta, liczony powyżej, daje informacje o zacho­
waniu się szeregu w całym badanym przedziale czasowym. Można zadać pyta­
nie o stabilność w czasie tego wykładnika. Bowiem biorąc pod uwagę różne 
przedziały czasowe (np. kolejne lata), wykładnik ten zmienia swoją wartość. 
Analizę rozpoczęto od 1995 roku, aby szeregi danych miały porównywalną dłu­
gość. W analogiczny sposób zmienia się wartość entropii. Wyniki obliczeń 
przedstawia tabela 3.

Tabela 3
Zmiany miar ryzyka w czasie

KROSNO PRÓCHNIK
ŚLĄSKA 

FABRYKA 
KABLI

TONSIL

Oczekiwana stopa zwrotu R 0,003142732 -0,001979811 0,001471539 -0,000375874
Wariancja o2 0,00151332 0,001498681 0,001689823 0,001739262
Wykładnik Hursta 0,5268 0,4527 0,4915 0,4567
H(X) rozkład normalny -2,636938002 -2,643949717 -2,557360616 -2,536558927
H(X) rozkład logarytmiczno-normalny -2,632403998 -2,646805981 -2,555237634 -2,537101199
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cd. tabeli 3

Oczekiwana stopa zwrotu R 0,002042001 -0,000847612 -0,000410689 0,000987557
Wariancja O2 0,000468137 0,000875964 0,00039033 0,000822648
Wykładnik Hursta 0,4994 0,3736 0,4430 0,5423
H(X) rozklad normalny -3,483295153 -3,031324815 -3,614413717 -3,076623006

H(X) rozklad logarytmiczno-normalny -3,480349167 -3,032547661 -3,615006217 -3,075198263

Oczekiwana stopa zwrotu R -0,003103267 0,003052794 0,002552028 -0,000852089
Wariancja O2 0,000981608 0,00199327 0,001185633 0,001004305
Wykładnik Hursta 0,5321 0,4615 0,6323 0,4132

H(X) rozklad normalny -2,949187019 -2,43822781 -2,812967622 -2,932698115

H(X) rozklad logarytmiczno-normalny -2,953664087 -2,43382356 -2,809285823 -2,933927419

Oczekiwana stopa zwrotu R -0,000799476 -0,001918049 -0,003750932 -0,003119846
Wariancja (T2 0,001337369 0,000952266 0,001870104 0,001830788

Wykładnik Hursta 0,5670 0,2972 0,7057 0,6007

H(X) rozklad normalny -2,726097611 -2,971078394 -2,484237174 -2,499564204

H(X) rozkład logarytmiczno-normalny -2,72725101 -2,973845554 -2,489648625 -2,50406519

Oczekiwana stopa zwrotu R 0,003267256 -0,00246793 0,000662172 -0,000222316
Wariancja a2 0,000692958 0,001290531 0,000579887 0,001002907
Wykładnik Hursta 0,5740 0,5807 0,6350 0,6445
H(X) rozkład normalny -3,20037619 -2,751814259 -3,328875298 -2,933702513

H(X) rozklad logarytmiczno-normalny -3,195662536 -2,755374729 -3,327919986 -2,934023248

Ryzyko mierzone za pomocą wariancji daje w przypadku analizy w czasie 
takie same rezultaty, jak entropia. Jednakże warto zwrócić uwagę na fakt, 
iż w poszczególnych latach zmieniają się wielkość ryzyka oraz ranking. Na 
przykład w 1998 roku najbezpieczniejszą spółką był Próchnik, zaś najbardziej 
ryzykowną Śląska Fabryka Kabli. W 1999 roku najmniejszym ryzykiem charak­
teryzuje się Śląska Fabryka Kabli, zaś obarczony największym ryzykiem jest 
Próchnik. Szeregi giełdowe tych spółek nie są stacjonarne.

Może także wystąpić taka sytuacja, w której ranking według entropii dla 
rozkładu normalnego nie będzie taki sam, jak ranking w przypadku rozkładu 
logarytmiczno-normalnego. Taka sytuacja może mieć miejsce, gdy do badań 
weźmiemy krótkie szeregi czasowe, których rozkłady nie są normalne. Poniżej 
podano przykładowe obliczenia dla analizowanych spółek za okres 2.11.1999- 
-29.12.1999. Z tabeli 4 wynika, że uporządkowanie różni się w przypadku bada­
nych entropii dla różnych rozkładów.
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Tabela 4

Uporządkowanie według rosnącej entropii rozkładu normalnego

KROSNO
ŚLĄSKA

FABRYKA 
KABLI

TONSIL PRÓCHNIK

H(X) rozklad normalny -2,981813692 -2,84149601 -2,787433953 -2,761278436
H(X) rozklad 
logarytmiczno-normalny

-2,974756399 -2,840957673 -2,764834912 -2,78719735
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TOPOLOGICAL ENTROPY AND HURST EXPONENT COMPARED WITH CLASSIC 
RISK MEASUREMENT

Summary

In the literaturę covering the fields of financial mathematics, portfolio theory or economet- 
rics there is a great number of different methods to measure the risk of the exchange sécurités. The 
article describes an unconventional method of measuring risk - entropy and Hurst exponent. It 
shows that risk measurement using entropy gives results comparable to those achieved due to the 
classic methods.
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GRUPOWA OCENA EKSPERTÓW

- WYBRANE HEURYSTYCZNE TECHNIKI 
PORZĄDKOWANIA OBIEKTÓW

Wprowadzenie

W funkcjonowaniu współczesnego przedsiębiorstwa problemem o istot­
nym znaczeniu jest zagadnienie podejmowania racjonalnych decyzji. Znane 
w praktyce techniki i narzędzia podejmowania decyzji są przystosowane do 
problemów programowanych, tzn. rutynowych, powtarzalnych oraz dobrze 
ustrukturyzowanych. Wśród współczesnych narzędzi i technik wspomagających 
podejmowanie decyzji dla wyżej podanych rodzajów problemów są stosowane: 
metody badań operacyjnych, metody symulacyjne, metody modelowe, metody 
informatyczne.

Jednakże w praktyce bardzo często występują decyzje podejmowane 
w warunkach niepewności, o charakterze nieprogramowanym, jednorazowym, 
zaś zadania, których one dotyczą, są słabo ustruktuiyzowane. Dla tych rodzajów 
decyzji literatura przedmiotu zaleca stosowanie metod heurystycznych [1],

Należy zauważyć, że metody heurystyczne są jedynie uzupełnieniem me­
tod algorytmicznych. „Sięga” się po nie wtedy, gdy zastosowanie metod algo­
rytmicznych jest niemożliwe lub niecelowe, np. nie można uzyskać rozwiązania 
w zadowalającym czasie. W pewnych przypadkach istnieje wybór: albo zasto­
sować czasochłonną, o dużym nakładzie pracy metodę algorytmiczną i wyzna­
czyć dokładne rozwiązanie, albo wykorzystać metodę heurystyczną (mniej pra­
cochłonną) i ewentualnie zadowolić się przybliżonym rozwiązaniem.

Metody heurystyczne są stosowane wówczas, gdy nie dysponuje się da­
nymi uzyskanymi na podstawie obserwacji lub nie istnieje spójna, dobrze uza­
sadniona oraz obiektywnie sprawdzalna teoria ustalająca korelacyjne związki 
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między obserwowanymi zjawiskami, albo za pomocą ekstrapolacji nie można 
dokonać oceny przyszłych następstw rozpatrywanych działań.

W praktyce nie zawsze można uzyskać dane z wiarygodnych źródeł. Czę­
sto interesujące nas dane statystyczne mają charakter jakościowy lub niezbędne 
informacje są określone w sposób mało precyzyjny. Zawężenie rozważań tylko 
do dostępnych i precyzyjnych danych często może się okazać błędem. Wtedy 
można się posłużyć innymi metodami, np. metodą grupowej oceny ekspertów. 
Oceny ekspertów wprawdzie nie są zbyt precyzyjne, ale są wystarczająco do­
kładne dla większości zastosowań.

Ponieważ jakość ocen ekspertów istotnie wpływa na jakość otrzymywa­
nych wyników, więc należy badać zespół ekspertów pod względem kompetencji 
[2] oraz zgodności opinii. Można przyjąć, że jeśli eksperci będą wysokiej klasy 
specjalistami, a ich opinie umiarkowanie zgodne, to wyniki będą wiarygodne.

W artykule opisano i porównano dwie techniki grupowej oceny eksper­
tów: porównywania obiektów parami (wariant z ocenami ze zbioru {0,1,2}) 
i względnej ważności obiektów.

1. Grupowa ocena ekspertów

Zakłada się, że na podstawie określonego kryterium Cr każdy z ekspertów 
potrafi określić liniowy porządek w zbiorze obiektów.

Oznaczenia:
m - liczba ekspertów biorących udział w ocenie,
n - liczba ocenianych obiektów, 

kCÿ - ocena porównania ważności i-tego oraz j-tego obiektu (z punktu widzenia 

kryterium Cr) wystawiona przez k-tego eksperta (ij = 1,2,...,n; k= l,2,...,m), 
minax j - liczba ekspertów, którzy dali maksymalną ilość punktów przy ocenie 

j-tego obiektu, 
kCj - ocena w punktach przyznana j-temu obiektowi przez k-tego eksperta (eks­

pert może przyznać od 0 do K punktów).

1.1. Wyznaczenie uogólnionej opinii ekspertów - technika 
porównywania obiektów parami

Uwaga: Do kroku 6 można przejść po wykonaniu kroków 1-5 dla każdego eks­
perta (k = 1,2,.. .,m).
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Kroki
Ekspert wypełnia pola następującej tabeli (tabela 1), znajdujące się nad 

górną przekątną. Jeśli ekspert uważa, że z punktu widzenia kryterium Cr, obiekt 
w i-tym wierszu jest ważniejszy od obiektu w j-tq kolumnie, to w i-tym wierszu 
i j-tej kolumnie wpisuje „2”; jeśli sądzi, że znaczenie obiektów jest takie samo, 
to w i-tym wierszu i j-tej kolumnie stawia „1”; jeśli natomiast według eksperta 
obiekt z i-tego wiersza ma mniejsze znaczenie niż obiekt z j-tej kolumny, to 
w i-tym wierszu i j-tej kolumnie wpisuje „0”.

Wygląd tabeli porównania obiektów parami wypełnionej przez eksperta

Tabela 1

Nr eksperta Obiekt 1 Obiekt 2 Obiekt 3 Obiekt n-l Obiekt n

Obiekt 1 CU
cř,3 <-1

Obiekt 2 C2,n-1

Obiekt 3 C3k,n-1 Cï.n

Obiekt n-l

Obiekt n

Krok 2
Uzupełnia się tabelę porównania obiektów parami następująco: na głów­

nej przekątnej wstawia się „1”; w i-tym wierszu i j-tej kolumnie dla ij = l,2,...,n 

oraz i > j wpisuje się wartość cÿ, gdzie:

4=2-c‘ (i)

Krok 3
Dla każdego z obiektów (i = l,2,...,n) oblicza się ocenę Ck, jaką uzyskał 

obiekt przy ocenie k-tego eksperta (k = 1,2,...,m):

C-=ÉcS (2)

j=i

Krok 4
Dla każdego z obiektów (i = l,2,...,n) wyznacza się jego rangę R?', na

podstawie ocen k-tego eksperta {ck i = 1,2,..., n}:
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a. Nierosnąco porządkuje się ciąg ocen|Ck i = l,2,...,n J. Otrzyma się ciąg 
{O* i = l,2,...,n}.

b. Wyznacza się rangi ocen k-tego eksperta R(Ok): jeśli ciąg
{oj1 i = jest silnie malgący, to R(Ojt) = i; jeśli w ciągu

{Oj i = 1,2,..., n} Są wyrazy takie same, to nadaje im się rangę taką samą, 

równą średniej arytmetycznej rang, którą by miały, gdyby były różne.
c. Jako rangę i-tego obiektu w ocenie k-tego eksperta przyjmuje się rangę oce­

ny, przyznanej temu obiektowi przez tego eksperta, tzn. Rj = R(C,k ).

Krok 5
Sprawdza się, czy zbiór ocen k-tego eksperta jest niesprzeczny (np. nie 

zachodzi warunek, że ]<:. Y <n cij = 2 a Cj p = 2 a Cj p = 0 )

W tym celu (przy ustalonym k, k = l,2,...,m) tworzy się pomocniczą tabe­
lę, w której wiersze i kolumny są uporządkowane według niemałejących rang 

obiektów R; . Tabela pomocnicza powstaje z tabeli porównywania obiektów 
parami przez odpowiednie przestawianie wierszy i kolumn.

Jeżeli oceny k-tego eksperta są niesprzeczne, to w tabeli pomocniczej na 
głównej przekątnej są same „1”, nad główną przekątną są tylko „2” lub „1”, 
natomiast pod główną przekątną występują tylko „0” lub „1”; „1” są rozmiesz­
czone symetrycznie względem głównej przekątnej. Jeśli w i-tym wierszu i j-tej 
kolumnie dla i znajduje się „1”, to i-ty oraz j-ty wiersz powinien być iden­
tyczny, a także i-ta oraz j-ta kolumna powinny być takie same.

Jeżeli zbiór ocen jakiegoś eksperta jest sprzeczny, to należy zrezygnować 
z usług takiego eksperta albo poprosić go o poprawę swoich ocen tak, by oceny 
były niesprzeczne i powtórzyć odpowiednie kroki algorytmu.

Krok 6
Dla każdego z obiektów (i = l,2,...,n) wyznacza się sumę rang Sj przyzna­

nych temu obiektowi przez grupę m ekspertów według wzoru:
m

Si=ZRi (3)
k=l

Krok 7
Porządkuje się obiekty według niemalejących sum rang Sj. Uporządkowa­

nie to wyznacza kolejność obiektów według ich znaczenia; przy czym mniejsza 
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suma rang odpowiada obiektowi o większym znaczeniu. Suma rang Sj odpowia­
dająca i-temu obiektowi reprezentuje uogólnioną opinię ekspertów o ważności 
i-tego obiektu.

1.2. Wyznaczenie uogólnionej opinii ekspertów — technika 
względnej ważności obiektów

Kroki
Każdy ekspert ocenia obiekty z punktu widzenia kryterium Cr i każdemu 

z nich może przyznać od 0 do K punktów (górna granica skali K powinna być 
większa lub równa kilkakrotnej wielokrotności ilości obiektów, aby zapewnić 
możliwość przyznania różnym obiektom różnych ocen). Wyniki oceny zestawia 

k
się w macierzy [CijJ, gdzie ci,k - c. dla i = l,2,...n, k= l,2,...m.

Krok 2
Dla każdego eksperta porządkuje się nierosnąco ciąg jego ocen (odpo­

wiednia kolumna macierzy [cyj). Otrzyma się ciąg Oij<, gdzie k jest ustalone, 
a i = l,2,...,n.

Krok 3
Dla każdego eksperta (k = 1,2,...,m) wyznacza się rangi jego ocen 

R(°i,ic) : jeśli ciąg okk jest silnie malejący, to R(Oj k) = i ; jeśli w ciągu o^ są 

wyrazy takie same, to nadaj e im się rangę taką samą, równą średnig arytme­
tycznej rang, którą by miały, gdyby były różne.

Krok 4
Jako rangę i-tego obiektu w ocenie k-tego eksperta przyjmuje się rangę 

oceny, przyznanej temu obiektowi przez tego eksperta, tzn. Rj = R(ci,k ) .

Krok 5
Dla każdego z obiektów (i = l,2,...,n) wyznacza się sumę rang Sj przyzna­

nych temu obiektowi przez grupę m ekspertów według wzoru 3.

Krok 6
Porządkuje się obiekty według niemalejących sum rang Sj. Uporządkowa­

nie to wyznacza kolejność obiektów według ich znaczenia; przy czym mniejsza 
suma rang odpowiada obiektowi o większym znaczeniu. Suma rang S; odpowia­
dająca i-temu obiektowi reprezentuje uogólnioną opinię ekspertów o ważności 
i-tego obiektu.
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Innym wskaźnikiem uogólnionej opinii ekspertów może być, wyznaczona 
dla każdego i-tego obiektu (i = l,2,...,n), średnia wartość jego oceny Mj 
(w punktach) dana wzorem:

mr£c.k

M, = —----- (4)
m

Wartość Mj równa dolnej granicy skali punktowej odpowiada przypadko­
wi, gdy wszyscy oceniający i-ty obiekt eksperci dali najmniejszą możliwą ocenę 
ważności. Wartość Mj równa górnej granicy skali punktowej oznacza, że wszy­
scy eksperci przyznali największą możliwą ocenę. Im większa wartość Mj, tym 
znaczenie i-tego obiektu jest większe.

Uzupełniającym wskaźnikiem charakteryzującym uogólnioną opinię gru­
py ekspertów o względnej ważności obiektów jest częstość największej możli­
wej oceny uzyskanej przez i-ty obiekt Kinax i dana wzorem:

K_ mmaxi . ,
maxi “-------------  l=l,...n (5)

m
Wskaźnik Kmaxj przyjmuje wartości z przedziału <0; 1). Charakteryzuje on 

znaczenie obiektu z punktu widzenia liczby przyznanych mu pierwszych miejsc.

1.3. Określenie stopnia zgodności opinii ekspertów

Przy stosowaniu metod z udziałem ekspertów pojawia się pytanie: czy 
uzyskane wyniki są wiarygodne? Wyniki będą wiarygodne, jeśli eksperci będą 
umiarkowanie zgodni w swoich opiniach. Do scharakteryzowania stopnia zgod­
ności opinii ekspertów o względnej ważności ogółu obiektów poddanych ocenie 
służy współczynnik konkordancji Kendalla i Babingtona-Smitha co (dla m > 2) 
[2; 3],

Jeśli wartość współczynnika konkordancji co jest niewielka, oznacza to, że 
zgodność opinii jest słaba. Przyczyny mogą być różne: albo w rozpatrywanej 
grupie ekspertów rzeczywiście brakuje wspólnej opinii, albo wśród całego ze­
społu ekspertów można wyodrębnić grupy (z dużą zgodnością wewnątrzgrupo- 
wą), których opinie są przeciwne.

Aby wyodrębnić grupy ekspertów, wewnątrz których jest duża zgodność 
opinii, można zastosować różne metody, np. metodę usuwania ocen eksperta, 
metodę Bartosiewicz lub metodę sumy współczynników korelacji rang Spear- 
mana [2; 4],
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2. Przykład opracowanej tabeli porównania 
obiektów parami

Tabela 2 przedstawia przykładową tabelę porównania obiektów parami 
wypełnioną przez eksperta El i uzupełnioną według prezentowanego wyżej 
algorytmu.

Te same wyniki, po uporządkowaniu obiektów według niemałej ących 
rang, przedstawiono w tabeli 3 (tabela pomocnicza).

Wyniki porównywania obiektów parami

Tabela 2

El I II III IV V Ocena Ranga

I 1 0 0 0 0 1 5
II 2 1 0 2 1 6 2,5
III 2 2 1 2 2 9 1
IV 2 0 0 1 0 3 4
V 2 1 0 2 1 6 2,5

Tabela pomocnicza (dla eksperta El)

Tabela 3

El III II V IV I Ocena Ranga

III 1 2 2 2 2 9 1
II 0 1 1 2 2 6 2,5
V 0 1 1 2 2 6 2,5
IV 0 0 0 1 2 3 4

I 0 0 0 0 1 1 5

W tabeli pomocniczej (dla eksperta El) nad główną przekątną znajdują się 
tylko „1” i „2”, a poniżej tylko „0” i „1” oraz „1” są rozmieszczone symetrycznie 
względem głównej przekątnej; na przecięciu wiersza i kolumny odpowiadającym 
obiektom II i V znajduje się „1”, a wiersze (kolumny) odpowiadające tym obiek­
tom są identyczne — świadczy to o niesprzeczności ocen eksperta El.

3. Twierdzenie o równości rang

Oznaczenia:
n - liczba ocenianych obiektów,
Oi, o2,..., on - oceniane obiekty,
rw(Oi) - ranga obiektu Oi określona metodą względnej ważności obiektów, 
rp(Oj) - ranga obiektu Oi określona metodą porównywania obiektów parami, 
cw(Oi) - ocena, jaką uzyskał obiekt Oj przy zastosowaniu metody względnej waż­

ności obiektów,
Cp(Oj) - ocena, jaką uzyskał obiekt O; przy zastosowaniu metody porównywania 

obiektów parami,
i = 1, 2, ..., n.
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Twierdzenie
Jeśli oceny eksperta są niesprzeczne, to rangi obiektów wyznaczone me­

todami względnej ważności obiektów oraz porównywania obiektów parami są 
równe, tzn. zachodzi:

i=l£..n rw(°i)= rp(°i)
(6)

Dowód:
Najpierw zauważmy, że ranga obiektu jest ściśle związana z oceną, jaką 

ten obiekt uzyskał, oraz zachodzą następujące warunki:

c« (°i ) = cw (°j ) <=> rw (°, ) = rw (oj ) 

cp(oi) = cp(oj)<»rp(oi) = rp(oj) 

cw(°i)< cw(°j)<:> rw(°i)> rw(oj) 

cp(oi)<cp(oj)orp(oi)>rp(oj)

dla ij = 1, 2,..., n i

dla ij = 1, 2,..., n i

dla ij = 1, 2,..., n i

dla ij = 1, 2,..., n i j

Bez straty ogólności możemy założyć, że obiekty są uporządkowane nie- 
rosnąco według ich ocen uzyskanych przy zastosowaniu metody względnej 
ważności obiektów, tzn.:

{cw(o1)>cw(o2)>...>cw(on)} (7)

Wtedy zachodzi:
{rw(°i)-rw(°2)-— - rw(°n)} (8)

Dowód indukcyjny twierdzenia.

Kroki:
Niech n = 2. Mogą zajść dwa przypadki:

a) rw(o,) = rw(o2) = l,5,

b) rw(o,) = l Arw(o2) = 2.

Macierz porównań parami przedstawiono w tabelach 4 i 5, odpowiednio 
dla przypadku a) i b).
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Tabela 4

01 02 Cp(Oi) rp(Oi)

Ol 1 1 2 1,5

02 1 1 2 1,5

Tabela 5

0| 02 Cp(Oi) rp(°i)

O| 1 2 3 1

O2 0 1 1 2

W obu przypadkach twierdzenie jest prawdziwe: 
ad a) rp(o,) = 1,5= rw(o]), rp(o2) = 1,5= rw(o2), 

adb) rp(o,) = 1 = rw(o,), rp(o2)=2= rw(o2)).

Kroki
Założenie: twierdzenie jest prawdziwe dla n = k.
Teza: twierdzenie jest prawdziwe dla n = k + 1.

Przez Cp1")oznaczmy macierz porównań parami obiektów {ouO2,...,om}. 

Przez Cp'n’(°i) oraz rp'n’(°i) (dla i < m) oznaczmy (odpowiednio) ocenę oraz 

rangę, jaką otrzymałby obiekt O|, gdybyśmy zastosowali metodę porównywania 
parami do zbioru obiektów {O],O2,...,oin} (m „pierwszych” obiektów).

Przy przyjętych oznaczeniach zachodzi:

ic(Pm)(°i)+1 jeżeli cw(oi) = cw(o,n+1) 
i=‘£ -,n P 1 |cpm)(oj)+2 jeżeli cw(o;)> cw(oj+1) 9)

Ponieważ zbiór obiektów o1,o2,...,O|i+i jest uporządkowany i zachodzi:

rw (°i ) rw (°2 ) rw (ok+1 ) oraz cw (o, ) > cw (o2 ) >... > cw (ok+1 )
»

więc mogą zajść dwa przypadki: 

a) cw(°k)>cw(°k+i).

b> cw(°k) = cw(°k+i)-

ad a)
Wtedy:

rw(°i)-rw(°2)-—-rw(°k)<rw(°k+i) oraz cw(o1)>cw(o2)>...>cw(ok)>cw(ok+1)



62
Anna Męczyńska

Macierz porównań parami wygląda następująco (tabela 6):

Wtedy dla i = cp(oj) = c(pk+1)(oi) = cJ,k)(oi) + 2 > 2 oraz

cP(°k+i) = 1- Zatem:
cp(°w)<cp(°i) (10)

stąd:
i=i£ k rp(ok+1)> rp(ok) (11)

Z założenia indukcyjnego:
.A rp (°i )= rw (°i ) (12>

Stąd i z (11) mamy:
rp(°k+i)=k + 1 = rw(°k+i) (13)

czyli:
A

i=l,2,...,k+l
rp(°i)=rw(°i)

adb)
Ponieważ cw (ok ) = cw (ok+1 ), więc niech j oznacza najmniejszy taki in­

deks, że cw (ok+1 ) = cw (oj ). Wówczas:

rw (oi ) < rw (o2 ) < ... < rw (Oj_i ) < rw (oj ) = rw (oj+1 ) =... = rw (ok+1 ) 

oraz:
cw(o1)^cw(o2)>...>cw(oj_1)>cw(oj)=cw(oj+1) = ... = cw(ok+1)
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Wtedy:
cik)(°i) = c!>k)(ok) dla

Na podstawie macierzy porównań parami, przedstawionej w tabeli 7 wi­
dać, że:

c(pk)(°j-i)>c£(°i) dla j = jJ + h-k (14)

oraz:

cř*'>(o,)=
kt)(o,)+2 dla i = 1,2,..., j-1 

dla i = j,j + l,...k
(15)

oznacza, że ocena pokrywa się z odpowiednią oceną z macierzy Cpk

Tabela 7

«i °2 °j-l °J °j+i ok °k+i

Ol * * * 2 2 2 2

o2 * * * 2 2 2 2

°H * * * 2 2 2 2

0 0 0 1 1 1 1

°j+i 0 0 0 1 1 1 1

Ok 0 0 0 1 1 1 1

°k+l 0 0 0 1 I 1 1

Dla i=jj+l,...,kmamy:

c(pk+,) (Oj ) = C(pk) (o k ) +1 = c(pk+,) (ok) = k-(j-l)+l = k+ 2 — j (16)

Natomiast:

cJ"')(o1.,) = k+l-{j-l) = k + 2-j = c“(ok) (17)

Z założenia indukcyjnego:

rp(k,(oi) = rik)(oi) dla i = l,2,...,k
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Stąd wobec (14) i (15) mamy, że:

rp(°.) = rw(°i) <Ma i = l,2,...,j-l

Dla i = j j+l,...,k+l:

k+1
Ém k+Ji.U(k+j+2) 

r (o.) =___=!ži______ = _____ ______ __
k + l —(j —1) k + j + 2

k + j + 1

2

Wobec (14), (15), (17), dla i =j j+l,...,k+l:

rP(°i) = rw(°i)

(18)

(19)

(20)

Na podstawie (18) oraz (20):

a r(o;) = r (o-) 
i=i,2,....k+i pV 17 wV 17

Wnioski

Z przedstawionych wyżej rozważań można wysnuć następujące wnioski:
1. Przy założeniach przedstawionego twierdzenia, wyniki (rangi obiektów) uzy­

skane z użyciem obu metod są takie same. Metodę względnej ważności 
obiektów można polecić jedynie w przypadkach, gdy trzeba dokonać oceny 
kilku obiektów. Możliwości ludzkiego umysłu są ograniczone, badacz jest 
w stanie „ogarnąć” i analizować równocześnie tylko kilka obiektów.

2. W przypadku gdy należy ocenić więcej obiektów, powinno się stosować me­
todę porównywania parami. Metoda ta jest wprawdzie bardziej czasochłonna 
(trzeba dokonać n*(n-l)/2 porównań), ale jest bliższa naturalnemu sposobowi 
dokonywania oceny przez człowieka. Dzięki wielokrotnemu porównaniu 
obiektu z innymi, daje możliwość kontrolowania, czy oceny eksperta są nie- 
sprzeczne.
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GROUP EXPERTS' VALUATION - SELECTED HEURISTIC TECHNIQUES 
OF THE OBJECTS GROUPING

Summary

In the article the conditions of appealing the experts opinions hâve been presented. The 
two techniques of group experts’ valuation hâve been described: of comparing objects in pairs and 
of relative importance of objects. The theorem about the equality of the objects ranks obtained via 
above presented techniques has been formulated and introduced.
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ROZWIĄZANIA UOGÓLNIONE WYBRANYCH 
ZADAŃ OPTYMALIZACJI NIELINIOWEJ

1. Metody kierunków dopuszczalnych w wypukłej 
optymalizacji nieliniowej

Teoria optymalizacji umożliwia efektywne poszukiwanie optymalnych 
rozwiązań nieliniowych zadań optymalizacyjnych wieloma konkurencyjnymi 
metodami. Dla rozwiązywania szczególnych zadań optymalizacji wypukłej 
w postaci:

min{f (x) ; AX = b a X > &}

podstawowe znaczenie ma tzw. metoda kierunków dopuszczalnych. Ogólna idea 
metody kierunków dopuszczalnych (por. np. [13]) polega na zastosowaniu itera- 
cyjnej procedury generowania kolejnych rozwiązań dopuszczalnych rozpatry­
wanego zadania optymalizacyjnego, coraz lepszych w sensie kryterium optyma­
lizacyjnego, przy czym generowanie kolejnych rozwiązań dopuszczalnych 
odbywa się poprzez przemieszczanie się z wcześniej ustalonych lub wyznaczo­
nych rozwiązań dopuszczalnych:

À* e Ddlafc = 0, 7, 2, ...

do następnych rozwiązań dopuszczalnych g D w odpowiednio wyznacza­
nych kierunkach nazywanych kierunkami użytecznymi dla minimalizacji funkcji 
f(X) lub inaczej kierunkami stosowalnymi dla minimalizacji albo też kierunkami 
dopuszczalnymi i stosowalnymi dla minimalizacji funkcji kryterium f(X) na 
zbiorze rozwiązań dopuszczalnych D oraz dla rozwiązania JĆ e. D. Tak więc 
kierunkiem użytecznym dla minimalizacji funkcji f(X) będzie dowolny wektor 
v e Rn, spełniający następującą formułę:
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0<Ag7? £<A
[X + 8v<=D f(X + ßv)<f(x)]

W teorii optymalizacji dowodzi się, że dla zadań optymalizacji nielinio­
wej rozpatrywanego typu i spełniającego przyjęte wyżej warunki dodatkowe, 
wektor veR" będzie kierunkiem użytecznym dla minimalizacji funkcji f(X) na 
zbiorze rozwiązań dopuszczalnych D oraz dla rozwiązania JĆ g D, jeżeli będzie 
spełniona następująca koniunkcja: 

l^f(xK\ v) *
0<Ae7? £<A

Xk +3veD

gdzie:
(•, - symbol iloczynu skalarnego dwóch wektorów,

Vf\Xk ) - gradient funkcji w punkcie A* g D.

W związku z powyższym można wnioskować, że dla dowolnych rozwią­
zań dopuszczalnych Xk eD XeD rozpatrywanego zadania optymaliza­

cyjnego następujący wektor będący ich różnicą:

V,(X)=X-X‘

będzie kierunkiem użytecznym dla minimalizacji wypukłej funkcji kryterium 
f(X) na niepustym i ograniczonym zbiorze rozwiązań dopuszczalnych D oraz dla 
rozwiązania dopuszczalnego A* g O, wtedy i tylko wtedy, gdy spełniona będzie 
następująca nierówność:

} v,(a-))<0

a w konsekwencji nierówność:

ty(xK\ x}<ty(xK\ xk}

Wobec tego można zauważyć, że ostatnia z powyższych nierówności bę­
dzie spełniona w szczególności dla wektora XeR" będącego optymalnym roz­
wiązaniem następującego zadania optymalizacji liniowej w postaci kanonicznej: 

min{(v/(x*) X); XeD}
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Wektor spełniający powyższy postulat można przedstawić również w po­
staci następującej formuły równoważnej:

Xk = arg min{(V/(%* } x); X e D}

Ponieważ ponadto:

Xk eD a Xk eD

i zbiór rozwiązań dopuszczalnych D jako zbiór rozwiązań odpowiedniego ukła­
du równań i nierówności liniowych jest zbiorem wypukłym, stwierdzamy, że 
również wszystkie punkty leżące na odcinku łączącym punkty Xk oraz Xk 
należą do zbioru rozwiązań dopuszczalnych rozpatrywanego zadania optymali­
zacyjnego, czyli:

OS^Sl X‘ +P(X‘-X") = X‘ +P'’k(Xt)^D

W bezpośrednim związku z powyższym tokiem wywodu przyj mijmy 
również, że liczba rzeczywista:

<7

będzie optymalnym dla minimalizacji wypukłej funkcji kryterium f(X) na niepu- 
stym i ograniczonym zbiorze rozwiązań dopuszczalnych D, przesunięciem roz­
wiązania dopuszczalnego Ä* eDw kierunku wektora na odcinku łą­

czącym punkty Xk oraz Xk, co oznacza, że:

Pk =ars f{xk + p(Xk -Xk

oraz ponadto niech:

Xk+I =Xk +p(Xk -Xk)

to w konkluzji stwierdza się, że ostatecznie zachodzi następująca nierówność:

Z wyżej przytoczonych wywodów formalnych wynika jednoznacznie, że 
jeżeli początkowym, startowym rozwiązaniem scharakteryzowanego tu postę­
powania iteracyjnego będzie:
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Xk =X° eD

oraz podstawiając kolejno k = k + 1 (dla k = 0, 1, 2, ...), można otrzymać nastę­
pujący ciąg rozwiązań dopuszczalnych rozpatrywanego zadania optymalizacyj­
nego:

dla którego będzie spełniony następujący ciąg nierówności:

... )<... </(jv')</(^°)
Dla wygenerowanego w przedstawiony sposób ciągu rozwiązań dopusz­

czalnych [xk }t=0 3 2> , w teorii optymalizacji nieliniowej dowodzi się w szcze­

gólności, że dla rozpatrywanego wypukłego zadania optymalizacji nieliniowej 
z liniowym układem warunków ograniczających zachodzi: 

koeN
Xk° = arg min{f(x); XeD}

czyli że przy spełnieniu wszystkich przyjętych założeń dotyczących rozpatrywa­
nego nieliniowego procesu optymalizacyjnego ciąg rozwiązań dopuszczalnych 
{xk }ł=0 ] 2 , generowany zgodnie z przedstawioną wcześniej procedurą itera- 

cyjną, jest zbieżny w skończonej ilości kroków do poszukiwanego rozwiązania 
optymalnego rozpatrywanego nieliniowego zadania optymalizacyjnego lub:

limA'* = arg min{/(.Y); XeD}

czyli że przy spełnieniu wszystkich przyjętych założeń dotyczących rozpatrywa­
nego nieliniowego procesu optymalizacyjnego ciąg rozwiązań dopuszczalnych 
\xk }t=0 ] 2 , generowany zgodnie z przedstawioną wcześniej procedurą itera- 

cyjną, jest zbieżny w nieskończonej ilości kroków do poszukiwanego rozwiąza­
nia optymalnego rozpatrywanego nieliniowego zadania optymalizacyjnego.

2. Procesy linearyzacji zadań optymalizacji 
wypukłej

Przedstawione w poprzedniej części niniejszego opracowania rozważania 
dotyczące koncepcji metody kierunków dopuszczalnych w optymalizacji nieli­
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niowej pozwalają obecnie na sformułowanie konkretnej propozycji autorskiej 
wersji znanego algorytmu, tzw. metody Franka i Wolfe’a do wyznaczania opty­
malnych rozwiązań dla rozpatrywanej klasy nieliniowych zadań optymalizacyj­
nych w postaci kanonicznej z liniowym układem warunków ograniczających 
z dodatkowym założeniem, że funkcja kryterium f(X) będzie na zbiorze rozwią­
zań dopuszczalnych D, klasy różniczkowalności C1, czyli że funkcja ta ma cią­
głe wszystkie pochodne cząstkowe rzędu pierwszego na zbiorze rozwiązań do­
puszczalnych.

Krok wstępny

Wyznaczyć dowolne rozwiązanie dopuszczalne rozpatrywanego nielinio­
wego zadania optymalizacji wypukłej, czyli punkt A0eD, który w dalszych pro­
cedurach będzie traktowany jako startowe rozwiązanie początkowe.

KrokO

Wyznaczyć następujący wektor:

X° =arg min{(V/(x°) x); XeD}

oraz w konsekwencji następny wektor w postaci:

X' =X° + po(X°-X°)

gdzie:

Po =arS m^n fi*" + p(X° — X" )]

Ogólnie w proponowanej procedurze optymalizacyjnej rekomenduje się 
w następnej kolejności:

Krok k (dla k > 1)

Wyznaczyć następujący wektor:

Xk = arg min{(v/(^*) %); X&D}

oraz w konsekwencji następny wektor w postaci:
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gdzie:

pk = arg min f(xk + p(Xk - Xk )}

Na podstawie przedstawionych wcześniej faktów z zakresu teorii metod 
kierunków dopuszczalnych w optymalizacji nieliniowej wnioskujemy bezpo­
średnio, że jeżeli dla konkretnego rozpatrywanego nieliniowego zadania opty­
malizacyjnego sformułowany wyżej algorytm metody Franka i Wolfe’a będzie 
skończony, to postępowanie algorytmiczne polegające na iteracyjnym genero­
waniu odpowiednich rozwiązań dopuszczalnych powinno być kontynuowane do 
wystąpienia dla pewnej liczby naturalnej p następującej równości: 

w tym przypadku będzie dodatkowo spełniona następująca formuła:

i w konsekwencji, zgodnie z odpowiednią własnością procedur metody kierun­
ków dopuszczalnych w optymalizacji nieliniowej, stwierdzamy, że optymalnym 
rozwiązaniem rozpatrywanego zadania nieliniowej optymalizacji wypukłej bę­
dzie następujący wektor:

X* =XP = arg min{/(x); XgD}

W przypadku odmiennym, a więc w razie nieskończoności odpowiednie­
go postępowania algorytmicznego, niezbędne będzie dodatkowe ustalenie kryte­
rium zakończenia obliczeń i wyboru przybliżonego, suboptymalnego rozwiąza­
nia rozpatrywanego zadania optymalizacyjnego. Jedną z typowych możliwości 
w tym zakresie jest przyjęcie postulatu zakończenia iteracyjnego procesu obli­
czeniowego wtedy, gdy dla pewnej liczby naturalnej No i z góry zadanej liczby 
rzeczywistej e > 0, w procedurze stosowania zmodyfikowanej wersji metody 
Franka i Wolfe’a zajdzie następująca nierówność:
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W tym przypadku finalnie proponuje się przyjęcie w charakterze subop- 
tymalnego rozwiązania przybliżonego rozpatrywanego zadania optymalizacyj­
nego następującego wektora:

XN° = X* = arg min{/(x); X e D}

Powyższe rozważania prowadzą do wniosku, że w każdym kroku propo­
nowanego postępowania algorytmicznego, aby wyznaczyć kolejny wektor będą­
cy lepszym przybliżeniem poszukiwanego rozwiązania optymalnego wyjścio­
wego wypukłego zadania optymalizacji nieliniowej, należy rozwiązać odpo­
wiednie pomocnicze zadanie optymalizacyjne z następującego ciągu zadań 
optymalizacji liniowej:

{Zk } = {min{(Vf(xk ), X); X e D}}, dla k = 0, 1, 2,...

X>rzy czym charakterystycznym zjawiskiem towarzyszącym jest fakt, że wszyst­
kie pomocnicze zadania optymalizacji liniowej z ciągu {Z*} mają ten sam zbiór 
rozwiązań dopuszczalnych i różnią się wyłącznie postacią analityczną liniowej 
funkcji kryterium.

W dalszych rozważaniach przedstawiono autorską propozycję wykorzy­
stania i zastosowania tzw. metody uogólnionych macierzy odwrotnych w opty­
malizacji liniowej do efektywnej realizacji wybranych procedur wyznaczania 
optymalnych rozwiązań wypukłych zadań optymalizacji nieliniowej z liniowym 
układem warunków ograniczających.

3. Metoda wyznaczania optymalnych rozwiązań 
wypukłych zadań optymalizacji nieliniowej 
z procedurą uogólnionych macierzy odwrotnych

Rekomendowana obecnie autorska propozycja wykorzystania i zastoso­
wania scharakteryzowanej wyżej tzw. metody uogólnionych macierzy odwrot­
nych w optymalizacji liniowej do efektywnej realizacji wybranych procedur 
wyznaczania optymalnych rozwiązań wypukłych zadań optymalizacji nielinio­
wej z liniowym układem warunków ograniczających będzie syntezą modyfikacji 
algorytmu metody Franka i Wolfe’a, przeznaczonej do wyznaczania optymal­
nych rozwiązań dla rozpatrywanej klasy nieliniowych zadań optymalizacyjnych 
i metody uogólnionych macierzy odwrotnych w optymalizacji liniowej.
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Bazą teoretyczną dalszych rozważań w tym zakresie będzie konstatacja 
faktu, że na podstawie wcześniej przeprowadzonych rozważań zastosowanie 
procedury metody kierunków dopuszczalnych i modyfikacji algorytmu metody 
Franka i Wolfe’a (por. np. [14]) do iteracyjnego procesu poszukiwania rozwią­
zań optymalnych rozpatrywanej klasy wypukłych nieliniowych zadań optymali­
zacyjnych w postaci kanonicznej z liniowym układem warunków ograniczają­
cych, daje w kolejnych krokach następujące wyniki:

dla k = 1, 2,3,...

lub:

Xk~’ = arg min{(Vf{xK-1} x); AX = b a X > 0} dla k = 1, 2,3,...

czyli:

dla k = 1, 2,3, ...

i ostatecznie, zgodnie z [10]:

X1-' =A*b+-^-r(ï‘-' -Crfbj+fE-A*'dla k = I, 2,3....

Ml Ml
gdzie:

oraz:

Czyli zk~' &R jest najmniejszą możliwą liczbą rzeczywistą spełniającą 

następującą formułę:

y Xk-j = A+b+M.(zk-i_CA+b)+(E_A-A_^_2Lju^>0} 
rk-1 llk^ll2 ' ' II > ,112 7 JMII MII

gdzie:

U k~' - dowolny wektor z Rn, dla którego realizuje się minimum określone 
powyższym wzorem.
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Ponadto, zgodnie ideą i zasadami postępowania w iteracyjnej realizacji 
koncepcji kierunków dopuszczalnych w optymalizacji nieliniowej, kolejnym 
otrzymanym rozwiązaniem dopuszczalnym będzie:

x = x +Pk-l(x ~x )

dla:

pk_, =arg min f(xk~' +p(Xk -Xk~‘)]

Na podstawie tych rezultatów oraz wcześniejszych ustaleń dotyczących 
otrzymanego ciągu: 

kolejnych przybliżeń poszukiwanego rozwiązania optymalnego rozpatrywanego 
nieliniowego zadania optymalizacyjnego, a w szczególności ustaleń dotyczących 
zbieżności i kryteriów zakończenia postępowania iteracyjnego metody kierun­
ków dopuszczalnych oraz algorytmu metody Franka i Wolfe’a, można obecnie 
stwierdzić, że jeżeli zbiór rozwiązań dopuszczalnych D rozpatrywanego zadania 
optymalizacji wypukłej będzie niepusty i ograniczony, funkcja kryterium f(X) tego 
zadania będzie jednomodalna, różniczkowalna oraz mająca ciągłe wszystkie po­
chodne cząstkowe rzędu pierwszego na zbiorze rozwiązań dopuszczalnych D, to:

V X*=arg min{f(x\ XeD} = Xk° = Xk" (zk<>, Uk" ) 
Kq Gjv

czyli:

V X* = arg min{f(x); XeD} = A'b+-^-(źk" -CA'b)+(E-A* A-^f^-)Uk‘ 
||Af|| ||m]|

lub:

X* =arg min{f(x\ XeD}= lim Xk(zk, U„ )

czyli:

X- =arg mm{f(x): XeD},llm[A'b+^fî'- -CA'b)+(E-A'A-?f-^-)U]

*“ |M|’ Ml
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Uzasadniona we wcześniejszych częściach niniejszej pracy prawdziwość 
powyższych faktów pozwala obecnie na przedstawienie następującej autorskiej 
propozycji iteracyjnego algorytmu metody Franka i Wolfe’a z procedurą metody 
uogólnionych macierzy odwrotnych w optymalizacji liniowej do wyznaczania 
optymalnych rozwiązań wypukłych zadań optymalizacji nieliniowej z liniowym 
układem warunków ograniczających spełniających dodatkowo wszystkie zało­
żenia przyjęte w powyższych rozważaniach.

Krok wstępny

Wyznaczyć dowolne rozwiązanie dopuszczalne &D wyjściowego nieli­
niowego zadania optymalizacyjnego z liniowym układem warunków ogranicza­
jących.

KrokO

Wyznaczyć wektor: 

X,=X°(ź''.U‘)=Atb+-^

IM'
(i’-CA*b)+(E-A' A

IM
dla:

M = Vf(X° )(E-A+A)

oraz:

zu={z°^R- V X° =X0(z,,,U°}>®}
U(,eR" v 7

gdzie:

U° - dowolny wektor z Rn, dla którego realizuje się minimum określone 
powyższym wzorem.

Ponadto wyznaczyć kolejne przybliżenie poszukiwanego rozwiązania 
optymalnego rozpatrywanego nieliniowego zadania optymalizacyjnego:

X' = X,) +p0(X°-X° )

dla liczby p0 spełniającej następujący warunek:
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Po = arg min f\xn + p( X° -X0))

Ogólnie:

Krokk

A. Wyznaczyć wektor:

X‘ = Xk(zk, ui)^A*b+-^-T(źk -CA*b)+(E-A*A-^-)Ui

M IM
dla:

M = Vf(Xk )(E-A+A)

oraz:

zk={zkeR-, V Xk =Xk(zk ,Uk}>&} 
Uk &R" V 7

gdzie:

Uk - dowolny wektor z 7?", dla którego realizuje się minimum określone powyż­
szym wzorem.

Ponadto wyznaczyć kolejne przybliżenie poszukiwanego rozwiązania 
optymalnego rozpatrywanego nieliniowego zadania optymalizacyjnego:

=Xk +pk(Xk -Xk )

dla liczby pk spełniającej następujący warunek:

Pk = arS mmf(xk +p(Xk-Xk ))

B. Sprawdzić, czy spełniona jest równość:

Xk+I

a) jeżeli powyższa równość jest spełniona, to stwierdzamy, że uzyskany w punk­
cie A tego kroku wektor A*47 jest poszukiwanym rozwiązaniem optymalnym 
i postępowanie iteracyjne jest zakończone, oraz:
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x* — Xk+I

b) jeżeli powyższa równość nie jest spełniona, to przechodzimy do następnego 
punktu C tego kroku.

C. Sprawdzić, czy spełniona jest nierówność:

dla pewnej z góry zadanej liczby rzeczywistej e > 0.

c) jeżeli powyższa nierówność jest spełniona, to stwierdzamy, że uzyskany 
w punkcie A tego kroku wektor jest wystarczającym przybliżeniem po­
szukiwanego rozwiązania optymalnego i postępowanie iteracyjne jest zakoń­
czone, oraz:

X* — Xk+1

d) jeżeli powyższa równość nie jest spełniona, to przechodzimy do następnego 
punktu D tego kroku.

D. Przyjąć k = k + 1 i przejść do realizacji czynności punktu A następnego kroku.

Powyższe algorytmiczne postępowanie iteracyjne należy kontynuować do 
momentu zrealizowania się podpunktu a) punktu B pewnego kroku lub pod­
punktu a) punktu C pewnego kroku. Tak więc powyższy algorytm jest metodą 
skończoną wyznaczania optymalnych rozwiązań wypukłych zadań optymalizacji 
nieliniowej z liniowym układem warunków ograniczających spełniających do­
datkowo wszystkie założenia przyjęte wcześniej w powyższych rozważaniach.

Wnioski i rekomendacje

W przedstawionym opracowaniu zaproponowano konkretne, autorskie 
uogólnienia wybranych, klasycznych metod teoretycznych, które mogą być wy­
korzystywane do celów wspomagania podejmowania optymalnych decyzji eko­
nomicznych i zarządczych z wykorzystaniem niektórych idei aplikowania do 
tego celu metod wykorzystujących procedury uogólnionych macierzy odwrot­
nych w optymalizacji liniowej.

W szczególności zaprezentowano nowe, oryginalne wyniki badań mają­
cych na celu rozszerzenie klasy rozpatrywanych zadań optymalizacyjnych. 
Przeprowadzone analizy merytoryczne dotyczą całokształtu problematyki wy­
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znaczania optymalnych rozwiązań wypukłych zadań optymalizacji nieliniowej 
z liniowym układem warunków ograniczających spełniających dodatkowo zało­
żenie, że funkcja kryterium rozpatrywanego zadania optymalizacyjnego będzie 
na zbiorze rozwiązań dopuszczalnych, klasy różniczkowalności C1, czyli że 
funkcja ta ma ciągłe wszystkie pochodne cząstkowe rzędu pierwszego na zbio­
rze rozwiązań dopuszczalnych. Założenie to pozwoliło na efektywne wykorzy­
stanie elementów rachunku różniczkowego w analizach merytorycznych doty­
czących zadań optymalizacyjnych rozpatrywanej postaci, a w szczególności 
umożliwiło zastosowanie w przedmiotowym celu tzw. metody kierunków do­
puszczalnych w optymalizacji nieliniowej.

Osiągnięte, konkretne wyniki analiz teoretycznych w przedmiotowym za­
kresie powinny w sposób istotny rozszerzać rzeczywiste możliwości praktycznej 
stosowalności tzw. metod uogólnionych macierzy odwrotnych do wyznaczania 
klasycznych rozwiązań optymalnych i tzw. uogólnionych rozwiązań optymal­
nych różnych typów zadań optymalizacyjnych, zwłaszcza nieliniowych z linio­
wym układem warunków ograniczających. W intencji autora powinny też efek­
tywnie umożliwiać nowe i bardziej zaawansowane zastosowania rozpatrywa­
nych teorii w procedurach wspomagania realnych procesów decyzyjnych 
o charakterze ekonomicznym i zarządczym.
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GENERALIZED SOLUTIONS OF SOME NON-LINEAR OPTIMIZATION 
PROBLEMS

Summa ry

In the paper we suggest particular, author's generalizations of the chosen classical theoreti- 
cal methods to be used to the aid of the treatment of the optimal économie and managerial deci­
sions with the use of some ideas applied to the end of methods of the generalized inverse matrices 
in the linear optimization.
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METODA „NAJBLIŻSZYCH SĄSIADÓW" 
ORAZ METODA „LEM" - PORÓWNANIE 
EFEKTYWNOŚCI METOD PROGNOZOWANIA 

ZJAWISK EKONOMICZNYCH OPISANYCH 
ZA POMOCĄ SZEREGÓW CZASOWYCH

Wstęp

Prognozowanie zjawisk ekonomicznych jest problemem trudnym. W cią­
gu lat próbowano rozwiązywać go różnymi metodami, głównie statystycznymi 
i ekonometrycznymi. W dobie ogromnego zainteresowania teorią chaosu oraz 
teorią nieliniowych systemów dynamicznych, próbuje się prognozować zjawiska 
ekonomiczne na podstawie metod i pojęć teorii nieliniowych systemów dyna­
micznych. W artykule zostaną omówione dwie metody predykcji: metoda „naj­
bliższych sąsiadów” oraz metoda LEM (Lyapunov Exponent Method). Metoda 
„najbliższych sąsiadów” polega na znalezieniu w zrekonstruowanej przestrzeni 
stanów najbliższych sąsiadów punktu poprzedzającego prognozowaną wartość 
w szeregu czasowym. Natomiast metoda LEM pozwala za pomocą wykładnika 
Lapunowa wyznaczyć prognozowaną wartość szeregu czasowego.

Celem artykułu jest wyznaczenie przyszłych wartości szeregów czaso­
wych, utworzonych z wybranych kursów walut oraz porównanie efektywności 
wybranych metod predykcji pod względem dokładności wyznaczonych prognoz. 
W opracowaniu pod uwagę wzięto takie waluty, jak: dolar australijski AUD, 
korona duńska DKK, euro EUR, funt szterling GBP, jen japoński JPY, dolar 
amerykański USD, w okresie od 1.01.1999 roku do 30.10.2004 roku, obejmują­
cym 1474 notowania.
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1. Rekonstrukcja przestrzeni stanów

Rekonstrukcja przestrzeni stanów polega na odtworzeniu, jedynie na pod­
stawie jednowymiarowego szeregu obserwacji, przestrzeni stanów. W 1981 roku 
F. Takens, wykorzystując zmienne opóźnione, zaproponował metodę rekon­
strukcji zwaną metodą opóźnień. Polega ona na wykorzystaniu J-historii, które 
są J-elementowymi ciągami postaci:

= U 1 Xi-r > Xí—2t >"•, V(rf_1)r ) (1)

gdzie:
i = (d- l)r+

d — wymiar rekonstruowanej przestrzeni (zwany również wymiarem zanurzenia), 
r - opóźnienie.

Stąd w zrekonstruowanej d-wymiarowęj przestrzeni stanów element sze­
regu czasowego x, jest związany z punktem postaci (1).

Takens udowodnił, że dla d > 2m + 1, gdzie m jest wymiarem atraktora, 
a d jest wymiarem zanurzenia, zrekonstruowana przestrzeń stanów będzie topo­
logicznie równoważna z „oryginalną” przestrzenią. Wyboru parametru d doko­
nuje się zwykle metodą prób i błędów. Tradycyjnym podejściem jest obliczanie 
wymiaru korelacyjnego. Natomiast czas opóźnień r można wyznaczyć za pomo­
cą funkcji autokorelacji lub funkcji wzajemnej informacji oraz za pomocą całki 
korelacyjnej. Metody wyboru parametrów d i r zostały omówione w pracy [13].

W opracowaniu czas opóźnień wyznaczano za pomocą całki korelacyjnej 
[13], natomiast wymiar zanurzenia metodą fałszywych sąsiadów [13],

2. Metoda „najbliższych sąsiadów"

Rozważmy szereg czasowy złożony z r obserwacji {xlrx2,---,Xn}- Algo­
rytm prognozowania przyszłych wartości jest następujący [2]:
1. W J-wymiarowej zrekonstruowanej przestrzeni stanów wyznaczamy J naj­

bliższych sąsiadów punktu x,„ w sensie odległości euklidesowej (zalecana 
liczba najbliższych sąsiadów J = 2{d +1) [1]). W zrekonstruowanej 
J-wymiarowej przestrzeni stanów element xn jest związany z punktem:

Xn = (Xn > Xn—r > X„-2r >-> Xn-(d-l)r ) (2)

gdzie:
T - opóźnienie czasowe.
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2. Obliczamy sumę:
j

dTOT ~ di (3)

gdzie dj = d(xirx„) oznacza odległość między punktami xn i x,, i = 1, 2,..., J.
3. Wyznaczamy wagę i-tego sąsiada według wzoru:

1 fi di "1 (4) 
a TOT j

4. Wybieramy pierwsze współrzędne xz- najbliższych sąsiadów punktu xn 
i na ich podstawie określamy pierwsze współrzędne ich następników x,+i> 
i= 1,2,..., J.

5. Obliczamy prognozę dla n + 1 elementu jako ważoną sumę następników 
pierwszych współrzędnych najbliższych sąsiadów:

j
^+i=Ew.-x»+i (5)

1=1

3. Wykładniki Lapunowa [5]

Pojęcie wykładników Lapunowa zostało rozwinięte podczas charaktery­
zowania wrażliwości na zmianę warunków początkowych deterministycznych 
systemów dynamicznych.

System dynamiczny opisany równaniem:

*/+! =fM t = 0,1,2,... (6)

gdzie: 
f: X-> X, X c Rm, 
X- przestrzeń stanów, 
xt,xi+\ 

jest wrażliwy na zmianę warunków początkowych, jeżeli istnieje £ > 0, takie że 
dla każdego x g X oraz dla każdego otoczenia U punktu x istnieje y g U oraz n > 1, 
takie że ||/” (*) — f" (y)|| > f, gdzie fn oznacza n-krotne złożenie odwzorowa­

nia/ tzn. po skończonej liczbie iteracji odległość pomiędzy dowolnymi bliskimi 
punktami x i y ■zxNV&szy się o więcej niż e. Miarą tej wrażliwości systemu są 
wykładniki Lapunowa.

Dla systemu dynamicznego opisanego za pomocą (6) z warunkiem po­
czątkowym A« wykładniki Lapunowa są zdefiniowane wzorem:
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A(x0 ) = lim - J ln|/'(x, J, dla m = 1 (7)
«-*» n TZt

oraz uogólniając na przypadek wielowymiarowy:

A (x0 ) = lim - Ink,, («, x0 ), z = 1,..., w, dla w > 1
«-*" n (g)

gdzie:
Hi («Ao) - wartości własne macierzy Df\x^,
Df\xf!) - macierz Jacobiego odwzorowania

Wielkość ź(x0) pokazuje (w przybliżeniu), ile razy średnio w jednej itera­
cji zwiększa lub zmniejsza się odległość między sąsiednimi trajektoriami. Do­
datnia wartość wykładnika wskazuje na rozciąganie się przestrzeni stanów, na­
tomiast ujemny wykładnik jest miarą zbieżności punktów przestrzeni stanów. 
Dla w-wymiarowego systemu dynamicznego istnieje m wykładników Lapunowa 
spełniających warunek ź,> ź,-+i, dla i = 1,.. ,,m — 1. Dodatnia wartość największe­
go wykładnika Lapunowa wskazuje na wrażliwość systemu na zmianę warun­
ków początkowych.

W latach 80. XX wieku pojawiły się różne metody pozwalające oszaco­
wać całe spektrum wykładników Lapunowa lub chociaż ten największy. 
W przypadku danych pochodzących z doświadczeń wyznaczenie całego spek­
trum nie jest możliwe. Jednak istnieje opracowany przez A. Wolfa algorytm 
obliczania największego wykładnika na podstawie szeregu czasowego [8], Me­
toda polega na mierzeniu oddalania się sąsiadujących ze sobą punktów w zre­
konstruowanej przestrzeni stanów. Najpierw wybiera się dwa sąsiednie punkty. 
Następnie mierzy odległość pomiędzy nimi po upływie określonego czasu. Jeśli 
punkty oddalają się za bardzo, znajduje się punkt zastępczy po to, aby pominąć 
etap kurczenia się systemu, ponieważ wykładnik Lapunowa mierzy oddalanie 
się punktów w przestrzeni stanów, a nie ich zbliżanie.

4. Metoda prognozowania za pomocą wykładników
Lapunowa LEM [14]

Rozważmy szereg czasowy złożony z n obserwacji {xi,x2,...,x„}. Przy da­
nym opóźnieniu czasowym t i wymiarze zanurzenia d otrzymujemy punkty zre­
konstruowanej przestrzeni stanów w postaci:

y(l) = , xl+T, x1+2r,..., )
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^(2) — (X2 ’ X2+r ’ X2+2t >•••> X2+(rf-l)r ) (9)

r(z)=(Xj, xi+T, xi+2lxi+{d_l)r )

gdzie ze[l,H - (d - l)r]. Spośród tych punktów wybieramy punkt najbliższy 
w sensie odległości euklidesowej punktowi Y(n - (d -l)r) i oznaczamy przez 
y(min_t/í5í). Minimalną odległość oznaczamy jako Dist O. Jeśli Dist UDist O 
ulega małym zmianom w czasie ewolucji systemu, to odległość między punkta­
mi Y(n - (d -l)r +1) i K(min_tfez +1) wyraża się wzorem:

Dist = Dist 0 ■ 2KÁ (10)

gdzie 2 jest wykładnikiem Lapunowa, a K jest liczbą iteracji. Ponieważ
y(n - (d - l)r +1) = (x„ (rf_1)r+1, x„_(rf_1)r+r+Ix„+l ) (11)

można wyznaczyć wartość xn+].

Rys. 1. Trajektorie punktów w zrekonstruowanej przestrzeni stanów
Źródło: Opracowanie własne na podstawie [14]

Algorytm prognozowania
Dany j est szereg czasowy złożony z n obserwacji {z, ,x2, • • • A«} •

1. Wybieramy opóźnienie czasowe r oraz wymiar rekonstruowanej przestrzeni 
stanów d.

2. Obliczamy największy wykładnik Lapunowa 2. Jeśli 2 < 0, przechodzimy do 
kroku 8.
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3. Rekonstruujemy przestrzeń stanów dla wybranych wartości r oraz d. Otrzy­
mujemy n — (d - 1 )r punktów w zrekonstruowanej ^/-wymiarowej przestrze­
ni stanów.

4. Wyznaczamy punkt /(mint/isi) położony najbliżej, w sensie odległości eu- 
klidesowej, punktu Y(n — (d - 1 )r).

5. Obliczamy odległość między punktami /(mint/isi) oraz K(n - (d - 1 )r).
6. Obliczamy odległość między punktami /(min tfei + 1) oraz K(n - (d - 1 )r).
7. Znając współrzędne punktu y(min_í/řst + 1) w zrekonstruowanej przestrzeni 

stanów, prognozujemy za pomocą największego wykładnika Lapunowa ko­
lejną wartość szeregu czasowego x„+i.

8. Zmieniamy wymiar zanurzenia d i przechodzimy do kroku 2.

5. Ocena poprawności otrzymanych prognoz

Do oceny poprawności (trafności) prognozy wykorzystano bezwzględny 
błąd prognozy w momencie T: 

oraz względny błąd prognozy w momencie T:

•100%

(12)

(13)

gdzie:
xT—wartość badanej zmiennej w momencie T,

Xt — prognoza wartości zmiennej w momencie T.

Dokładność sformułowanych prognoz, w całym przedziale weryfikacji, 
można ocenić obliczając średni błąd prognozy ex post, który jest definiowany 
jako pierwiastek kwadratowy z wariancji prognozy:

Ij n+h
= -Jt ~*r) , T= n + 1, ..., n + h (14)

gdzie:
xT— wartość badanej zmiennej w momencie T, 
xt - prognoza wartości zmiennej w momencie T, 
h - liczba naturalna oznaczająca odległość okresu prognozowanego od okresu 

bieżącego.
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Wartość średniego błędu prognozy ex post mierzy, o ile średnio odchylają 
się rzeczywiste realizacje zmiennej prognozowanej od obliczonych prognoz. 
W zastosowaniach praktycznych wygodniej posługiwać się względnym błędem 
średnim predykcji danym wzorem

(15) 
xT

Mała wartość średniego błędu oznacza dobre dopasowanie modelu pro­
gnostycznego do rzeczywistych realizacji zmiennej prognozowanej.

Do zbadania trafności prognoz, w całym przedziale weryfikacji, wykorzy­
stano również współczynnik Theila wyrażony wzorem:

n+h
2

j2 _ T=n+\_______________

2 2 , T=n+ 1, ...,n + h (16)
Z_,XT / ,XT

T—n+\ T-n+\

W przypadku idealnie dokładnej predykcji, T2 przybiera wartość równą ze­
ro. Pierwiastek kwadratowy z tego wyrażenia informuje, jaki był przeciętny błąd 
prognozy w prognozowanym okresie, bez względu na to, co było przyczyną 
takiego stanu rzeczy.

6. Omówienie wyników wyznaczonych prognoz

Przedstawione powyżej algorytmy prognozowania zastosowano do wy­
znaczenia przyszłych notowań kursów wybranych walut. Pod uwagę wzięto 
takie waluty, jak: dolar australijski AUD, korona duńska DKK, euro EUR, funt 
szterling GBP, jen japoński JPY, dolar amerykański USD, w okresie od 
1.01.1999 roku do 30.10.2004 roku obejmującym 1474 notowania. Tabele 1 i 2 
zawierają szczegółowe wyniki prognoz otrzymane odpowiednio metodą „naj­
bliższych sąsiadów” oraz metodą LEM. W tabeli 3 przedstawiono średni błąd 
prognozy oraz współczynnik Theila wyznaczonych prognoz w całym przedziale 
weryfikacji dla poszczególnych metod predykcji. Pogrubioną czcionką zazna­
czono wyniki, dla których błędy prognoz są najmniejsze.
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Tabela 1

Wyniki prognozowania kursów walut — metoda „najbliższych sąsiadów”

T 1 2 3 4 5

AUD XT 2,51 2,5223 2,5164 2,5425 2,5533

d — 6 xT 2,506197 0,54158 2,505841 2,526163 2,541948

r=29 dr 0,003803 -0,01928 0,010559 0,016337 0,011352

Df 0,001502 0,007574 0,004172 0,006474 0,004508

Vr 0,00007 0,00007 0,00007 0,00007 0,000071

DKK Xt 0,5779 0,58 0,587 0,585 0,584

d = f> xT 0,57917 0,58831 0,59198 0,59027 0,58942

T= 17 df -0,00127 -0,00831 -0,00498 -0,00527 -0,00542

Dr 0,00217 0,014122 0,008524 0,009009 0,00929

Vr 0,000052 0,000052 0,000052 0,000052 0,000052

EUR xr 4,2968 4,3125 4,3638 4,3492 4,3414

J = 5 xT 4,40886 4,4599 4,52808 4,5326 4,55788

r=9 dy -0,11206 -0,1474 -0,16428 -0,1834 -0,21648

Dr 0,025218 0,033059 0,036722 0,040833 0,047991

VT 0,006381 0,006359 0,006338 0,006313 0,006286

GBP Xt 6,2119 6,2095 6,2707 6,2596 6,2484

rf = 6 xT 6,195675 6,22244 6,223304 6,199583 6,096291

r=20 dr 0,016225 -0,01294 0,047396 0,060017 0,152109

Dr 0,002613 0,002078 0007654 0,009772 0,015356

Vt 0,000948 0,000944 0,00095 0,000958 0,000981

JPY Xt 3,1607 3,1711 3,1935 3,1949 3,2103

rf = 5 xT 3,25311 3,29563 3,34041 3,3766 3,42654

r= 25 dr -0,09241 -0,12453 -0,14691 -0,1817 -0,21624

Dr 2,802% 3,7625% 4,4192% 5,4373% 6,4345%

Vt 0,007605 0,007578 0,007545 0,007505 0,007463

USD Xr 3,396 3,3922 3,3928 3,3633 3,3397

d = 5 xT 3,45321 3,45599 3,4531 3,44927 3,44697

r=28 dr -0,05721 -0,06379 -0,0603 -0,08597 -0,10727

Dy 1,6566% 1,8456% 1,7462% 2,4924% 3,112%

VT 0,00173 0,001729 0,00173 0,001732 0,001733
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Tabela 2
Wyniki prognozowania kursów walut - metoda LEM

T 1 2 3 4 5

AUD

d = 6

r = 29

Xt 2,51 2,5223 2,5164 2,5425 2,5533

xr 2,703063 2,703014 2,702964 2,702913 2,702859

df -0,193063 -0,180714 -0,156564 -0,160413 -0,149559

Dt 0,071424 0,066857 0,057923 0,059348 0,055334

Vt 0,033071 0,033072 0,033072 0,0033073 0,033074

DKK

d = f>

t= 17

Xt 0,5779 0,58 0,587 0,585 0,584

xT 0,584526 0,585036 0,585528 0,586008 0,58648

dr -0,006626 -0,005036 0,001472 -0,001008 -0,00248

Dr 0,011336 0,008608 0,002515 0,00172 0,004229

Vr 0,004999 0,004995 0,004991 0,004987 0,004983

EUR

d = 5

t = 9

Xt 4,2968 4,3125 4,3638 4,3492 4,3414

xT 4,354995 4,35368 4,352001 4,349831 4,346974

dr -0,05819 -0,04118 0,011799 -0,00063 -0,00557

Dr 0,013363 0,009459 0,002711 0,000145 0,001282

Vt 0,004756 0,004757 0,004759 0,004762 0,004765

GBP

d = 6

r = 20

Xt 6,2119 6,2095 6,2707 6,2596 6,2484

xT 6,283835 6,293123 6,301465 6,309251 6,316689

dr -0,071935 -0,083623 -0,030765 -0,049651 -0,068289

D, 0,011448 0,013288 0,004882 0,007869 0,010811

VT 0,006059 0,00605 0,006042 0,006034 0,006027

JPY

d=5

t = 25

Xt 3,1607 3,1711 3,1935 3,1949 3,2103

xT 3,21863 3,228465 3,239738 3,252749 3,267836

df -0,05793 -0,05736 -0,04624 -0,05785 -0,05754

Dr 0,017998 0,017768 0,014272 0,017185 0,017607

VT 0,021516 0,021491 0,021416 0,021333 0,021232

USD

d = 5

r = 28

xr 3,396 3,3922 3,3928 3,3633 3,3397

xr 3,546991 3,465536 3,473917 3,482356 3,490996

d? -0,05179 -0,09504 -0,06692 -0,07336 -0,0787

Dr 0,014982 0,027423 0,019061 0,021065 0,022542

VT 0,017594 0,01755 0,017508 0,017465 0,017422
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Tabela 3

Błędy prognozy w przedziale ich weryfikacji - porównanie wybranych metod predykcji

Waluta Błędy
Metoda predykcji

NS LE

AUD
g? 0,000179 0,089393

I2 0,00000000497053 0,001243565

DKK
Gj' 0,0000305227 0,002922

i2 0,0000000027696 0,0000251433

EUR
G'p 0,028354 0,020902

I2 0,0000432595 0,0000232717

GBP
Uj- 0,005883 0,038073

l2 0,00000089895 0,0000372258

JPY
(Jf 0,025081 0,034597

I2 0,0000624183 0,0000232717

USD
Gj' 0,005975 0,041141

I2 0,00000313066 0,000146336

Analiza wyników predykcji wykazuje, że dla omawianych metod średnie 
błędy prognozy aT w całym przedziale weryfikacji są małe i przyjmują wartości 
nie większe niż 0,042. Wyjątek stanowi AUD prognozowane metodą LEM. 
Współczynniki rozbieżności są również zbliżone do zera, jednak metoda „naj­
bliższych sąsiadów” daje lepsze wyniki. Wyjątek stanowi kurs EUR. Na podsta­
wie informacji zawartych w tabelach 1-3 można stwierdzić, że dokładniejsze 
prognozy uzyskano metodą „najbliższych sąsiadów”.

W celu poprawienia efektywności metody LEM wyznaczono prognozy 
dla wymiaru zanurzenia d = 2, ..., 5 oraz dla MD. MD oznacza zastosowanie 
metody wielowymiarowej (multi-dimension phase space time sériés prédiction 
methoď), polegającej na wyznaczeniu prognoz dla poszczególnych wartości 
wymiaru zanurzenia d = 2, ...,5, a następnie obliczeniu średniej arytmetycznej 
otrzymanych prognoz. Szczegółowe wyniki, dla różnych wartości parametru d, 
zawierają tabele 4-10. Pogrubioną czcionką zaznaczono wyniki, dla których 
błędy prognoz są najmniejsze.
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Tabela 4
Wyniki prognozowania kursu EUR - metoda LEM dla różnych wymiarów zanurzenia

T 1 2 3 4 5 6 7 8 9 10
XT 4,2968 4,3125 4,3638 43492 4.3414 4,3316 4,3113 4,3093 4,3081 4,2943
xT 4,315051 4314526 4,313685 4,31209 4,312392 4,314921 4317162 431948 4322016 4,324869

r-l dr -0,01825 -0,00203 0,050115 0,03711 0,029008 0,016679 -0,00586 -0,01018 -0,01392 -0,03057
*0 Dt 0,00423 0,00047 0.011618 0,008606 0,006727 0,003865 0,001358 0,002357 0,00322 0,007068

Vt 0,003839 0,00384 0,003841 0.003842 0,003842 0,00384 0,003838 0,003835 0,003833 0,003831
xT 4,332031 4,328512 4,322094 4,32345 4,33267 4,340556 4,348417 4,356708 4,365714 4,375668
dr -0,03523 -0,01601 0,041706 0,02575 0,00873 -0,00896 -0,03712 -0,04741 -0,05761 -0.08137

*0 Dr 0,008133 0,003699 0,00965 0,005956 0,002015 0,002063 0,008536 0,010882 0,013197 0,018596
Vt 0,00533 0,005335 0,005343 0.005341 0,00533 0,00532 0,00531 0,0053 0,005289 0,005277
xT 4.352273 4,349679 4,345785 4,339532 4,327112 4,334637 4,350862 4,365649 4,380971 4,397664
dr -0,05547 -0,03718 0,018015 0,009668 0,014288 -0,00304 -0,03956 -0,05635 -0,07287 -0,10337

13 D-j- 0,012746 0,008548 0,004145 0,002228 0,003302 0,000701 0,009093 0.012907 0.016634 0.023505
Vt 0,006326 0,006329 0,006335 0,006344 0.006362 0,006351 0,006328 0,006306 0,006284 0,00626
xT 4,354995 4,35368 4352001 4,349831 4346974 4,343095 4,337511 40328131 4,327245 4,340705

VI dT -0,05819 -0,04118 0,011799 -0,00063 -0,00557 -0,01149 -0,02621 -0,01883 -0,01914 -0,04641
*0 Dt 0,013363 0,009459 0,002711 0,000145 0,001282 0,002647 0,006043 0.004351 0,004424 0,010691

Vt 0,004756 0,004757 0,004759 0,004762 0,004765 0,004769 0,004775 0,004786 0,004787 0,004772
xT 4,338589 4,336599 4,333391 4,331226 4,329787 4333302 4,338488 4,342492 4,348986 4,359727

Q dT -0,04179 0,0241 0,030409 0,017974 0,011613 -0,0017 -0,02719 -0,03319 -0,04089 -0,06543
s Dt 0,009632 0,005557 0,007017 0,00415 0,002682 0,000393 0.006267 0,007644 0.009401 0,015007

Vt 0,004484 0,004486 0,00449 0,004492 0,004493 0,00449 0,004484 0,00448 0,004474 0,0063

Tabela 5
Wyniki prognozowania kursu USD - metoda LEM dla różnych wymiarów zanurzenia

T 1 2 3 4 5 6 7 8 9 10
X1 3,4052 3,3705 3,4077 3,409 3,4123 3,396 3,3922 3,3928 3,3633 3.3397

II

xT 3,426776 3,428791 3,430928 3,433225 3,435718 3,4384444 3,441438 3,44474 3,448392 3,452438
dr -0,02158 -0,05829 -0,02323 -0,02422 -0,02342 -0,02244 -0,04924 -0,05194 -0,08505 -0,11274
Dt 0,006296 0,017001 0,00677 0,007056 0,006816 0,012344 0,014307 0,015078 0,024676 0,032655
Vt 0,008941 0,008936 0,00893 0,008924 0,008918 0,008911 0,008903 0,008895 0,008885 0,008875

II

xT 3,436103 3,439241 3,442556 3,446092 3,449891 3,453996 3,448449 3,463293 3,468578 3,474354
dr -0,0309 -0,06874 -0,03486 -0,03709 -0,03759 -0,058 -0,06625 -0,07049 -0,10528 -0,13465
Dt 0,008994 0,019987 0,010125 0,010763 0,010896 0,016791 0,019156 0,020354 0,030352 0,038757
Vt 0,011025 0.011014 0,011004 0,010993 0,01098 0,010967 0,010953 0,010938 0,010921 0,010903

3,461555 3,460178 3,458494 3.456415 3,453812 3,450485 3,446085 3.439861 3,429119 3,433336
dr -0,05636 -0,08968 -0,05079 -0,04741 -0,04151 -0,05449 -0.05388 -0.4706 -0,06582 -0,09364
Dt 0,01628 0,025917 0,014687 0,013718 0,012019 0,015791 0,015637 0,013681 0,019194 0,027273

Vt 0,010328 0,010332 0,010337 0,010344 0,010351 0,010361 0,010375 0,010393 0,010426 0,010413

vn
xT 3,546991 3,465536 3,473917 3,482356 3,490996 3,499944 3,509289 3,51911 3,529482 3,540472
dr -0,05179 -0,09504 -0,06692 -0,07336 -0,0787 -0,10394 -0,11709 -0,12631 -0,16618 -0,20078

Dt 0,014982 0,027423 0,019061 0,021065 0,22542 0,029699 0,033365 0,035893 0,047084 0,056709
Vt 0,017594 0,01755 0,017508 0,017465 0,017422 0,017378 0,017331 0,017283 0,017232 0,017179

M
D

xT 3.445356 3.448437 3.451474 3,454522 3,447604 3,460717 3,463815 3,466751 3,468893 3,475151
dT -0.04016 -0,07794 -0,04377 -0,04502 -0,0453 -0,06472 -0,07162 -0,07395 -0,10559 -0, 13545
Dt 0,011655 0,022601 0,012683 0,013177 0,013103 0,018701 0,020675 0,021332 0,03044 0,038977

Vt 0,01166 0,01165 0,01164 0,011629 0,011619 0,011608 0,011598 0,011588 0,011581 0,01156
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Tabela 6

Wyniki prognozowania kursu JPY - metoda LEM dla różnych wymiarów zanurzenia
T 1 2 3 4 5 6 7 8 9 10
XT 3,1607 3,1711 3,1935 3,1949 3,2103 3,2056 3,1853 3,1715 3,1601 3,1444

CM
xT 3,206215 3,209534 3,213305 3,217686 3,22845 3,228967 3,236272 3,245018 3,255512 3,268124
dr -0,04551 -0,03843 -0,0198 -0,02279 -0,01254 -0,02337 -0,05097 -0,06752 -0,09541 -0,12372
Df 0,014196 0,011975 0,006163 0,0007082 0,003892 0,007237 0,01575 0,020807 0,029308 0,037858
Vt 0,010236 0,010226 0,010214 0,01102 0,010183 0,010164 0,010141 0,010114 0,010081 0,010042

II
xr 3,163674 3,159916 3,15232 3,156874 3,167332 3,177032 3,187265 3,198616 3,1211536 3,122646
dr -0,00297 0,011184 0,04118 0,038026 0,042968 0,028568 -0,00197 -0,02112 -0,05144 -0,08206
Df 0,00094 0,003539 0,013063 0,012045 0,013566 0,008992 0,000617 0,006602 0,016016 0,025435
Vt 0,007186 0,007194 0,007212 0,007201 0,007177 0,007155 0,0071333 0,007107 0,007079 0,007046

7
xT 3,186994 3,13615 3,200312 3,207492 3,215423 3,224336 3,234463 3,246053 3,259385 3,274774
dr -0,02629 -0,02252 -0,00681 -0,01259 -0,00512 -0,01874 -0,04916 -0,06855 -0,09929 -0,13037
Dr 0,00825 0,00705 0,002129 0,003926 0,001593 0,005811 0,0152 0,021119 0,030461 0,039811
VT 0,010532 0,01051 0,010488 0,010465 0,010439 0,01041 0,010378 0,010341 0,010298 0,01025

u
xT 3,21863 3,228465 3,239738 3,252749 3,267836 3,285388 3,2305855 3,2329759 3,2357711 3,2390422
dr -0,05793 -0,05736 -0,04624 -0,05785 -0,05754 -0,07979 -0,12056 -0,15226 -0,19761 -0,24602
Dt 0,017998 0,017768 0,014272 0,017785 0,017607 0,024286 0,036467 0,045727 0,058853 0,072564
Vt 0,021516 0,021491 0,021416 0,021333 0,021232 0,021118 0,020987 0,020838 0,020663 0,020464

§
xT 3,193878 3,197883 3,201419 3,2087 3,218359 3,228931 3,40964 3,54862 3,71036 3,89946
df -0,03318 -0,02678 -0,00792 -0,0138 -0,00806 -0,02333 -0,05566 -0,07736 -0,11004 -0,14555
Dt 0,010388 0,008375 0,002473 0,004304 0,002504 0,007226 0,017175 0,023768 0,033915 0,04424
VT 0,011695 0,011681 0,011668 0,011641 0,011606 0,011568 0,011526 0,011476 0,01142 0,011354

Tabela 7

Wyniki prognozowania kursu GBP - metoda LEM dla różnych wymiarów zanurzenia
T i 2 3 4 5 6 7 8 9 10
XT 6,2119 6,2095 6,2707 6,2596 6,2484 6,2245 6,2176 6,2399 6,2018 6,151

rf=
2

xT 6,252665 6,251104 6,248375 6,241471 6,249432 6,2563,9 6,263208 6,270819 6,279559 6,289812
df -0,04076 -0,0416 -0,022325 -0,018129 -0,00103 -0,03181 -0,04561 -0,03092 -0,07776 -0,13881
Dt 0,00652 0,006655 0,003573 0,002905 0,000165 0,005084 0,007282 0,004931 0,012383 0,022069
Vt 0,0005112 0,005114 0,005116 0,005121 0,005115 0,005109 0,005104 0,005057 0,00509 0,00582

ÍI

xT 6,281269 6,27291 6,269024 6,285923 6,300291 6,315208 6,31711 6,50538 6,72392 6,98029
dr -0,06937 -0,06341 -0,01676 -0,02632 -0,05189 -0,09071 -0,11411 -0,11064 -0,17059 -0,24703
Dr 0,011044 0,010109 0,000267 0,004188 0,008236 0,014363 0,018022 0,017422 0,026771 0,03861
Vr 0,005845 0,005858 0,005864 0,005838 0,005815 0,005792 0,005767 0,005738 0,005704 0,005665

II

xr 6,362323 6,359653 6,355865 6,350409 6,342352 6,329871 6,308136 6,286159 6,333938 6,371122
df -0,15042 -0,15015 -0,08516 -0,09081 -0,09395 -0,10537 -0,09054 -0,04626 -0,13214 -0,22012
Dt 0,023643 0,02361 0,013399 0,0143 0,014813 0,016647 0,014352 0,020862 0,007359 0,03455
Pt 0,01049 0,010495 0,010501 0,01051 0,010523 0,010544 0,010581 0,010617 0,010537 0,010476

II

Xr 6,307095 6,323323 6,339223 6,355343 6,372025 6,389525 6,408059 6,427824 6,449018 6,471823
dr -0,0952 -0,11382 -0,06852 -0,09574 -0,12362 -0,16502 -0,19046 -0,18792 -0,24721 -0,32082
Dt 0,015093 0,018001 0,010809 0,015065 0,019401 0,025827 0,029722 0,029236 0,038334 0,049572
Vt 0,01486 0,014821 0,014784 0,014747 0,014708 0,014668 0,014625 0,01458 0,014533 0,014481

M
D

xr 6,300838 6,301747 6,303122 6,308287 6,316025 6,322728 6,327229 6,333835 6,358726 6,382696
dT 00,08894 -0,09225 -0,03242 -0,04869 -0,06763 -0,09823 -0,11018 -0,09394 -0,15683 -0,2317
Dt 0,014115 0,014638 0,005144 0,007718 0,010707 0,015536 0,017412 0,014831 0,024679 0,036301

0,009574 0,009573 0,00957 0,009563 0,009551 0,009541 0,009533 0,009524 0,009487 0,009451
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Tabela 8
Wyniki prognozowania kursu AUD - metoda LEM dla różnych wymiarów zanurzenia

T 1 2 3 4 5 6 7 8 9 10
Xt 2,51 2,5223 2,5164 2,5425 2,5533 2,5355 2,5263 2,5418 2,5398 2,5296

CM
II

xT 2,567442 2,56632 2,564728 2,562432 2,559036 2,553759 2,544476 2,537346 2,556515 2,571839
dT -0,05744 -0,04402 -0,01833 -0,01993 -0,00574 -0,01826 -0,01818 0,004455 -0,01672 -0,04224
Dt 0,022373 0,017153 0,007146 0,007779 0,002242 0,00715 0,07143 0,001756 0,006538 0,016424
Vt 0,006517 0,00652 0,006524 0,00653 0,006538 0,006552 0,006576 0,006594 0,006545 0,006506

11

xT 2,522226 2,530062 2,536288 2,54238 2,548753 2,555042 2,563235 2,571705 2,581231 2,592008
df -0,01223 -0,00776 0,010112 0,00012 0,004547 -0,02014 -0,03693 -0,0299 -0,04143 -0,06241
Dt 0,004847 0,003068 0,003987 0,0000471 0,001784 0,007881 0,014409 0,011628 0,016051 0,024077

0,00816 0,008134 0,008114 0,008095 0,008075 0,008053 0,008029 0,008003 0,007973 0,00794
xT 2,531376 2,525541 2,524878 2,533489 2,540355 2,546884 2,553492 2,560396 2,567749 2,575681
dj -0,02138 -0,00324 0,021522 0,009011 0,012945 -0,01138 -0,02719 -0,0186 -0,02795 -0,04608
Dr 0,008444 0,001283 0,008524 0,003557 0,005096 0,00447 0,010649 0,007263 0,010885 0,017891
Vt 0,006407 0,006421 0,006423 0,006401 0,006384 0,006368 0,006351 0,006334 0,006316 0,006296

S-P

xT 2,533675 2,526395 2,528017 2,538195 2,546828 2,555354 2,564266 2,57386 2,584372 2,596023
dT -0,02367 -0,0041 0,018383 0,004305 0,006472 -0,01985 -0,03797 -0,03206 -0,04457 -0,06642
Dt 0,009344 0,001621 0,007272 0,001696 0,0025841 0,00777 0,014806 0,012456 0,017247 0,025586
VT 0,008498 0,008522 0,008517 0,008483 0,008454 0,008426 0,008396 0,008365 0,008331 0,008294

M
D

xT 2,53868 2,537079 2,538478 2,544124 2,548743 2,55291 2,556367 2,500826 2,572467 2,583888
di -0,02868 -0,01478 0,007922 -0,00162 0,004557 -0,01741 -0,03007 -0,01903 -0,03267 -0,05429
Dt 0,011297 0,005825 0,003121 0,000638 0,001788 0,00682 0,011762 0,00743 0,012699 0,02101
VT 0,00663 0,006634 0,006631 0,006616 0,006604 0,006593 0,006584 0,006573 0,006543 0,006514

Tabela 9
Wyniki prognozowania kursu DKK - metoda LEM dla różnych wymiarów zanurzenia

T 1 2 3 4 5 6 7 8 9 10
XT 0,5779 0,58 0,587 0,585 0,584 0,5827 0,5801 0,5798 0,5796 0,5777
XT 0,577242 0,577209 0,577173 0,577134 0,577091 0,577043 0,576991 0,576933 0,57687 0,576799

CM dT 0,000658 0,002791 0,009827 0,007866 0,006909 0,005657 0,003109 0,002867 0,00273 0,000901
Ta Dt 0,00114 0,004835 0,017025 0,013629 0,011972 0,009803 0,005388 0,004969 0,004733 0,001562

Vt 0,005364 0,005364 0,005365 0,005365 0,005365 0,005366 0,005366 0,005367 0,005367 0,005368
XT 0,580107 0,580002 0,579885 0,579753 0,579604 0,579433 0,579234 0,578997 0,578702 0,5783
dT -0,002207 -0,00000181 0,007115 0,005247 0,004396 0,003267 0,000866 0,000803 0,000898 -0,0006

Ta Dt 0,003804 0,00000312 0,01227 0,00905 0,007585 0,005638 0,001494 0,001387 0,001553 0,001038
0,004164 0,004165 0,004166 0,004167 0,004168 0,004169 0,004171 0,004172 0,004174 0,004177
0,588841 0,588683 0,588505 0,588304 0,588075 0,587815 0,587517 0,587171 0,586767 0,586287

di -0,010941 -0,008683 -0,001505 -0,003304 -0,004075 -0,005115 -0,007417 -0,007371 -0,007167 -0,008587
Ta Dr 0,018581 0,01475 0,002557 0,005616 0,00693 0,008702 0,012624 0,012554 0,012214 0,014646

VT 0,006754 0,006756 0,006758 0,00676 0,006763 0,006766 0,006769 0,006773 0,006778 0,006784
XT 0,583554 0,584271 0,584936 0,58557 0,586188 0,586796 0,587402 0,588009 0,588621 0,58924

VT dj -0,005654 -0,004271 0,002064 -0,00057 -0,002188 -0,004096 -0,007302 -0,008209 -0,009021 -0,01154
Ta Dt 0,009689 0,00731 0,003529 0,000974 0,003732 0,006981 0,012431 0,01396 0,015325 0,019585

VT 0,006208 0,0062 0,006193 0,006186 0,00618 0,006174 0,006167 0,006161 0,006154 0,006148
XT 0,582436 0,582541 0,582625 0,58269 0,58274 0,582772 0,582786 0,582778 0,58274 0,0582656

e dr -0,004536 -0,002541 0,004375 0,00231 0,00126 -0,000072 -0,002686 -0,002978 -0,00314 -0,004956
s Dt 0,007788 0,004362 0,00751 0,003964 0,002163 0,000124 0,004609 0,005109 0,005388 0,008507

Vt 0,003873 0,003872 0,003872 0,003871 0,003871 0,003871 0,003871 0,003871 0,003871 0,003871
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Tabela 10
Błędy otrzymanych prognoz w przedziale ich weryfikacji metoda LEM - porównanie 

dla poszczególnych wartości wymiaru zanurzenia

m = 2 m = 3 m = 4 m = 5 MD

EUR
Ot 0,016567 0,023091 0,027531 0,020713 0,019456

I2 0,0000146945 0,0000285463 0,0000405773 0,0000229679 0,0000202651

USD
Ot 0,03064 0,037881 0,035752 0,060821 0,040174

/- 0,0000817405 0,000124946 0,000111294 0,000322088 0,000140525

JPY
Ot 0,032819 0,022733 0,033566 0,069382 0,057354

I2 0,000106486 0,0000510923 0,000111386 0,000475908 0,000137945

GBP
Ot 0,031965 0,06184 0,066743 0,093721 0,060324

I2 0,0000263803 0,0000987321 0,00011501 0,000226773 0,0000939506

AUD
Ot 0,016732 0,020581 0,016218 0,02153 0,016832

I2 0,0000435733 0,0000659234 0,0000409352 0,0000725474 0,0000440933

DKK
Ot 0,003096 0,002416 0,003977 0,003623 0,002256

I2 0,0000283639 0,0000172646 0,0000467964 0,0000388246 0,0000150536

Analiza wyników predykcji (tabele 4-10) wykazuje, że rząd dokładności 
wnioskowania w przyszłość był dobry. Świadczą o tym małe wartości średniej 
arytmetycznej popełnionych błędów prognozy oraz niskie wartości odchyleń stan­
dardowych błędów prognozy. Najmniejsze błędy prognozy dT, DT uzyskano dla 
wymiaru zanurzenia równego 2 dla walut GBP oraz USD. Dla JPY najdokładniej­
sze prognozy otrzymano dla parametru d = 3 lub d = 4. Dla DKK najtrafniejsze 
prognozy uzyskiwano najczęściej dla d = 3. Natomiast dla EUR najlepsze wyniki 
otrzymano dla wymiaru zanurzenia równego 2 lub 5, a także dla metody MD.

W tabeli 10 przedstawiono średni błąd prognozy oraz współczynnik Theila 
wyznaczonych prognoz w całym przedziale weryfikacji. Pogrubioną czcionką 
zaznaczono wyniki, dla których błędy prognoz są najmniejsze.

Dla każdej wartości parametru d średnie błędy prognozy oT w całym prze­
dziale weryfikacji są małe. Jednak najlepsze wyniki otrzymano dla wymiaru 
zanurzenia równego 2 (EURO, USD, GBP), 3 (JPY), 4 (AUD) lub MD (DKK). 
Współczynniki rozbieżności również są zbliżone do zera. Zatem można wnio­
skować, że otrzymane prognozy są dość dokładne. Analizując dane zawarte 
w tabeli 10, można również stwierdzić, że metoda MD daje dokładniejsze pro­
gnozy niż w przypadku gdy d = 4 lub 5.
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Podsumowanie

W opracowaniu wyznaczono przyszłe wartości szeregów czasowych, 
utworzonych z wybranych kursów walut (AUD, DKK, EUR, GBP, JPY, USD), 
w okresie od 1.01.1999 roku do 30.10.2004 roku obejmującym 1474 notowania. 
Celem artykułu było porównanie efektywności wybranych metod predykcji pod 
względem dokładności wyznaczonych prognoz. Do prognozowania przyszłych 
notowań wykorzystano metodę „najbliższych sąsiadów” oraz metodę LEM. 
W pracy porównano również wyniki wnioskowania w przyszłość metodą LEM 
dla różnych wartości wymiaru zanurzenia.
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THE „NEAREST NEIGHBOURS" METHOD VERSUS „LEM METHOD"
- COMPARISON OF THE EFFECTIVENESS OF THE METHODS PREDICTING 

THE ECONOMIC PHENOMENA DESCRIBED BY TIME SERIES

Summa ry

This paper describes two methods of time sériés prédiction. First method uses composite 
neighbours. A predicted value is defined by some weighted combination of the actual nearest 
neighbours in the reconstructed state space. Second method is based on the fundamental character- 
istic behavior that a sensitive dependence upon initial conditions (SDUIC) and Lyapunov ex­
ponents are measure of the SDUIC in chaotic Systems. This is done firstly by reconstructing 
a phase space using time séries, then using Lyapunov exponents as qualitative parameter to predict 
an unknown phase space point. After transferring the phase space point, the predicted time séries 
data can be obtained.The numerical example has shown that the first method is effective.
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FRAKTALNE WSPOMAGANIE 
ZARZĄDZANIA ZAPASAMI

Wstęp

Zapasy, czyli „[...] dobra znajdujące się w dyspozycji przedsiębiorstwa, 
przeznaczone (lecz czasowo nie włączone) do działalności produkcyjnej” 
[1, s. 181] są nieodłączną częścią aktywności przedsiębiorstwa. Z zapasami, 
a raczej polityką ich zarządzania wiąże się zatem ściśle ryzyko. W niniejszym 
artykule ryzyko jest rozumiane jako możliwość odchyleń wyniku od stanu ocze­
kiwanego będąca skutkiem zarówno konkretnego postępowania ludzkiego (mo­
tywowanego chęcią zysku bądź zniwelowania prawdopodobnej straty), jak 
i działania niezależnych czynników losowych. Wobec powyższego istnienie 
ryzyka pociąga za sobą koszty. W gospodarce materiałowej koszty magazyno­
wania są przeciwwagą kosztów niedoboru zapasów, czyli kar za niezrealizowane 
zamówienie, bądź kosztów utraty klientów na rzecz konkurencji itp. Dąży się do 
tego, aby koszty w sumie były jak najmniejsze, aby zapewnić przedsiębiorstwu 
maksymalny zysk. W warunkach idealnych nie istnieje konieczność magazyno­
wania zapasów, ponieważ są one dostarczane w odpowiednim czasie i w odpo­
wiednich ilościach tak, by być od razu wykorzystywane w procesie produkcyj­
nym, realizując w trybie natychmiastowym zamówienia klientów. Jednak sytu­
acja taka jest najczęściej niemożliwa do osiągnięcia, ze względu na czas realiza­
cji zamówień i dostawy materiałów oraz typ produkcji. Magazynowanie mate­
riałów jest zatem koniecznością. Dlatego ważne jest znalezienie takiej wielkości 
zapasów, która zapewnia maksymalne korzyści, przy minimalnych nakładach, 
wiążąc się jednocześnie z minimalnym ryzykiem. Dodatkowym czynnikiem 
utrudniającym proces planowania — a więc zwiększającym ryzyko złego osza­
cowania zapotrzebowania — jest coraz większa zmienność otoczenia. Rosnąca 
turbulencja otoczenia jest wywołana m.in. globalizacją związaną z postępem 
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technicznym oraz zmianami politycznymi, co pociąga za sobą fakt, iż przed 
współczesnymi przedsiębiorstwami są stawiane bardzo wysokie wymagania. 
Z tego względu, aby utrzymać swoją pozycję na rynku, powinny one nieustannie 
analizować podejmowane decyzje - także te dotyczące gospodarki materiałowej
- pod względem towarzyszącego im ryzyka. Oszacowanie i ocena ryzyka zwią­
zanego z gospodarką materiałową może zatem pozwolić na odpowiedni dobór 
metody zarządzania zapasami.

Należy tu zwrócić uwagę na fakt, iż większość metod zarządzania zapa­
sami , uznając, iż zapotrzebowanie na nie jest losowe, przyjmuje założenie 
o zadanym jego rozkładzie, którym najczęściej jest rozkład normalny.

W artykule przedstawiono metodę analizy i oceny ryzyka na podstawie 
miary, jaką jest wymiar fraktalny. Metodę tę nazwano analizą ARRS. Istotne 
jest, iż nie ma w niej konieczności przyjmowania założenia o normalności roz­
kładu badanego szeregu. Dzięki temu może ona wnieść dodatkowe informacje 
o badanym zjawisku, bez konieczności przyjmowania upraszczających założeń. 
Metoda ta wywodzi się z teorii chaosu (co ma duże znaczenie ze względu na 
burzliwość otoczenia współczesnych przedsiębiorstw), a ściślej rzecz biorąc
- z geometrii fraktalnej.

W dalszej części artykułu zostaną scharakteryzowane fraktale oraz wy­
miar fraktalny, tak aby kolejno mocje połączyć z pojęciem ryzyka towarzyszą­
cego działalności przedsiębiorstwa i przedstawić metodę ARRS. Następnie zo­
staną przedstawione wyniki badań empirycznych przeprowadzonych w pewnym 
przedsiębiorstwie produkcyjnym oraz wyciągnięte wnioski.

1. Fraktale i wymiar fraktalny

Fraktale są obiektami geometrycznymi pojmowanymi zazwyczaj intuicyj­
nie. Benoit Mandelbrot uznawany za „ojca” geometrii fraktalnej odżegnuje się 
od podania konkretnej definicji fraktali [6, s. 18], W literaturze przedmiotu jed­
nak wciąż podejmuje się różne próby definiowania tych obiektów - bardziej lub 
mniej precyzyjne, w zależności od potrzeb. Przykładowo, w „Nowej encyklope­
dii powszechnej” PWN fraktal został określony jako: „[...] skomplikowana figu­
ra geometryczna, o której na pierwszy rzut oka trudno powiedzieć, czy jest 
krzywą, powierzchnią, czy ma jeszcze większy wymiar; charakteryzuje ją swo-

Opartych na modelach zarządzania zapasami, które dzieli się ogólnie na: modele deterministyczne (charakte­
ryzują się znanym zapotrzebowaniem na poszczególne materiały) oraz modele probabilistyczne (które są 
modelami bardziej zbliżonymi do rzeczywistości - i stosowanymi szeroko w praktyce - nie występuje w 
nich bowiem założenie o znajomości popytu na produkty, a więc i zapotrzebowania na materiały; wartość ta 
jest zmienną losową o określonym rozkładzie i może być tylko oszacowana z określonym prawdopodobień­
stwem, na podstawie popytu w okresach poprzednich).
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ista regularność w nieregulamości - stopień tg regularności jest określony liczbą 
niecałkowitą (wymiar fraktalny)” [19]. J. Kurdewicz [4, s. 18] natomiast podaje, iż 
„[...] fraktalem na płaszczyźnie R2 nazywamy każdy niepusty i zwarty podzbiór 
płaszczyzny R2”. Następnie zaznacza, iż można uogólnić tę definicję do przestrzeni 
metrycznej zupełnej X. Z kolei E. Peters [14, s. 7] twierdzi, iż: „[...] fraktal jest 
obiektem, którego części pozostająw pewnej relacji do całości”.

W każdej z powyższych definicji została zaakcentowana jakaś - istotna 
dla jej autora - cecha fraktali.

Można stwierdzić, iż większość typowych fraktali charakteryzuje się 
trzema cechami:
1) samopodobieństwem - część figury przypomina całość w pewnej skali,
2) prostotą konstrukcji - są tworzone za pomocą wzorów rekurencyjnych,
3) niecałkowitym wymiarem (a przynajmniej większym od ich wymiaru w sen­

sie topologicznym ).
Na poniższym rysunku zaprezentowano przykładowy fraktal, jakim jest 

trójkąt Sierpińskiego (rys. 1). Rysunki a i b przedstawiają pierwsze kroki jego 
konstrukcji, natomiast na rysunku c przedstawiono jego obraz w nieskończono­
ści (oczywiście uwzględniając rozdzielczość możliwą w druku), czyli wspo­
mniany fraktal.

Rys. 1. Trójkąt Sierpińskiego (c) i sposób jego konstrukcji (a) i (b)
Źródło: [18],

Najbardziej istotną cechą fraktali - z punktu widzenia analizy i oceny ry­
zyka - jest wymiar fraktalny. Jak już wspomniano, jest on zazwyczaj liczbą 
ułamkową-jego wartość dostarcza informacji o tym, w jaki sposób dany obiekt 
wypełnia przestrzeń, w której jest zanurzony. Im wymiar fraktalny jest bliższy 

. . . . . . . . , . ** wymiarowi tej przestrzeni, w tym większym stopmu ją wypełnia .

Istnieją bowiem fraktale o całkowitym wymiarze, należą do nich tzw. diabelskie schody, krzywa Hilberta 
czy brzeg zbioru Mandelbrota - ich wymiar fraktalny wynosi 2, jednakże ich wymiary topologiczne są rów­
ne 1. Por. np. [12].
Przedstawiony na rys. 1 Trójkąt Sierpińskiego o wymiarze topologicznym I znajduje się w 2-wymiarowej 
przestrzeni, a jego wymiar fraktalny wynosi 1,585.
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Klasycznym przykładem zaczerpniętym z literatury [5; 6; 12; 18] jest po­
miar linii brzegowej Wielkiej Brytanii. Dokonując tego pomiaru za pomocą miar 
(odcinków, ramion cyrkla) o różnych długościach otrzymuje się różne wyniki. 
Im mniejsza użyta miarka jednostkowa (mniejszy rozstaw cyrkla), tym większy 
wynik, co jest skutkiem zwiększanej dokładności pomiaru, ponieważ coraz 
mniejsze elementy (od zatok, po głazy, kamienie, ziarnka piasku itd.) są brane 
od uwagę. Nie jest możliwe zatem podanie dokładnej długości linii brzegowej 
czy naturalnej granicy jakiegokolwiek państwa (gdyż zawsze jest możliwe uży­
cie mniejszej miarki), ponieważ w rzeczywistości nie jest ona zbieżna do żadnej 
wartości, lecz dąży do nieskończoności. Jednak, jak zauważył Mandelbrot, każ­
da z tych granic ma pewną sobie charakterystyczną cechę, za pomocą której 
można ją opisać. Jest to pewna stała zależność, w jakiej pozostają dana długość 
miarki i wyznaczona długość granicy, czyli właśnie wymiar fraktalny :

Nc=ced (1)

gdzie:
Ne- liczba odcinków, 
c - stała,
E— długość odcinka (miarki, rozstaw ramion cyrkla), 
D - wymiar fraktalny.

2. Ocena ryzyka związanego z gospodarką 
materiałową za pomocą wymiaru fraktalnego

Narzędzia geometrii fraktalnej zostały już niejednokrotnie zastosowane 
w ekonomii. W literaturze przedmiotu można znaleźć liczne tego przykłady . 
Aplikacja metod fraktalnych do analizy finansowych szeregów czasowych na 
giełdach, zarówno na rynkach zagranicznych, jak i polskich, daje wiele nowych 
możliwości. W literaturze przedmiotu opisano również aplikację narzędzi geo­
metrii fraktalnej do organizacji, czego przykładem jest koncepcja organizacji 
fraktalnej obszernie opisana w pracach [2; 3; 13; 16].

Głównym narzędziem wykorzystywanym podczas analiz rynków finan­
sowych jest wymiar fraktalny, który ze względu na swe właściwości może także 
służyć do oceny wielkości ryzyka.

Wymiar fraktalny wybrzeża Wielkiej Brytanii wynosi około 1,319.
Np. w [7; 14], Szerokiego przeglądu literatury z zakresu powyższego tematu dokonali autorzy opracowań 
[9] oraz [10],
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Analogicznie, badając ryzyko w przedsiębiorstwie, również można do te­
go celu wykorzystać pewne własności wymiaru fraktalnego. Wielkości zapo­
trzebowania na materiały zmieniają się wraz z upływem czasu, tworząc szeregi 
czasowe. Szeregi te po naniesieniu na układ współrzędnych są liniami łamany­
mi, czyli obiektami geometrycznymi, których wymiar topologiczny wynosi 1. 
Ich wymiar fraktalny jest natomiast liczbą z przedziału (1; 2). Im zatem bliższy 
jest on 1, tym mniej zygzakowaty jest dany wykres (zbliżony do linii prostej). 
Taki szereg czasowy jest łatwy do predykcji - można z niego łatwo odczytać 
trend i przewidzieć przyszłe zmiany. Natomiast wymiar fraktalny bliższy 2 
- odwrotnie - oznacza, że dany szereg jest bardziej „postrzępiony”, czyli 
w większym stopniu wypełnia obszar wykresu. W takiej sytuacji istnieje wyższe 
prawdopodobieństwo częstszych zmian badanego zjawiska. Szereg taki jest sze­
regiem chaotycznym, a więc mniej przewidywalnym. Zatem, analizując szeregi 
reprezentujące wielkość zapotrzebowania na dany materiał, należy wyznaczyć 
ich wymiary fraktalne - wówczas: wyższy wymiar oznacza większe ryzyko 
związane z badanym materiałem. Wymiar fraktalny funkcjonuje tu jako detektor 
sygnałów płynących zarówno z otoczenia, jak i samego procesu produkcyjnego. 
Sygnały te mają różne nasilenie ze względu na chaotyczny charakter otoczenia 
oraz zakłóceń towarzyszących nieustannie procesowi produkcyjnemu .

Jednym ze sposobów wyznaczania wymiaru fraktalnego szeregów czaso­
wych jest analiza przeskalowanych zakresów zwana inaczej analizą R/S . Ana­
liza R/S jest fundamentalną częścią przedstawianej metody analizy ryzyka 
(ARRS), dlatego właśnie za jej pomocą szacuje się wymiar fraktalny. W wyniku 
jej zastosowania otrzymuje się przede wszystkim wykładnik Hursta (H), który 
oprócz wskazania na wartość szukanego wymiaru fraktalnego wnosi niezwykle 
istotne informacje o badanym szeregu.

Analiza ARRS przebiega w sześciu krokach:

KROK 1
Zebranie danych dotyczących rozchodów z magazynu surowców w po­

staci szeregów czasowych.

* Podobną sytuację, w zastosowaniu do analizy tynków kapitałowych, opisał E. Peters [14, s.62]: „Sposób 
wypełnienia przestrzeni przez dany obiekt zależy od sił biorących udział w jego kształtowaniu. [...] 
W przypadku szeregów czasowych stóp zwrotu akcji siłami tymi będą dane mikro- i makroekonomiczne, 
które wpływają na sposób, w jaki inwestorzy postrzegają wartość aktywów”.
Analiza ta została opracowana przez angielskiego hydrologa zajmującego się pływami Nilu, H.E. Hursta, 
w połowie XX wieku. Stosując ją, udowodnił, że pływy Nilu nie tylko nie są niezależne od siebie, ale wy­
stępują w nich długookresowe trendy [12; 14].
Liczba obserwacji powinna być duża (co najmniej kilka setek) - zgodnie z wymaganiami analizy R/S.
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KROK 2
Zamiana danych na wahania , zgodnie z równaniem (2):

i xt zt - lnl —~
l x,_.

gdzie:
zt — logarytmiczna stopa zwrotu, 
xt - wartość w chwili t.

(2)

KROK 3
Przeprowadzenie obliczeń związanych z analizą przeskalowanych zakre­

sów (rys. 2).

KROK 4
Wyznaczenie wymiaru fraktalnego według zależności (3):

gdzie:
D - wymiar fraktalny, 
77- wykładnik Hursta.

D = 2-H (3)

KROK 5
Wyznaczenie wartości oczekiwanej wykładnika Hursta według poprawki 

[7; 15; 17]:
1. Dla podszeregów o małej długości, czyli dla n < 30, przybliżenie wartości 

oczekiwanej przeskalowanego zakresu otrzymuje się z równania (4):

n

1 
n —

gdzie r(n) jest funkcją gamma Eulera.

2. Natomiast dla podszeregów o długości n > 30 - ze wzorów (5-7):

E(R/Sn) = n-^j-G2(n)S2(n)

(4)

(5)

Gdyż to właśnie nieoczekiwane wahania są źródłem ryzyka.
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gdzie:

(6)

(2,5
(7)

KROK 6
Interpretacja wyników.

Interpretacja wyników przebiega w dwóch płaszczyznach:
1. Za pomocą analizy porównawczej :

Im większy wymiar fraktalny, tym większe ryzyko towarzyszy badanej dzie­
dzinie. Porównując zatem wymiary fraktalne dwóch szeregów, można okre­
ślić relatywnie bardziej ryzykowny obszar.

2. Interpretując wartość wykładnika Hursta:
Ogólnie: gdy Hjest różny od E(H) co najmniej o 1 /Jn (gdzie TVJest liczbą 

wszystkich obserwacji), wtedy badany szereg nie jest klasycznym procesem 
losowym - nie ma rozkładu normalnego. Wówczas można mieć do czynienia 
z jedną z dwóch sytuacji:
- H> E(H), co oznacza, iż w szeregu występuje efekt długiej pamięci,
- H < E(H), co jest wynikiem większej zmienności szeregu.
Szczególnie: wykładnik Hursta może przyjmować wartości z przedziału 
[0,1]. Pozwala on zaklasyfikować badany szereg do jednego z trzech rodzajów:

1. Gdy H= 0,5, czyli wymiar fraktalny szeregu wynosi 1,5 (zatem - dla szeregów
o niezbyt dużej liczbie obserwacji: H e — (1/VŤV^ E(H) + (1/-/Żv))),

szereg jest szeregiem losowym, mającym charakter błądzenia przypadkowe­
go, czyli ruchem Browna. Dane są zgodne z rozkładem normalnym. Istnieje 
jednakowe prawdopodobieństwo wzrostu i spadku wartości badanej cechy.

2. Gdy II < 0,5 (czyli odpowiednio: II < E(H) - (1 / a/tV)), badany szereg jest 

szeregiem antypersystentnym, mającym własność „powracania do średniej”. 
Im //bliższy jest 0, a zatem wymiar fraktalny bliższy 2, tym zachowanie sze­
regu jest bardziej chaotyczne niż w przypadku błądzenia losowego. Szeregi 
takie charakteryzują się bardzo postrzępioną linią, często dochodzi w nich do 
odwracania trendu, czyli — inaczej mówiąc — wyodrębnienie jakiegokolwiek 
trendu jest niemożliwe. Prawdopodobieństwo, że po wzroście nastąpi spadek 
(lub odwrotnie), jest wyższe od prawdopodobieństwa dwóch jednokierunko­
wych zmian.

x Æ 2,4718-3,5466n + l,4635n2 
S2(n) = -

n —0,2491 
n-1
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Rys. 2. Schemat przebiegu analizy R/S
Źródło: Opracowanie własne na podstawie [7; 8; 14; 17].
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3. Natomiast w ostatnim przypadku, wówczas gdy H > 0,5 (czyli: II > E(H) + 
+ (l/VŤv)), badany szereg jest persystentny, co oznacza, iż wzmacnia swój 

trend. Wymiar fraktalny zawiera się w przedziale (1,0; 1,5). W takiej sytuacji 
istnieje wyższe prawdopodobieństwo nastąpienia po sobie dwóch takich sa­
mych (co do kierunku) zmian niż przeciwnych. Szeregi persystentne są ułam­
kowymi ruchami Browna — przykładami obciążonego błądzenia przypadko­
wego z siłą obciążenia tym większą, im H bliższy 1.

Wartość wykładnika Hursta jest zatem prawdopodobieństwem - a raczej 
miarą obciążenia - z jakim nastąpią po sobie dwie jednakowe (jednokierunko­
we) zmiany w badanym szeregu [14],

3. Analiza zużycia zapasów jako przykład analizy 
ARRS

Badaniom poddano zapotrzebowanie na materiały w pewnym przedsię­
biorstwie. Zanalizowano zapotrzebowanie na walcówkę - będącą surowcem, 
z którego wytwarza się wszystkie wyroby badanego przedsiębiorstwa.

Należy w tym miejscu podkreślić wagę oraz duże ryzyko związane z od­
powiednim gospodarowaniem zapasami walcówki, gdyż od tego zależy nie tylko 
powodzenie realizacji zamówień, ale i również fizyczna możliwość ich przyję­
cia. Ponieważ wiele z zamówień kierowanych do przedsiębiorstwa bywa składa­
nych w „trybie natychmiastowym”, częstokroć - bez posiadania odpowiednich 
rezerw walcówki - przedsiębiorstwo nie ma odpowiedniego potencjału do ich 
przyjęcia. Pozyskanie walcówki wiąże się bowiem, oprócz okresu realizacji 
zamówienia i dostawy (co często jest związane z wyższymi kosztami wynikają­
cymi m.in. z windowania cen surowca przez dostawców — ze względu na pilność 
zamówienia), z kilkudniowym okresem „leżakowania” surowca. W związku 
z tym brak odpowiedniej ilości zapasów walcówki jest obarczony ryzykiem 
utraty klienta - na rzecz konkurencji. Z kolei przetrzymywanie zbyt dużej ilości 
zapasów wiąże się z ryzykiem zbyt dużego zamrożenia środków płatniczych 
oraz ponoszeniem kosztów magazynowania.

Walcówkę można podzielić - ze względu na typ realizowanej w przedsię­
biorstwie produkcji - głównie na dwa rodzaje: walcówkę „cienką”, której śred­
nica nie przekracza 6,5 mm, oraz walcówkę „grubą” - o średnicach większych.
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Zebrano dane dotyczące:
1. Rozchodów walcówki z magazynu ogółem, w okresie: 1 VIII 2003-25 V 

2006; 662 dziennych obserwacji.
2. Rozchodów walcówki „cienkiej” z magazynu, w okresie: 1 VIII 2003-25 V 

2006; 575 dziennych obserwacji.
3. Rozchodów walcówki „grubej” z magazynu, w okresie: 1 VIII 2003-25 V 

2006; 576 dziennych obserwacji.

Walcówka ogółem

Wahania zmian poziomu zapotrzebowania na walcówkę ogółem przed­
stawiono na rys. 3.

Rys. 3. Wahania zmian

W pierwszej kolejności zbadano zgodność danego szeregu z rozkładem 
normalnym . Szereg wykazał brak zgodności z rozkładem normalnym , co

W tym celu zastosowano procedurę nieparametrycznego testu zgodności cAi-kwadrat Q2) [11]. Zgodnie 
z jego założeniami, weryfikowana hipoteza ma postać: Ho: rozklad Z, ma rozkład normalny. Wobec hipotezy 
alternatywnej: Hp rozklad Z, nie ma rozkładu normalnego. Sprawdzianem hipotezy Ho jest statystyka określona

równaniem:  V-1 , gdzie to wartość empiryczna statystyki, n, - liczebność
Zt «Pi

i-tego przedziału klasowego (liczebności empiryczne), npi - liczba jednostek, które powinny znaleźć się 
w i-tym przedziale klasowym, przy założeniu, że cecha ma rozkład normalny (liczebności teoretyczne). Relacja 
wyznaczająca zbiór krytyczny ma postać: , gdzie/»2 jest wartością krytyczną k = r - s - 1

stopni swobody i P= a, przy czym s oznacza liczbę parametrów, które należy wstępnie wyznaczyć, ar- liczbę 
przedziałów klasowych.
W wyniku przeprowadzonego testu odrzucono hipotezę Ho na rzecz hipotezy alternatywnej (Hi), gdyż = 
= 16,85 wobec /„2 = 15,51 (dla a = 0,05), czyli: £ > 
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oznacza, iż w takim przypadku wysoce pomocne powinno być zastosowanie 
analizy fraktalnej, czyli metody ARRS.

Wynik analizy przeskalowanych zakresów jest widoczny na wykresie 
(rys. 4).

Wykładnik Hursta badanego szeregu wynosi H — 0,238, zatem wymiar 
fraktalny badanego szeregu zgodnie z równaniem (3) wynosi D = 1,762.

Rys. 4. Analiza R/S rozchodów walcówki ogółem

Po dodatkowych obliczeniach (równania 4-7) otrzymano wartość oczeki­
waną wykładnika Hursta: E(H) = 0,545 oraz wartość krytyczną: 1 / VŤV = 0,039. 

Wykładnik Hursta znajduje się poza przedziałem krytycznym, który wynosi 
(0,505; 0,584), co oznacza, iż szereg nie jest błądzeniem losowym - ma on cha­
rakter bardziej chaotyczny i mniej przewidywalny, czyli jest obarczony więk­
szym ryzykiem.

Walcówka „cienka"

W dalszej kolejności badaniom poddano rozchody z magazynu walcówki 
oznaczonej jako „cienka”. Wahania poziomów zapotrzebowania na ten surowiec 
przedstawiono na rys. 5.

Wykres jest wykresem podwójnie logarytmicznym obrazującym zależność ln(7i/5„) od ln(n). Na punkty 
empiryczne została na nim naniesiona prosta regresji.
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Wahania

o
-2
-4
-6

Rys. 5. Wahania zmian poziomu zapotrzebowania na walcówkę „cienką”

Szereg wielkości zapotrzebowania na walcówkę „cienką” również nie jest 
zgodny z rozkładem normalnym. Wyniki analizy R/S zostały zaprezentowane 
na rys. 6.

Analiza R/S

Rys. 6. Analiza R/S rozchodów walcówki „cienkiej”

Wynik ten jest bardzo zbliżony do wyniku analizy walcówki ogółem: wy­
kładnik Hursta wyniósł H = 0,240, wobec czego wymiar fraktalny badanego 
szeregu: D = 1,760.

= 39,58 wobec = 18,31 (dla a = 0,05), czyli: £ > /,/.
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Po dodatkowych obliczeniach (równania 4-7) otrzymano wartość oczeki­
waną wykładnika Hursta na poziomie: E(H) = 0,546 oraz wartość krytyczną: 
1/VŤV = 0,042, co pozwoliło na określenie przedziału krytycznego (0,504; 

0,586). Zatem wykładnik Hursta znajduje się poza tym przedziałem, co oznacza, 
jak poprzednio, iż szereg nie jest błądzeniem losowym. Badany szereg ma cha­
rakter mniej przewidywalny, czyli jest obarczony wysokim ryzykiem.

Walcówka „gruba"

W ostatniej części badaniom poddano rozchody z magazynu walcówki 
„grubej”. Wykres wahań tych rozchodów znajduje się na rys. 7. Po weryfikacji 
odrzucono również hipotezę o normalności rozkładu badanego szeregu .

Wahania

6 -

4 -

2 -

0 -

-2 -

-4 -

-6 -

Rys. 7. Wahania zmian poziomu zapotrzebowania na walcówkę „grubą”

Wykres obrazujący analizę przeskalowanych zakresów znajduje się na rys. 8.

Rys. 8. Analiza R/S rozchodów walcówki „grubej”

* £* - 17,13 wobec = 16,92 (dla a= 0,05), czyli: £ >
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Wykładnik Hursta badanego szeregu wynosi H = 0,218, zatem wymiar 
fraktalny: D = 1,782, czyli jest nieznacznie większy od wymiarów fraktalnych 
szeregów poprzednich.

Ponadto, po uwzględnieniu poprawki, wartość oczekiwana wykładnika 
Hursta, jak w przypadku walcówki „cienkiej” wynosi E(H) = 0,546, a wartość 
krytyczna: = 0,042. Zatem wykładnik Hursta znajduje się poza przedzia­

łem krytycznym, który wynosi (0,504; 0,586), co oznacza, iż szereg tak samo jak 
w poprzednim przypadku nie jest błądzeniem losowym i wykazuje większą 
zmienność.

Wnioski

Wszystkie przebadane szeregi nie są zgodne z rozkładem normalnym oraz 
wykazują dużą zmienność. Zmienność ta jest ponadto wyższa niż w przypadku 
błądzenia losowego. Istnieje zatem znaczne ryzyko nieoczekiwanych zmian, 
które mogłyby zakłócić gospodarkę zapasami materiałowymi. Dodatkowo (po­
równując odpowiednie wymiary fraktalne) wiadomo, iż wyższy poziom ryzyka 
jest związany z zapotrzebowaniem na walcówkę „grubą”, a nie „cienką”, co 
powinno być brane pod uwagę podczas planowania wielkości zapasów. Również 
faktem jest wykrycie zjawiska chaosu w badanej sferze (wszystkie szeregi mają 
charakter chaotyczny). Może to być odzwierciedleniem burzliwości rynku za­
opatrzenia lub rynku zbytu przedsiębiorstwa i jest związane z dużym ryzykiem. 
Wobec powyższego zalecane jest głębsze przyjrzenie się obu rodzajom badane­
go surowca i monitoring zmian wielkości związanych z gospodarowaniem bada­
ną walcówką (szczególnie drugiego typu) w celu minimalizacji ryzyka.

Podsumowanie

Burzliwość i chaotyczność współczesnego rynku jest główną przesłanką 
przemawiającą za wykorzystaniem metod wywodzących się z teorii chaosu, 
jakimi są metody fraktalne w przedsiębiorstwach. Wymiar fraktalny jest miarą 
bardzo wrażliwą na niejednorodność badanego zjawiska - pozwala on na detek­
cję zarówno długoterminowych zależności, jak i chaosu w szeregu, którego war­
tości są kształtowane zarówno przez bliższe (samo przedsiębiorstwo), jak i dal­
sze otoczenie (otoczenie przedsiębiorstwa), a więc może być wykorzystywany 
jako miara ryzyka.

W niniejszym artykule przedstawiono zastosowanie fraktalnej analizy ry­
zyka (ARRS) w gospodarce materiałowej. Jednakże metoda ta może być stoso­
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wana w każdej mierzalnej sferze działalności przedsiębiorstwa. Dzięki znajomo­
ści wymiaru fraktalnego badanej dziedziny dany podmiot, dysponując wiedzą 
o charakterze zjawiska, jest w stanie adekwatnie reagować na zmiany zachodzą­
ce w otoczeniu. Następstwem tego jest uniknięcie stagnacji oraz zwiększenie 
efektywności.

Należy jednak zaznaczyć, iż analizując ryzyko metodami fraktalnymi, nie 
można zupełnie odrzucić wcześniej stosowanych i powszechnie uznanych me­
tod. W niektórych przypadkach (np. braku normalności badanego szeregu) ana­
liza ARRS może dać lepsze efekty, natomiast w pozostałych może stanowić 
czynnik komplementarny.
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THE FRACTIONAL SUPPORT OF RESERVES MANAGEMENT

Summa ry

In the paper the fractional method of risk analysis (ARRS) as the support of reserves 
management has been presented. Turbulence of the Contemporary market is the reason for the 
application of the fractional methods (as derived from chaos theory) into enterprises. The main 
element of the ARRS analysis is the rescaled range analysis — via one the fractional dimension is 
assessed. The fractional dimension is very susceptible measure to heterogeneity. The results of the 
researches carried out in a productive enterprise as an exempláry case of the proposed method 
hâve been presented. The demand for blank, which is the main resource in the enterprise, was 
examined. The importance and high risk concemed with the management of blank resources hâve 
been stressed. Ail of the examined sets of data had chaotic character and variation higher than in 
random walk which indicated high risk level.
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Ewa Pośpiech

ZASTOSOWANIA ALGORYTMU
KODUJĄCEGO RSA 
W BANKOWOŚCI ELEKTRONICZNEJ

Wstęp

Coraz większe możliwości, jakie daje korzystanie z powszechnie dostęp­
nego sprzętu i techniki komputerowej, sprawiają, że przekazywanie informacji, 
zakupy internetowe czy korzystanie z bankowości elektronicznej stają się co­
dziennością zarówno dla przedstawicieli różnych instytucji, jak i dla użytkowni­
ków prywatnych. Istotną rzeczą jest bezpieczeństwo przesyłanych informacji 
oraz dokonywanych transakcji. Ogromne zastosowanie w tej dziedzinie ma 
współczesna kryptografia, której rozwój jest możliwy dzięki zaawansowanym 
narzędziom matematycznym i informatycznym.

Celem artykułu jest przedstawienie jednego ze stosowanych w kryptogra­
fii algorytmów - systemu RSA (jeden z tzw. systemów jawnego klucza), który 
jest oparty na elementarnej teorii liczb, a jego bezpieczeństwo zależy od trudno­
ści rozkładania dużych liczb całkowitych na czynniki pierwsze.

1. Definicje i twierdzenia

Przedstawienie każdego zagadnienia, zwłaszcza takiego, które wykorzy­
stuje aparat matematyczny, wymaga podania istotnych określeń przybliżających 
wprowadzane pojęcia. W tym celu niezbędne jest przytoczenie najważniejszych 
definicji i twierdzeń umożliwiających implementację pojęć w praktyce.
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Twierdzenie 1 (Algorytm dzielenia)
Niech a, b e Z, b > 0. Wtedy istnieje dokładnie jedna para liczb całkowi­

tych q i r, takich że a - bq + r, gdzie 0 < r < |h|.

Liczbę q nazywa się ilorazem, a liczbę r resztą z dzielenia a przez b.
Dalsza część rozważań będzie się koncentrować na resztach z dzielenia 

liczb całkowitych. Technika pracy z resztami jest zwana arytmetyką modularną.
W arytmetyce modularnej mamy dodatnią liczbę całkowitą n, zwaną mo­

dułem. Dowolne dwie liczby całkowite, których różnica jest całkowitą wielo­
krotnością modułu, są traktowane jako równe lub równoważne z modułem. 
Wprowadza się następującą definicję.

Definicja 1

Jeśli n jest dodatnią liczbą całkowitą oraz a, b są liczbami całkowitymi, 
wówczas mówimy, że a jest przystające do b modulo n i piszemy:

a = b (mod ri)
jeśli a —fi jest liczbą całkowitą będącą wielokrotnością liczby n, tzn. n | (a —b).

Dla dowolnego n każda liczba całkowita a jest równoważna dokładnie 
jednej z liczb 0, 1,2, ..., n - 1. Liczbę tę nazywa się resztą z liczby a modulo n, 
a zbiór reszt modulo n jest oznaczany jako Zn = {0, 1, 2,..., n - 1}.

Jeśli a jest nieujemną liczbą całkowitą, to jej reszta modulo n jest resztą 
z dzielenia a przez n.

Twierdzenie 2*

Niech a i n będą liczbami całkowitymi i n > 1.
NWD(a, ri) = 1 w Z wtedy i tylko wtedy, gdy równanie ax = 1 ma rozwią­

zanie w zbiorze Z„, czyli ax = 1 (mod n), x e Z„**.

Lemat 1

Niech p, r, s, c e Z oraz p to liczba pierwsza.
Jeśli p^Cc oraz rc = sc (mod p), wówczas r = 5 (mod p).

W poniższym twierdzeniu stosuje się następujące oznaczenia: NWD (a. n) - największy wspólny dzielnik 
liczb a in, Z- zbiór liczb całkowitych.
Równanie można rozwiązać stosując np. algotytin Euklidesa (zob. [6]).
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Lemat 2 (Male twierdzenie Fermata)
Jeśli p jest liczbą pierwszą, ae Z i p^( a, to:

op-1 = l (modj>)

Załóżmy, że p i q są różnymi dodatnimi liczbami pierwszymi. Niech n = 
= pq i k = (p - l)(ę -1). Wybierzmy d takie, że liczby d i k są względnie pierw­
sze, czyli NWD(d, k) = 1. Wówczas, na mocy twierdzenia 2, równanie dx = 1 ma 
rozwiązanie w Zk.

A zatem, równanie:
drsl(modÁ) (1)

ma rozwiązanie w Zk, które będzie oznaczone przez e.

Twierdzenie 3
Niechp, q, n, k, e, d są liczbami określonymi jak wyżej. Wówczas 

bed = b (mod n) , V b e Z

Podane wyżej twierdzenia mają duże znaczenie przy określaniu istoty al­
gorytmu RSA.

2. Opis systemu RSA
RSA jest jednym z najpopularniejszych algorytmów kryptografii asyme­

trycznej . Kryptografia asymetryczna jest obecnie powszechnie stosowana do 
wymiany informacji poprzez kanały o niskiej poufności, jak np. Internet, jednak 
najważniejsze zastosowania tego rodzaju kryptografii to przede wszystkim szy­
frowanie i podpisywanie cyfrowe. Czynności te wymagają istnienia dwóch klu­
czy - prywatnego i publicznego, przy czym odtworzenie klucza prywatnego na 
podstawie klucza publicznego musi być obliczeniowo trudne. W przypadku 
szyfrowania, klucz publiczny, który jest udostępniony każdemu chcącemu za­
szyfrować wiadomość, jest używany do zakodowania informacji, natomiast 
klucz prywatny — do jej odczytania.

W celu wygenerowania klucza RSA losuje się dwie duże liczby pierwsze 
p i q (w praktyce liczby te powinny być kilkudziesięciocyfrowe, takie by np. 
pq > 10,5°) oraz liczbę d względnie pierwszą z k = (p-l)(ę-l). Rozwiązując 
równanie (1), uzyskuje się liczbę e, stanowiącą wraz z liczbą n klucz publiczny.

Kryptografia asymetryczna to rodzaj kryptografii, w którym używa się zestawów dwóch lub więcej powią­
zanych ze sobą kluczy, umożliwiających wykonywanie różnych czynności kryptograficznych. Szyfry asyme­
tryczne opierają się na istnieniu pewnych trudnych do odwrócenia problemów (np. łatwo dokonać mnożenia, 
trudniej rozłożyć na czynniki pierwsze) (na podstawie: http://pl.wikipedia.org).

http://pl.wikipedia.org
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Wiadomość, która ma być przesłana, musi być najpierw zamieniona na 
formę numeryczną przez zastąpienie każdej litery lub spacji (ewentualnie innych 
znaków) liczbą dwucyfrową. Przykładowy sposób przyporządkowania podaje 
tabela 1.

Tabela 1

spacja A B C D E F G H I J K L M N O

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

p Q R S T U V W X Y Z ( )
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Numeryczny odpowiednik wiadomości niech będzie oznaczony literą B.
Niech p, q, n, k, e, d będą liczbami spełniającymi założenia twierdzenia 3 

oraz niech dodatkowo liczby p i q są takie, że B <pq = n.
Aby zakodować wiadomość B, należy posłużyć się funkcją w postaci:

/(B) = Be MOD n = C

czyli obliczyć resztę z liczby Be dzielonej przez n. Liczba C jest zakodowaną 
formąB. Osoba, która otrzymuje C, może jązdekodować, obliczając:

f~\C) = Cd MODn

czyli resztę z liczby Cd dzielonej przez n. Reszta z liczby Cd jest jedną z liczb 
pomiędzy 0 i n, przystającą do Cd modulo n. Ponieważ Be przystaje modulo 
n do swojej reszty C, więc na mocy twierdzenia 3 mamy:

Cd = {Be)d - Bed = B (modn)

W ten sposób uzyskuje się oryginalną wiadomość. A zatem, oryginalna 
wiadomość B, 0 < B < n, jest resztą z liczby Cd z dzielenia przez n.

System RSA spełnia warunki systemu jawnego klucza:
1. Liczby p i q są dużymi liczbami pierwszymi. Podobnie liczby B, e, C, d są 

dużymi liczbami, lecz istnieją szybkie algorytmy znajdowania reszt dla 
Be i Cd modulo n. Tak więc algorytmy kodujące i dekodujące systemu RSA 
są rachunkowo szybkie i skuteczne.

2. Używając systemu RSA, każdy użytkownik w sieci używa komputera do 
wyboru odpowiednich p, q, d, a następnie do obliczenia n, k, e. Liczby e i n 
są publicznie udostępnione, natomiast czynniki pierwsze p i q dla n oraz licz­
by d i k są utajnione. Każdy użytkownik komputera może zakodować infor­
macje używając e oraz n, ale praktycznie nie ma sposobu, dla niewtajemni­
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czonych, aby określić d bez znalezienia najpierw p i q (poprzez rozłożenie n 
na czynniki). A zatem, system RSA jest bezpieczny dopóty, dopóki nie dys­
ponuje się szybkimi metodami rozkładania liczb na czynniki.

Uwaga!

Jeśli n jest wybrane jak wyżej, mogą istnieć informacje, które w formie 
liczbowej są większe niż n. W takich przypadkach oryginalna wiadomość jest 
rozkładana na kilka bloków, których wartość liczbowa jest mniejsza niż n.

3. Przykład szyfrowania za pomocą RSA

Rozważmy następującą sytuację: Odziały banku mają w sposób tajny 
przekazać centrali informację o wielkości dziennego zysku.

Do zaszyfrowania informacji można posłużyć się algorytmem RSA.
Niechp = 109, q = 3361. Wówczas n = 366349, k = 362880.
Niech d = 1259, która jest względnie pierwsza z 362880.
Rozwiązując równanie:

1259x= 1 (mod 362880)
otrzymuje się e = 44099.

Zakodowana ma być wiadomość:
DZIENNY ZYSK (PLN) DRUGI MAJA BR.: 200000

przy czym umawiamy się, że wiadomość po dwukropku oznacza liczbę, której 
nie zamienia się na inną postać numeryczną.

Można zakodować tylko liczby mniejsze niż n = 366349. Tak więc wia­
domość zapisuje się w blokach trzyliterowych (spację oznaczono symbolem #):

DZI ENN Y#Z YSK #(P LN)
042609 051414 250026 251911 002916 121431

# D R U GI # M A JA# BR. :## 200000
000418 210709 001301 100100 021827 300000 200000

skąd x- 141007.

Każdy blok jest liczbą mniejszą niż 366349.
Dla pierwszego bloku, 042609, oblicza się:

x = 426O9440" (mod 366349) £ Biblioteka 
i Główna

Dysponując 100-cyfrowymi liczbami p i q, przy osiąganej przez współczesne komputery szybkości oblicze­
niowej, czas znalezienia rozkładu na czynniki pierwsze jest szacowany na kilkadziesiąt lat (według [2]).
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Inne bloki są kodowane podobnie, a zatem zakodowana forma wiadomo­
ści jest następująca:

141007 281345 227082 122712 055921 257754
268301 191382 144634 018596 339204 152256 074226

Osoba otrzymująca wiadomość użyje d = 1259 do zdekodowania każdego 
bloku. Na przykład, aby zdekodować 141007, oblicza się:

a = 1410071259 (mod 366349) 
skąd a = 042609.

Jest to oryginalny pierwszy blok D Z I.

4. Zastosowanie RSA do podpisów cyfrowych

RSA może być także stosowany do podpisów cyfrowych. Podpis cyfrowy 
jest dowodem wykonania transakcji, przeprowadzonej za pomocą komputera, 
przez konkretną osobę. Definicja podpisu cyfrowego, według polskiej normy 
PN-I-02000, brzmi: „Przekształcenie kryptograficzne danych umożliwiające 
odbiorcy danych sprawdzenie autentyczności i integralności danych oraz za­
pewniające nadawcy ochronę przed sfałszowaniem danych przez odbiorcę” (na 
podstawie: http://www.ebanki.info). W praktyce, złożenie podpisu cyfrowego 
polega na dołączeniu do wiadomości (transakcji) dodatkowej informacji mającej 
na celu weryfikację jej źródła.

Do złożenia podpisu cyfrowego jest potrzebny klucz asymetryczny (para 
kluczy publiczny/prywatny). Generowanie podpisu dokonuje się etapami: dane 
dokonywanej operacji są przekształcane w ciąg bitów, dla którego oblicza się 
unikatową krótką wartość, tzw. hasz . Uzyskany hasz jest następnie szyfrowany 
prywatnym kluczem użytkownika za pomocą algorytmu kodującego (np. RSA), 
co uniemożliwia równoczesne zmiany w danych operacji i adekwatne do zmian 
podrobienie podpisu cyfrowego. Ten zaszyfrowany skrót stanowi podpis użyt­
kownika, który wraz z danymi operacji jest transmitowany do serwera bankowe­
go, gdzie następuje weryfikacja prawdziwości podpisu. Porównuje się wartości, 
które uzyskuje się dekodując, za pomocą klucza publicznego, otrzymany podpis 
oraz obliczając hasz dla otrzymanej (sformatowanej) wiadomości oryginalnej.

Hasz uzyskuje się za pomocą tzw. funkcji haszującej, która przyporządkowuje każdej liczbie pewną wartość 
określaną również jako wartość skrótu funkcji. Zastosowanie algotytmu haszującego umożliwia wykrycie 
wszelkich modyfikacji w danych transakcji, jeżeli takowe zostałyby dokonane.

http://www.ebanki.info
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Jeżeli uzyskane wartości są identyczne, oznacza to, że podpis jest prawidłowy 
i operacja jest wykonywana.

Przy tworzeniu podpisów cyfrowych, w których do szyfrowania wykorzy­
stuje się algorytm RSA, koduje się hasz wiadomości kluczem prywatnym, nato­
miast dekodowanie odbywa się za pomocą klucza publicznego, czyli szyfrowa­
nie dokonuje się z odwrotnym zastosowaniem klucza.

Rozważmy przykład: Chcemy przesłać dyspozycję do banku, której sfor­
matowana postać jest następującym ciągiem zer i jedynek (wartość umowna):

110000101111000000001101011011000

Niech funkcja haszująca polega na obliczeniu dla danej liczby reszty 
z dzielenia przez 1121893, czyli h(w) = w MOD 1121893. Hasz wiadomości 
będzie wartością:

110000101111000000001101011011000 MOD 1121893 = 821037

Uzyskany skrót jest szyfrowany i po dołączeniu do sformatowanej wia­
domości przesyłany drogą elektroniczną do banku.

Niech kluczem prywatnym użytkownika będzie para liczb (d, n) = (1259, 
3666851), a kluczem publicznym para (e, ri) = (1535939, 3666851). Wówczas 
podpis dołączony do wiadomości będzie liczbą:

p = 8210371259 (mod 3666851)

czyli p = 812773.
Bankowy serwer otrzymuje wiadomość, dla której liczy hasz, czyli h(w) = 

= 821037, a następnie dekoduje kluczem publicznym uzyskany podpis, licząc:

x = 8127731535939 (mod 3666851)

czyli x = 821037. Ponieważ h(w) = x, więc podpis jest prawidłowy i transakcja 
może zostać wykonana.

Podsumowanie

Narzędzia matematyczne mają szerokie zastosowanie w różnych dziedzi­
nach nauki. Przedstawione w niniejszym artykule zastosowanie systemu RSA, 
powszechnie stosowanego w kryptografii, miało na celu ukazanie jednego 
z takich narzędzi, które dzięki powszechnie dostępnej technice komputerowej 
jest wykorzystywane do różnego typu transakcji internetowych. Kodowanie 
informacji oraz składnie podpisów cyfrowych stanowi gwarancję bezpieczeń­
stwa dokonywanych operacji.
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Algorytm (system) RS A, który jest jednym z kilku stosowanych algoryt­
mów do różnego rodzaju operacji wykorzystujących szyfrowanie, jest pierw­
szym z systemów kryptografii asymetrycznej, której rozwój dał możliwość za­
stosowania swoich narzędzi w systemach elektronicznego uwierzytelniania, 
obsługi podpisów cyfrowych czy do kodowania poczty. Użyteczność tego rodza­
ju narzędzi w różnych dziedzinach życia jest niezaprzeczalnym argumentem za 
przybliżaniem stosowanych zagadnień teoretycznych.
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SELECTED APPLICATIONS OF THE RSA CRYPTOSYSTEM

Summary

Possibilities of using computer technology become larger and larger. Nowadays, sending 
e-mails, e-commerce or Internet banking are more and more popular not only among the institution 
représentatives but also among private users. One of the most important elements connected with 
these activities is safety of such transactions. In this case, advanced mathematical and computer 
tools, such as modern cryptography, are of crucial importance.

The purpose of the article is to present one of the public-key cryptography (asymmetr ic 
cryptography) algorithms - RSA algorithm. It is based on number theory. It uses a pair of 
cryptographie keys - a public key (which may be distributed) and a private key (which is secret). 
A message encrypted with the public key can be decrypted only with the corresponding private 
key. The keys are related mathematically but the private key cannot be practically derived from the 
public key.

Public-key cryptography are used in two main branches: public-key encryption and digital 
signatures. The article contains examples of the two mentioned above applications of the RSA 
cryptosystem.
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ALGORYTM DOBORU
ZMIENNYCH OBJAŚNIAJĄCYCH 
O NIESTABILNEJ SILE ZALEŻNOŚCI

Wprowadzenie

W jednym ze swoich wcześniejszych artykułów autorka zauważyła, że 
czas wpływa na siłę zależności pomiędzy zmiennymi lub raczej siła tych zależ­
ności zmienia się w miarę upływu czasu [5], Artykuł jest próbą wskazania pew­
nego sposobu postępowania w sytuacji, gdy zależność zmiennych zmieniała 
swoją siłę i kierunek w badanym okresie.

Problem zmienności siły zależności między zmiennymi był w literaturze 
poruszany kilkakrotnie. Dostępne opracowania dotyczą jednak z reguły zmian 
parametrów modelu ekonometrycznego, zakładając stałość zbioru zmiennych 
objaśniających dobranych do budowy tego modelu. W takich sytuacjach autorzy 
proponują m.in. wprowadzanie zmiennych zero-jedynkowych pozwalających na 
zmianę wartości parametrów w sytuacji działania jednego lub więcej czynników 
niemierzalnych powodujących skokowe zmiany niektórych lub wszystkich pa­
rametrów modelu czasie [1].

Nieco inne podejście przyjęli Grabiński, Zeliaś i Wydymus w pracy [2], 
Rozpatrując dobór zmiennych dla celów prognostycznych, wspominają oni, że 
wartości wskaźników pojemności integralnej mogą podlegać określonym tren­
dom w badanym czasie. W związku z tym autorzy proponują podział próby na 
ruchome okresy o ustalonej stałej liczebności s (przy czym dopuszczają również 
stosunkowo niewielką wartość s = 5). Pierwszy z utworzonych okresów obej­
mowałby obserwacje 1-s, następny 2-(s+l) itd. aż do wyczerpania całego zbioru

Metoda Hellwiga. Punkt 3.1 artykułu. 
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obserwacji. Dla w ten sposób ustalonych okresów autorzy ci proponują wyzna­
czanie macierzy współczynników korelacji zmiennych oraz wartości wskaźni­
ków Hellwiga dla wszystkich możliwych kombinacji. Zaletą tego podejścia jest 
uwzględnienie zmian zależności zmiennych w czasie, jednak ma ono kilka wad. 
Pierwszą z nich jest trudność interpretacji uzyskanych wyników. Przyjęty sposób 
wyznaczania okresów dla obliczeń współczynników korelacji i wskaźników 
pojemności informacyjnej klasyfikuje określone obserwacje jednocześnie do 
kilku okresów, przez co np. dla drugiej obserwacji zmiennych trudno powie­
dzieć, jak kształtowała się w niej zależność między zmiennymi lub która ich 
kombinacja była najlepsza, ponieważ należała ona zarówno do okresu 1-s, jak 
i 2- (s+1) i być może kilku innych. W efekcie zaproponowane podejście może 
służyć tylko i wyłącznie do uzyskiwania informacji o kształtowaniu się zależno­
ści w najbliższych s okresach. Dodatkową wadą jest duża automatyczność opi­
sanego sposobu postępowania - zmienne są dzielone na podokresy bez przepro­
wadzanej analizy charakteru ich zależności w kolejnych okresach. Kolejnym 
utrudnieniem zaproponowanej w tej pracy metody jest jej duża pracochłonność. 
Zalecane przez autorów jest wyznaczenie kilkunastu macierzy współczynników 
korelacji i prognozowanie wartości wskaźników dla każdej kombinacji, podczas 
gdy wystarczające wydaje się zbadanie trendu samych miar zależności, określe­
nie ich przyszłych wartości i dopiero dla nich wyznaczenie przyszłej najlepszej 
kombinacji zmiennych.

W niniejszym artykule przeprowadzono badanie zmian zależności zmien­
nych poprzez określenie, jak długo między wybranymi dwoma zmiennymi 
utrzymywała się ta sama siła zależności. W tym celu wykorzystano wzrokową 
ocenę charakteru zależności na podstawie diagramu korelacyjnego. Dla okresów 
podobnego kształtowania się zależności obliczono współczynniki korelacji. Na­
stępnie dla każdej z analizowanych jednostek czasu wyznaczono macierz współ­
czynników zależności. Na podstawie tej macierzy wyodrębniono najlepszą kom­
binację zmiennych objaśniających (dla każdej jednostki czasowej, w której 
zależność miała zbliżony charakter założono tę samą wartość miernika siły za­
leżności), przy użyciu metody Hellwiga.

Analiza przeprowadzana w niniejszym artykule ma na celu zbadanie, jakie 
są możliwe zmiany zależności zmiennych w miarę upływu czasu oraz jak zmie­
niają się kombinacje zmiennych najistotniej kształtujących zmienną objaśnianą.
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1. Prezentacja materiału liczbowego

W pracy zastosowano materiał liczbowy dotyczący liczby dzieci przeby­
wających w domach dziecka oraz czterech zmiennych przypuszczalnie wpływa­
jących na tę wielkość. Zebrane dane pochodzą z Rocznika Statystycznego i do­
tyczą sytuacji w Polsce w latach 1986-2000.

Zebrana próba jest stosunkowo niewielka, podobnie jak utworzony zbiór 
potencjalnych zmiennych objaśniających. Wynika to z faktu, że przedstawiony 
materiał stanowi jedynie pretekst do zaprezentowania pewnego podejścia do 
doboru zmiennych i badania zmian ich wzajemnej zależności. Celem autorki 
było zachowanie możliwie największej czytelności i prostoty ilustrujących przy­
jęte postępowanie rysunków oraz obliczeń.

Tabela 1

Liczba wychowanków domów dziecka i kształtujące ją czynniki w latach 1986-2000

Lata Lp. y X, x2 x3 X$
1986 1 16975 37572 50580 376,3 2,217
1987 2 16659 37764 49707 378,4 2,154
1988 3 16130 37885 48650 370,8 2,126
1989 4 16600 38038 47200 381,1 2,078
1990 5 15370 38183 42436 390,3 2,039
1991 6 15018 38245 33823 404 2,049
1992 7 15113 38365 32024 393,1 1,992
1993 8 15397 38459 27891 390,9 1,847
1994 9 17491 38544 31574 386,4 1,798
1995 10 18678 38588 38115 386,1 1,611
1996 11 18766 38618 39449 385,5 1,58
1997 12 18712 38650 42549 380,2 1,513
1998 13 18508 38666 45230 375,3 1,431
1999 14 18101 38654 42020 381,4 1,366
2000 15 18225 38646 42770 368 1,337

Źródło: [4],
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Jako zmienną objaśniającą y przyjęto liczbę wychowanków domów dziec­
ka. Potencjalne zmienne objaśniające zostały oznaczone następująco:
- Xi - liczba ludności Polski ogółem,
- X2 - liczba małżeństw rozwiązanych przez rozwody,
- X3 - liczba zgonów ludności,
- X4 — współczynnik dzietności (liczba dzieci urodzonych przeciętnie przez 

kobietę w wieku 15-49 lat).
Dla tak zdefiniowanych zmiennych w dalszej części artykułu przeprowa­

dzono analizę siły i charakteru zależności zmiennych na podstawie wzrokowej 
oceny diagramów korelacyjnych.

2. Wnioskowanie o zmianie zależności
na podstawie diagramów korelacyjnych

Diagramy korelacyjne stanowią najprostszy sposób zobrazowania zależ­
ności dwóch zmiennych. Ich istotą jest zaznaczenie w dwuwymiarowej prze­
strzeni punktów o współrzędnych odpowiadających kolejnym wartościom bada­
nych cech. Stosowane są w celu określenia charakteru zależności zmiennych. 
Ponadto analiza rozrzucenia punktów w stosunku do ich linii trendu pozwala na 
dokonanie wstępnej wzrokowej analizy siły zależności zmiennych.

Powszechnie przyjmuje się, że pomiędzy zmiennymi można przyjąć 
zależność liniową, gdy punkty diagramu otoczy się elipsą. Im „węższa” jest 
narysowana elipsa, tym silniejsza powinna być liniowa zależność zmiennych. 
Przyjmuje się również, że rozkład punktów mający kształt kolisty lub też przy­
pominający podkowę o końcach zwróconych w stronę rosnących wartości osi 
OX świadczy o braku zależności badanych zmiennych.

Zaproponowane w dalszej części artykułu wnioskowanie na podstawie 
diagramów korelacyjnych uwzględnia wymienione powyżej zasady, lecz wyko­
rzystuje dodatkowo możliwość zmiany charakteru zależności zmiennych w mia­
rę upływu czasu. Poszerzając diagramy korelacyjne o numer obserwacji, którą 
ilustruje dany punkt diagramu, można wyróżnić w ramach badanej próby różne 
zależności liniowe charakteryzujące kilka chronologicznie po sobie następują­
cych obserwacji. Niejednokrotnie wnioskowanie bez określenia okresów, z któ­
rych pochodziły dane, prowadziło do stwierdzenia słabej zależności zmiennych 
lub jej braku.



ALGORYTM DOBORU ZMIENNYCH OBJAŚNIAJĄCYCH...
125

Przytoczone wnioskowanie można dokładniej przeanalizować na podsta­
wie poniższych rysunków dotyczących zaprezentowanego w punkcie 1 materia­
łu liczbowego.

Dla odróżnienia okresów, w których zależność zmiennych miała różny 
charakter, zaznaczono je różnymi kolorami.

2.1. Diagramy zależności zmiennych ze zmienną objaśnianą

Poniższe diagramy obrazują rozkłady zmiennych objaśnianych przyjętych 
w punkcie 1 w stosunku do zmiennej objaśnianej - liczby wychowanków do­
mów dziecka.

Rys. 1. Diagram korelacyjny zmiennej y (liczba wychowanków domów dziecka) oraz zmiennej Xf 
(liczba ludności ogółem)

Analizując powyższy diagram, można podzielić obserwacje zmiennych na 
dwa okresy. Obserwacje od 1-8 wykazują dość silną malejącą zależność zmien­
nych. W związku z rozkładem punktów w tych okresach przeprowadzono bada­
nie siły związku krzywoliniowego zmiennych, które wskazało na dopuszczalne 
przyjęcie zależności liniowej. Okresy od 10-15 wskazują na znaczne osłabienie 
siły zależności zmiennych. Problemowe okazało się przydzielenie obserwacji 9, 
do którejś z wymienionych grup. Autorka zdecydowała się potraktować tę ob­
serwację osobno, zakładając dla niej zerową siłę zależności ze zmienną y.
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Rys. 2. Diagram korelacyjny zmiennej y (liczba wychowanków domów dziecka) oraz zmiennej X2 
(liczba małżeństw rozwiązanych przez rozwody)

Dla powyższych zmiennych wyodrębniono analogicznie okresy 1-8, 10- 
-15. Obserwację 9 potraktowano jako odstępstwo od występujących zależności 
zmiennych. Dodatkowo przeprowadzono analizę siły krzywoliniowości zmien­
nych w okresach 1-8. Otrzymane wyniki wskazywały na przyjęcie tego charak­
teru zależności, w związku z czym w wymienionych okresach do analizy zależ­
ności włączono również zmienną Z| = X22. Zmienne wskazane przez przyjętą 
metodę doboru zmiennych objaśniających jako najlepsze były jednak takie sa­
me, jak przy przyjęciu zależności liniowej zmiennych. Zmienna stanowiła 
przekształcenie X2, zatem jej pojawienie się w najlepszej kombinacji potrakto­
wano jako potwierdzenie siły wpływu zmiennej X2 na y. Stąd w artykule pomi­
nięto obliczenia dla tej zmiennej pomocniczej. Obserwacja 9 okazała się być 
trudna do sklasyfikowania, w związku z czym została potraktowana jako odstęp­
stwo od przyjętych zależności. Dla tego momentu próby siłę związku y-X2 
uznano za zerową.
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Rys. 3. Diagram korelacyjny zmiennej y (liczba wychowanków domów dziecka) oraz zmiennej X3 
(liczba zgonów ogółem)

Tak jak w przypadku poprzednich zmiennych, stwierdzono, że zależność 
zmiennych kształtowała się podobnie w okresach 1-8 oraz 10-15. Obserwację 9 
uznano za nieprzystającą do pozostałych i przyjęto dla niej wartość 
r3 = 0.

Rys. 4. Diagram korelacyjny zmiennej y (liczba wychowanków domów dziecka) oraz zmiennej X4
(współczynnik dzietności)
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Dla powyższych zmiennych badaną próbę podzielono również na dwa 
okresy: 1-8 oraz 10-15. Obserwacja 9 wyraźnie nie pasowała do kształtowania 
się zależności zmiennych w tych okresach. W obydwu analizowanych okresach 
zależność zmiennych ma charakter rosnący.

2.2. Diagramy zależności pomiędzy zmiennymi 
objaśniającymi

Rys. 5. Diagram korelacyjny zmiennej X| (ludność ogółem) oraz zmiennej X2 (liczba małżeństw 
rozwiązanych przez rozwody)

Zależność zmiennych Xi oraz X2 wskazuje na dwa przeciwne kierunki za­
leżności zmiennych. Obserwacje 1-7 charakteryzują się silną liniową zależnością 
malejącą, podczas gdy w okresach 8-15 zależność zmiennych jest rosnąca.



ALGORYTM DOBORU ZMIENNYCH OBJAŚNIAJĄCYCH...
129

Rys. 6. Diagram korelacyjny zmiennej X| (ludność ogółem) oraz zmiennej X3 (liczba zgonów 
ogółem)

W przypadku zależności zmiennych Xi oraz X3 można wyróżnić dwa 
okresy badanej próby. Zmienne pochodzące z obserwacji 1-5 charakteryzują się 
słabą zależnością rosnącą. Punkty diagramu dotyczące okresu 6-15 świadczą 
natomiast o silnej liniowej malejącej zależności zmiennych.

Rys. 7. Diagram korelacyjny zmiennej X( (ludność ogółem) oraz zmiennej X4 (współczynnik 
dzietności)
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Przeprowadzony dla powyższych zmiennych podział próby na okresy: 1-7 
oraz 8-15 miał na celu jedynie sprowadzenie charakteru zależności zmiennych 
do bardziej liniowego. Dla całej badanej próby zależność zmiennych ma silny 
charakter malejący.

Rys. 8. Diagram korelacyjny zmiennej X2 (liczba małżeństw rozwiązanych przez rozwody) oraz 
zmiennej X3 (liczba zgonów ogółem)

Dla zmiennych X2 oraz X3 wyróżniono dwa okresy podobnego przebiegu 
ich zależności: 1-6, 7-15. W obydwu z tych okresów zależność zmiennych miała 
charakter malejący. Dla wcześniejszych zależności zależność ta jest nieco sil­
niejsza i wyraźniej widoczna niż dla ostatnich ośmiu.

Rys. 9. Diagram korelacyjny zmiennej X2 (liczba małżeństw rozwiązanych przez rozwody) 
i zmiennej X4 (współczynnik dzietności)
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W przypadku diagramu korelacyjnego tych dwóch zmiennych problemem 
było określenie, do której z wyróżnionych grup powinna należeć obserwacja 8, 
ponieważ jest ona zgodna z obydwoma wyróżnionymi kierunkami zależności. 
Gdyby nie dokonana analiza okresów, z których pochodzą punkty diagramu 
badanej próby, można by wyciągnąć wniosek o braku zależności zmiennych, 
podczas gdy numerowanie punktów umożliwiło wyróżnienie dwóch okresów 
o dość wyraźnych, chociaż przeciwnie ukierunkowanych liniowych zależno­
ściach zmiennych. Wyróżniono dwa okresy jednolitej zależności: 1-7 oraz 8-5.

Rys. 10. Diagram korelacyjny zmiennej X3 (liczba zgonów ogółem) oraz zmiennej X4 (współ­
czynnik dzietności)

Na podstawie powyższego diagramu wyznaczono dla zmiennych X3 oraz 
X4 następujące okresy ich jednolitego kształtowania się: 1-7 oraz 8-15. Pierwszy 
z wyszczególnionych okresów charakteryzuje się malejącą zależnością zmien­
nych, podczas gdy od 8 obserwacji zależność ta przybrała charakter rosnący.

2.3. Podział badanej próby na podokresy o jednakowej sile 
i kierunku zależności

W związku z podziałem próby badawczej w punkcie 2.2 można zauwa­
żyć, że dla wielu zmiennych okresy, na które podzielono próbę, mają różną dłu­
gość.

W związku z faktem, że cała macierz współczynników będąca podstawą 
przeprowadzanego doboru zmiennych dotyczy jednej, tej samej liczby obserwa­
cji, początkową próbę zmiennych należy podzielić uwzględniając okresy wyróż­
nione dla każdej z badanych par zmiennych.
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Zastosowany sposób postępowania przedstawia tabela 2.
Tabela 2

Podział 15-elementowej próby na podstawie okresów jednolitego kształtowania się 
zależności poszczególnych par zmiennych

Numer obserwacji Współczynniki korelacji
1

ri> tź, r3, r4 r12,r14,r24. r34 Í23

H3

. 2
3
4
5

. <5
7
8
9 rb r2, r3, r4

10

n,r2, r3, r4
rl2,r14>r24, r34 1*23 r1311

12
13
14
15

Najkrótszy z wyróżnionych w punkcie 2.2 w ramach badanej próby okre­
sów dotyczył obserwacji 1-5, więc dla tego okresu zbudowano pierwszą z ma­
cierzy miar zależności między zmiennymi. Inne wyróżnione okresy początkowe 
to: 1-6, 1-7, 1-8. Stąd macierz współczynników zależności zmiennych będzie 
inna dla obserwacji 6, 7 oraz 8 badanej próby. Dla obserwacji 10-15 każdy wy­
znaczony współczynnik nie zmieni już swojej wartości, dlatego dobór zmien­
nych dla tego okresu zostanie przeprowadzony na podstawie jednej macierzy.

Tak wyróżnione macierze będą zawierały współczynniki korelacji wyzna­
czone dla wyróżnionych w punkcie 2.2 i przedstawionych w tabeli 1 okresów, 
w których zawiera się dany numer obserwacji.

Ze względu na niemożność zaklasyfikowania w diagramach 1 -4 obserwa­
cji 9 do okresów o jednolitej sile i kierunku zależności zmiennych, przyjęto dla 
niej zerową wartość miernika zależności. W związku z faktem, że sytuacja ta 
dotyczyła związku wszystkich zmiennych objaśniających ze zmienną objaśnia­
ną, dla obserwacji 9 niemożliwe okazało się przeprowadzenie procedury doboru 
zmiennych objaśniających.
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3. Procedura doboru zmiennych objaśniających

3.1. Zastosowane mierniki zależności i przyjęta metoda 
doboru zmiennych

Podstawą doboru zmiennych są macierze 
między zmiennymi: 

współczynników zależności

Ro =

r\

r2
9 R =

’ 1

r21

r!2 •

1
" r\n

" r2n

_rn_ /„I r„2 •

(1)

gdzie:
Ro - wektor współczynników korelacji zmiennych objaśniających ze zmienną 

objaśnianą,
R - macierz współczynników korelacji między zmiennymi objaśniającymi,
r, - współczynnik korelacji pomiędzy zmienną objaśnianą a i-tą potencjalną 

zmienną objaśniającą,
rÿ - współczynnik korelacji pomiędzy zmienną objaśniającą Xi a zmienną obja­

śniającą Xj.
Jako miernik siły zależności między zmiennymi przyjęto współczynnik 

korelacji liniowej Pearsona najczęściej stosowany do pomiaru siły związku mię­
dzy dwoma zmiennymi mierzonymi na skali nominalnej:

É k -*Xz- -x)
= p '=1 (2)

Jífa-*)2 •È(z-j')2V í=i i=i
gdzie:
n - liczebność zebranej próby obserwacji,
i = 1, 2, 3, n - numer obserwacji zmiennej,
X, Y - zmienne, pomiędzy którymi jest badana siła zależności.

W artykule posłużono się metodą wskaźników pojemności informacyjnej 
Hellwiga jako jedną z najczęściej stosowanych metod doboru zmiennych, cechu­
jącą się dużą prostotą wykonywanych obliczeń.
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W metodzie tej kryterium doboru zmiennych jest maksymalizacja inte­
gralnego wskaźnika pojemności informacyjnej (H|) wyznaczanego dla każdej 
możliwej kombinacji zmiennych objaśniających.

Liczba rozpatrywanych kombinacji wynosi:

L = 2m-l (3)

gdzie m oznacza liczbę potencjalnych zmiennych objaśniających.
Integralny wskaźnik pojemności informacyjnej wyraża się wzorem:

k

Hi = (4)
7=1

=—r— (5)
i+Zk,l 

X=1 
'*7

gdzie:
1 = 1,2,...L- numer rozpatrywanej kombinacji zmiennych,
j = 1,2,....k - numer zmiennej w kombinacji,
k - liczba zmiennych w rozpatrywanej kombinacji,
h|j - indywidualny wskaźnik pojemności informacyjnej zmiennych w ramach 
rozpatrywanej kombinacji.

Ponieważ pomiędzy wyodrębnionymi powyższą metodą zmiennymi może 
zachodzić kataliza zniekształcająca otrzymane wyniki, stąd dodatkowo w pracy 
zostanie wykorzystany test na występowanie tego efektu.

> min- (6)

gdzie Tÿ to wzajemne skorelowanie i-tej i j-tej zmiennej objaśniającej.
W przypadku gdy zapisany warunek jest spełniony ze zmiennych Xi oraz 

Xj, do kombinacji można przyjąć tylko tę, która była silniej skorelowana ze 
zmienną objaśnianą Y.

3.2. Wyniki zastosowanej procedury

Dla określonych w punkcie 2 okresów badania zależności między zmien­
nymi, zgodnie z zasadami opisanymi w punkcie 2.3, otrzymano następujące 
współczynniki zależności między zmiennymi dla kolejnych obserwacji:
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1 

-0,896

-0,896

1
-okresy 1-5: R =

0,6756 -0,9558

-0,9918 0,8489

0,6756 -0,9918 -0,886

-0.9558 0.8489 0,8633

1 -0,7235 -0,8383

-0,7235 1 0,7357

1 -0,896

-0,896 1

-0,8898 - 0,9918‘ T -0,886 '

0.8633-0,9558 0,8489
— okres 6: R =

-0,8898 -0,9558 1 -0,7235
■>R0 =

-0,8383

-0,9918 0,8489 -0,7235 1 0,7357

— okres 7:

R =— okres 8:

R =- okres 9:

R =

1 -0,896

-0,896 1

-0,8898 -0,8062

-0,8898

-0,8062

1

-0,9918 

0,8489 

-0,7235
;^ =

-0,886 

0,8633 

-0,8383

-0,9918 0,8489 -0,7235 1 0,7357

1 0,9806 -0,8898 -0,9151 -0,886

0,9806 1

-0,8898 -0,8062

-0,8062

1

-0,9312 

0,8402
;^ =

0,8633 

-0,8383

-0,9151 -0,9312

1 0,9806

0,9806 1

-0,8898 -0,8062 

-0,9151 -0,9312

0,8402

-0,8898

-0,8062

1

0,8402

1

-0,9151

-0,9312

0,8402

1

0,7357

’o‘

0

0

0

-okresy 10-15:

Po podstawieniu do wzorów (l)(-4), dla wymienionych obserwacji, mak­
symalną wartość wskaźnika pojemności informacyjnej otrzymano dla kombina­
cji przedstawionych w tabeli 2.

1 0,9806 -0,8898 —0,9151 -0,5038

0,9806 1

-0,8898 -0,8062

-0,8062 -0,9312

1 0,8402

-0,4126 

0,5598

-0,9151 -0,9312 0,8402 1 0,9045
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Tabela 3
Wyniki metody doboru zmiennych Hellwiga dla wydzielonych okresów próby badawczej

Numery obserwacji
Zmienne wchodzące 
w skład najlepszej 

kombinacji
Wartość H|

1-5 {X,X3} 0,8879
6 {X,X2} 0,8228
7 {x,x2x3} 0,8282
8 {X2X3} 0,8196
9 brak brak

10-15 ________ {X4} 0,8182

Jak widać w tabeli 3, rezultaty metod doboru zmiennych zależały w du­
żym stopniu od okresów badania współczynników korelacji zmiennej objaśnia­
nej ze zmiennymi objaśniającymi, ponieważ podział na te właśnie okresy znaj­
duje odzwierciedlenie w uzyskanych wynikach. Zmienne o numerach obserwacji 
1-8 to zmienne zawierające w prawie wszystkich swoich kombinacjach zmienną 
Xi - liczbę ludności ogółem i X2 - liczbę rozwodów lub X3 - liczbę zgonów. Dla 
obserwacji 10-15 najlepszą kombinacją zmiennych objaśniających była zmienna 
X4 - współczynnik dzietności. Uzyskane w pierwszych okresach wyniki są jed­
nak w niewielkim stopniu zróżnicowane przez zmiany zależności między zmien­
nymi objaśniającymi.

Dla każdej z wyróżnionych kombinacji przeprowadzono badanie efektu 
katalizy za pomocą wzoru 6. Wynik był negatywny, co oznacza, że na uzyskaną 
wysoką wartość wskaźnika nie miało wpływu skorelowanie zmiennych ze sobą.

Podsumowanie i wnioski

Przeprowadzona w artykule analiza czasowych zmian zależności między 
zmiennymi potwierdziła duży wpływ próby badawczej na wielkość charaktery­
zujących tę zależność mierników. Na zamieszczonych diagramach można zaob­
serwować, że często włączenie lub niewłączanie którejś z obserwacji do badane­
go okresu kształtowania się zależności zmiennych mogło doprowadzić do zmia­
ny siły, a nawet kierunku wyznaczanej dla tego okresu korelacji.

Przyjęty w przedstawionym algorytmie postępowania sposób wykonywa­
nia obliczeń może stanowić pewne utrudnienie, jeśli chodzi o modelowanie 
zmiennych, chociażby ze względu na zmniejszenie liczebności badanej próby 
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przez podział jej na mniejsze okresy. Natomiast zaletą przyjętego podejścia jest 
wyznaczanie siły zależności dla zmiennych w okresach, o których wiadomo, że 
charakteryzowały się jednolitą siłą i kierunkiem zależności, co pozwala na uzy­
skanie dla konkretnej wybranej obserwacji jednoznacznej informacji o sile za­
leżności zmiennych objaśniających z objaśnianą i między sobą oraz o najlepszej 
ich kombinacji.

W związku z przeprowadzonymi badaniami pojawia się kilka nowych py­
tań dotyczących metod doboru zmiennych przy niestabilnej sile łączących je 
zależności. Jedno z nich brzmi: „do jakiego stopnia można mówić o zmiennym 
charakterze zależności, a kiedy powinno się stwierdzić, że zależność między 
zmiennymi jest po prostu słaba?”.

Wspomniany problem wymaga określenia minimalnej liczebności próby, 
dla której interpretacja wyznaczonych miar zależności ma sens. W niniejszym 
artykule autorka określiła liczebność okresów na podstawie wzrokowej oceny 
zbieżności kolejnych obserwacji na diagramach korelacyjnych. Uzyskana w ten 
sposób próba obejmowała 5-8 obserwacji, była więc dość nieliczna. Nie była 
jednak mniejsza niż zaproponowana w jednej z przytoczonych pozycji literatu­
rowych.

Kolejnym problemem wynikającym z przeprowadzonej analizy jest klasy­
fikacja punktów, które mniej lub bardziej wyraźnie nie mieszczą się w analizo­
wanych skupiskach punktów, jak np. dziewiąta obserwacja diagramu zależności 
zmiennej y ze zmiennymi objaśniającymi. Autorka zdecydowała się potraktować 
wymienioną obserwację jako nieprzystającą do występujących w badanych 
okresach zależności zmiennych. Również w przypadku badania zależności po­
między kilkoma innymi zmiennymi określenie, które okresy można uznać za 
okresy występowania pewnej jednolitej zależności zmiennych, okazało się trud­
ne. Stąd pewną wadą zaproponowanej metodologii jest fakt, że przeprowadzona 
klasyfikacja jest w znacznej mierze obarczona subiektywizmem.

Rozwiązaniem obydwu wspomnianych trudności może się okazać posze­
rzenie klasyfikacji próby na okresy jednolitej zależności o śledzenie współczyn­
ników kierunkowych prostych przechodzących kolejno przez coraz większą 
liczbę punktów lub analiza zmienności punktów względem łączącej je prostej. 
Również wiedza merytoryczna dotycząca kształtowania się badanych zjawisk 
w analizowanym okresie może pomóc rozstrzygnąć kwestię, czy kształt diagra­
mu korelacyjnego świadczy o zmianie kierunku zależności, czy raczej oznacza, 
iż między zmiennymi występowała bardzo słaba zależność lub nie było jej 
w ogóle.
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ALGORITHM OF CHOOSING EXPLANATORY VARIABLES OF THE UNSTABLE 
RELATIONSHIP POWER

Sum mary

The article is a continuation of the research begun in author’s earlier work. It deals with 
the problem of changes that affect relationships between explanatory variables themselves and 
between explanatory variables and the explained variable. It ineans that in case of using time 
variables, different values of corrélation coefficients may be obtained for different lengths of 
sample and for different periods taken from the sample.

Considering this fact there is an algorithm of choosing variables method presented in this 
article on exempláry data. Four explanatory variables are used to explain number of children in 
refuges. These are: the general number of people, a number of divorces, the general number of 
démises, and a number of children per woman. This sample includes fifteen observations from 
years 1986-2000.

In order to observe when a change of the corrélation direction or strength took place, ten 
corrélation diagrams were built. This kind of visual présentation contains points which coordinate 
corresponding adéquate values of the analysed variables. In this article there were also labels of 
time marked on the diagrams which helped to distinguish for which observation the relationship 
could be described with one measure of corrélation. After the corrélation coefficients had been 
calculated, the sample was divided in order to provide one value of corrélation coefficient in every 
part of it. In this article the sample was divided into five parts containing observations number 1-5,
6. 7, 8 and 10-15.The ninth observation was an exception from the relationships between explana­
tory and explained variables, so it was excluded from further research. Then for each part of the 
sample the best combination of variables was indicated by applying Hellwig method.

Final results proved the necessity of considering relationships’ changes in the methods of 
choosing variables. This research revealed some difficulties and new problems that hâve to be 
investigated. They deal with the classification of the corrélation diagrams’ points and minimum 
number of the samples which justify interpreting the measures of the variables’ relationships.
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O REGULARYZACJI WYBRANYCH
NIEPARAMETRYCZNYCH MODELI REGRESJI

Wprowadzenie

W dobie dynamicznie rozwijających się narzędzi informatycznych mamy 
do czynienia z wieloma nowymi propozycjami metod regresji. Obecnie techniki 
numeryczne pozwalają nam na tworzenie nieparametrycznych modeli regresji, 
w których nieznana jest a priori analityczna postać funkcji regresji. W miarę 
potrzeb do modelu dołącza się funkcje składowe, których parametry są szaco­
wane w kolejnych krokach algorytmu. Możliwość tworzenia modelu regresyjne- 
go w sposób iteracyjny, poprzez dokładanie kolejnych funkcji bazowych oraz 
poprawianie jakości tego modelu, prowadzi jednak często do nadmiernego dopa­
sowania modelu do danych ze zbioru uczącego (ang. overfïtting). Uzyskujemy 
przez to duże błędy prognoz na zbiorze rozpoznawanym, złożonym z nowych 
obiektów nieuczestniczących w procesie budowy modelu.

Zachodzi konieczność kontrolowania, by wartości błędu resubstytucji, od­
zwierciedlające dopasowanie modelu na zbiorze uczącym, nie były zbyt małe. 
Nawet najmniejsze wartości tego błędu nie gwarantują równie małych wartości 
błędów predykcji. Przeciwnie, małe błędy na zbiorze uczącym zazwyczaj uzysku­
je się dla modeli charakteryzujących się dużą złożonością i tym samym dających 
duże błędy prognoz na zbiorze testowym. Zachodzi więc potrzeba uzyskania 
pewnego kompromisu pomiędzy dopasowaniem funkcji regresji / do obserwacji 
ze zbioru uczącego a stopniem złożoności modelu. Kompromis ten będziemy 
nazywać regularyzacją (ang. regularization) i możemy go zapisać w postaci 
zadania minimalizacji funkcjonału PRSS (f, 2) (ang. penalized residual sum of 
squares):



140
Joanna Trzęsiok

PRSS(f, 2) = RSS(f) + ÀJ{f} -> min (1)

gdzie PRSS(f) jest miarą dopasowania modelu do danych ze zbioru uczącego 
(najczęściej w przypadku regresji jest to suma kwadratów reszt), natomiast J(f) 
odzwierciedla złożoność modelu (im bardziej złożony model, tym większe uzy­
skujemy wartości J(/)). Parametr 2 > 0, nazywany współczynnikiem kary (ang. 
penalty), który określa proporcje pomiędzy składowymi funkcjonału PRSS (f, 2).

Problem regularyzacji został w różny sposób rozwiązany w nieklasycz- 
nych metodach regresji. Celem tego artykułu jest przedstawienie przykładowych 
rozwiązań tego zagadnienia w wybranych nieparametrycznych metodach regre­
sji, takich jak: metoda krzywych sklejanych, MARS i MART.

1. Metoda krzywych sklejanych

Metoda krzywych sklejanych została szczegółowo omówiona w pracy [9]. 
Tutaj zajmierny się głównie problemem regularyzacji modelu opartego na krzy­
wych sklejanych.

Metoda krzywych sklejanych polega na podziale dziedziny zmiennej ob­
jaśniającej X na K rozłącznych przedziałów za pomocą uporządkowanego zbioru 
punktów:

/A A \ 
nazywanych węzłami. W każdym z powstałych przedziałów ' ' ’ 1+1 ' szukamy, 
posługując się metodą najmniejszych kwadratów, funkcji regresji fi, która jest 
wielomianem co najwyżej stopnia S.

W najprostszym przypadku funkcje fi mogą być funkcjami stałymi. Jeśli 
jednak podwyższymy stopień wielomianów fi oraz nałożymy na nie warunki 
ciągłości funkcji w węzłach:

A z(^)=z+i(^) i2)

oraz np. warunki ciągłości pochodnej rzędu pierwszego:

i=l,.,K-l 17

to uzyskamy funkcję o odpowiednim stopniu gładkości.
W budowie modelu regresyjnego wykorzystującego krzywe sklejane 

istotnym problem jest wybranie odpowiedniego stopnia wielomianów składo­
wych fi oraz ustalenie liczby węzłów. Proste podejście zaimplementowane 
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w pakiecie statystycznym „R” polega na zadaniu przez użytkownika liczby 
stopni swobody:

df = S + K (4)

oraz stopnia wielomianów składowych. Wtedy (df - S- 1) węzłów zostaje wy­
branych jako odpowiednie kwantyle rozkładu zmiennej X (zob. [9]).

1.1. Regularyzacja w metodzie krzywych sklejanych

Liczbę stopni swobody wyznaczamy zwykle w sposób symulacyjny, prze­
szukując pewien zakres parametru df i badając dopasowanie modelu do obser­
wacji ze zbioru testowego. Przyjęcie zbyt małej liczby stopni swobody prowadzi 
zwykle do otrzymania modelu, który daje duże błędy resubstytucji. Natomiast 
wybranie zbyt dużej wartości parametru df powoduje uzyskanie modelu nad­
miernie dopasowanego do danych ze zbioru uczącego i dającego duże błędy 
predykcji na zbiorze testowym.

W metodzie krzywych sklejanych problem regularyzacji, czyli uzyskania 
kompromisu pomiędzy dopasowaniem modelu do danych ze zbioru uczącego 
a odpowiednim stopniem złożoności modelu, można przedstawić w postaci za­
dania minimalizacji funkcjonału:

N
PRSS(f, 2) = £ (yJ - f(Xj ))! + A {(/' W)2 dl (5)

7=1

Pierwszy człon funkcjonału (5) jest miarą dopasowania funkcji f do ob­
serwacji ze zbioru uczącego, natomiast drugi jest odpowiednikiem złożoności 
funkcji regresji. W tym przypadku złożoność modelu jest związana z gwałtow­
nymi, oscylacyjnymi zmianami wartości estymowanej funkcji regresji. Parametr 
Xe(0,°o), współczynnik kary, ustala proporcje pomiędzy nadmiernym dopaso­
waniem funkcji/a jej złożonością.

Rozwiązaniem zadania minimalizacji funkcjonału (5) jest funkcja sklejana 
nazywana gładką funkcją sklejaną:

f = min PRSS(f,X) (6)

1.2. Przykład

Dla zilustrowania zagadnienia regularyzacji, na zbiorze danych Boston, 
metodą krzywych sklejanych wyznaczono modele regresji dla wybranych warto­
ści parametru df.
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Dane w zbiorze Boston zostały zebrane w 1978 roku przez Harrisona 
i Rubinfelda (zob. [5]), którzy zajmowali się badaniem zależności pomiędzy 
jakością życia a cenami nieruchomości w okolicach Bostonu.

Zbiór Boston jest szeroko znany i wykorzystywany do sprawdzania jako­
ści różnych nieklasycznych metod regresji. Zawiera on 506 obserwacji, a zgro­
madzone dane są charakteryzowane przez 14 zmiennych (w tym jedną zmienną 
niemetryczną), jednak do poniższej analizy jako zmienną objaśniającą wybrano 
LSTAT - procent ludności o niskim statusie społecznym. Zmienną zależną 
AffiDKjest mediana wartości domu (w tys. dolarów).

Za pomocą metody krzywych sklejanych zbudowano modele regresji dla 
czterech wybranych wartości parametru df. Otrzymane funkcje przedstawiono na 
rys. 1.

df=3

30

procent ludności o niskim statusie

df=15

10 20 30

procent ludności o niskim statusie

df=10

10 20 30

df=50

procent ludności o niskim statusie

Rys. 1. Wykres funkcji regresji, obrazującej zależność ceny domu od procentu ludności 
o niskim statusie społecznym, uzyskanej za pomocą funkcji sklejanych trzeciego 
rzędu dla różnych stopni swobody df
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Parametr df= 50 prowadzi do uzyskania funkcji sklejanej charakteryzują­
cej się gwałtownymi, oscylacyjnymi zmianami wartości i wysokim stopniem 
złożoności modelu. Natomiast funkcja regresji otrzymana dla parametru df = 3 
jest gorzej dopasowana do danych ze zbioru uczącego, ale daje niewielkie war­
tości miernika złożoności modelu. Wydaje się, że najbardziej optymalnym roz­
wiązaniem problemu regularyzacji może być model zbudowany dla df = 10 lub 
df= 15.

Rozwiązując zadanie minimalizacji funkcjonału (5) na zbiorze danych 
Boston, uzyskujemy gładką funkcję sklejaną dla liczby stopni swobody df = 10, 
przedstawioną na rys. 2.

procent ludności o niskim statusie

Rys. 2. Wykres gładkiej funkcji sklejanej

2. Wielowymiarowa metoda krzywych sklejanych 
MARS

Metoda MARS (ang. multivariate adaptive régression splines) została za­
proponowana przez Friedmana w 1991 roku (zob. [2]). Jest ona oparta na funk­
cjach sklejanych pierwszego rzędu w postaci:

(X-Ç)+
dla X>£
dla X <Ę

oraz (£-%)+
dla X<£>
dla X>ą

(7)

gdzie punkt £ jest węzłem.
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W metodzie MARS dla wszystkich zmiennych objaśniających^- {j = 1,.. .,p) 
tworzy się pary funkcji typu (7) z węzłami w punktach {xÿ}/=i N, które są 
z-tymi realizacjami zmiennej Xj. W ten sposób otrzymuje się zbiór:
C = {(XJ-fy)ł,(ii.-^)ł: iye{xl7,x2y,...,xw}, y=l,2,...,p} (8)

Model regresyjny rozważany w omawianej metodzie jest modelem addy- 
tywnym w postaci:

M
(9) 

M=1

gdzie:

d
W-H'-W-W, 00)

k=\

dla um e {-1,1} oraz (Xk - £k)+ e C.
Funkcje hm w modelu (9) są iloczynami tensorowymi funkcji ze zbioru C, zaś 

wartość parametru d oznacza przyjętą liczbę interakcji pomiędzy zmiennymi Xj.
Algorytm budowy modelu regresyjnego metodą MARS składa się 

z dwóch głównych etapów: doboru zmiennych oraz ich eliminacji, a jego kolej­
ne kroki zostały szczegółowo przedstawione w pracy [8]. Niniejszy artykuł sku­
pia się jedynie na omówieniu tych kroków algorytmu, które są istotne z punktu 
widzenia zadania regularyzacji modelu.

2.1. Regularyzacja w metodzie MARS

Tak jak już wspomniano, algorytm metody MARS składa się z dwóch eta­
pów: doboru zmiennych do modelu oraz ich eliminacji.

W etapie doboru zmiennych, do modelu wprowadzono funkcje ze zbioru 
C, dające najlepsze dopasowanie funkcji regresji do danych ze zbioru uczącego. 
W każdym kolejnym kroku są wybierane dwie funkcje ze zbioru C, które w naj­
większym stopniu redukują sumę kwadratów reszt i zachowują postać iloczynu 
tensorowego funkcji hm(X). Procedura ta jest powtarzana dopóki maleje błąd 
resubstytucji lub nie zostanie osiągnięta zadana, maksymalna liczba funkcji ba­
zowych modelu.

W efekcie wykonania procedury doboru zmiennych otrzymujemy model, 
który charakteryzuje się nadmiernym dopasowaniem do danych ze zbioru uczą­
cego oraz wysoką złożonością. Następnym etapem jest więc procedura elimina­
cji. Z modelu zostają usunięte te wyrażenia, których eliminacja poprawi jakość 
modelu lub nieco ją obniży, ale zmniejszy się złożoność modelu.
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W każdym kroku z modelu zostaje wyeliminowana jedna funkcja bazowa, 
ta której usunięcie powoduje najmniejszy wzrost sumy kwadratów reszt. Model 
taki zapamiętujemy jako fm , gdzie m jest liczbą funkcji bazowych. Z sekwencji 

modeli zostaje wybrany ten, który jest najlepszy w sensie przyjętego kryterium.
Do oceny jakości modelu stosuje się uogólnione kryterium sprawdzania 

krzyżowego (ang. generalized cross-validation criterion):

GCV(nr) = (H)

Funkcja Z(m) jest miarą złożoności modelu regresyjnego, który zawiera m 
funkcji bazowych. Proponuje się przyjęcie jej wartości na poziomie:

Z(m) = (1 + y) • m (12)

gdzie y zmienia się od 2 do 4 i oznacza liczbę parametrów modelu związaną 
z funkcjami bazowymi.

Kryterium GCV(m) jest miarą wyrażającą kompromis pomiędzy dopaso­
waniem modelu a jego złożonością. Licznik formuły zapisanej wzorem (11) jest 
sumą kwadratów reszt, natomiast mianownik wyraża stopień złożoności modelu. 
Funkcja fm, dla której wartość uogólnionego kryterium sprawdzania krzyżo­

wego jest największa, jest tym samym rozwiązaniem zagadnienia regularyzacji.

2.2. Przykład

Do skonstruowania przykładu ilustrującego metodę MARS ponownie wyko­
rzystano dane ze zbioru Boston. Rolę zmiennej objaśnianej Y będzie nadal pełniła 
mediana wartości domu, natomiast jako zmienne objaśniające przyjmiemy:
A] = INDUS 
X2 = NOX 
x3 = rm 
x4 = rad 
xs = tax 
X6 = P/T 
x2 = lstat

- wskaźnik industrializacji,
- koncentrację tlenku azotu,
- średnią liczbę pokoi,
- dostęp do autostrady,
- wysokość płaconych podatków,
- liczbę uczniów przypadających na jednego nauczyciela,
- procent ludności o niskim statusie społecznym.

Model regresyjny został zbudowany za pomocą funkcji polymars, zaim­
plementowanej w pakiecie statystycznym „R”. W efekcie wywołania tej funkcji 
otrzymano macierz przedstawioną w tabeli 1.
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Tabela 1
Kolejne kroki procedury MARS

LP- 0/1 SIZE RSS GCV Lp. 0/1 SIZE RSS GCV
1 1 1 42716,295 85,77 49 0 47 3390,943 16,97
2 1 2 19472,381 39,73 50 0 46 3401,125 16,60
3 1 3 14026,451 29,08 51 0 45 3427,719 16,32
4 1 4 12364,693 26,06 52 0 44 3439,031 15,98
5 1 5 11146,495 23,88 53 0 43 3458,099 15,69
6 1 6 8980,562 19,56 54 0 42 3475,683 15,40
7 1 7 8609,191 19,07 55 0 41 3505,645 15,17
8 1 8 8200,574 18,47 56 0 40 3523,225 14,90
9 1 9 7953,901 18,22 57 0 39 3554,490 14,68
10 1 10 7826,292 18,24 58 0 38 3584,810 14,47
11 1 11 7724,176 18,31 59 0 37 3609,203 14,25
12 1 12 7637,828 18,42 60 0 36 3645,717 14,08
13 1 13 7555,837 18,55 61 0 35 3694,523 13,96
14 1 14 7329,299 18,31 62 0 34 3755,735 13,88
15 1 15 7002,415 17,81 63 0 33 3769,634 13,64
16 1 16 6832,279 17,70 64 0 32 3841,140 13,60
17 1 17 6661,521 17,57 65 0 31 3853,790 13,36
18 1 18 6543,438 17,58 66 0 30 3988,827 13,55
19 1 19 6511,103 17,82 67 0 29 3997 878 13,30
20 1 20 6208,822 17,31 68 0 28 4007,145 13,06
21 1 21 5977,121 16,98 69 0 Tl 4133,932 13,21
22 1 ~1 22 5765,858 16,70 70 0 26 4175,193 13,07
23 1 23 5557,936 16,41 71 0 25 4304,985 13,22
24 1 24 5362,701 16,14 72 0 24 4312,747 12,99
25 1 25 5265,732 16,16 73 0 23 4454,835 13,15
26 1 26 5201,091 16,29 74 0 22 4598,315 13,32
27 1 27 5100,665 16,29 75 0 21 4825,679 13,71
28 1 28 5055,421 16,48 76 0 20 4917,750 13,71
29 1 29 4978,406 16,56 77 0 19 5102,429 13,96
30 1 30 4936,043 16,76 78 0 18 5335,921 14,33
31 1 31 4901,798 17,00 79 0 17 5551,673 14,64
32 1 32 4818,243 17,06 80 0 16 5803,076 15,03
33 1 33 4778,822 17,29 81 0 15 5855,902 14,90
34 1 34 4493,612 16,61 82 0 14 6208,032 15,51
35 1 35 4439,058 16,77 83 0 13 6928,527 17,01
36 1 36 4385,253 16,93 84 0 12 7744,486 18,68
37 1 37 4303,180 16,99 85 0 11 7901,370 18,73
38 1 38 4259,982 17,20 86 0 10 8079,243 18,83
39 1 39 3840,684 15,86 87 0 9 8421,305 19,29
40 1 40 3791,594 16,03 88 0 8 8875,691 19,99
41 1 41 3746,516 16,21 89 0 7 10022,678 22,20
42 1 42 3699,184 16,38 90 0 6 11528,461 25,11
43 1 43 3655,825 16,58 91 0 5 11548,646 24,74
44 1 44 3614,801 16,80 92 0 4 14901,228 31,40
45 1 45 3576,441 17,03 93 0 3 18771,081 38,92
46 1 46 3516,959 17,16 94 0 2 22061,879 45,01
47 1 47 3447,157 17,25 95 0 1 42716,295 85,77
48 1 48 3381,489 17,35
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Wiersze tej macierzy zawierają kolejne kroki procedury tworzącej model 
regresyjny. W drugiej kolumnie występują wartości 0 lub 1, które wskazują, 
z jakim etapem ma się do czynienia. Wartość 1 informuje, że następuje dodanie 
nowej zmiennej do modelu, natomiast 0 mówi o usunięciu wyrażenia z modelu. 
Kolumna KSS zawiera sumy kwadratów reszt liczone w kolejnych krokach pro­
cedury. Kolumna GCV to kolejne wartości uogólnionego kryterium sprawdzania 
krzyżowego. W naszym przypadku najmniejsza wartość GCV to 12,99 dla mo­
delu zawierającego 24 funkcje bazowe. Jest to więc model będący rozwiązaniem 
zadania regularyzacji.

3. Addytywna metoda drzew regresyjnych MART

Addytywna metoda drzew regresyjnych MART (ang. multiple additive ré­
gression trees) została zaproponowana przez Friedmana w 1999 roku (zob. [3]). 
Należy ona do grupy metod agregacyjnych wykorzystujących sekwencyjne łą­
czenie modeli składowych (ang. boosting).

Model regresyjny w metodzie MART można przedstawić w postaci:
.M

/(x) = £r(x,e,) (13)
m=0

gdzie funkcje składowe T(x,®m) są drzewami regresyjnymi charakteryzowa­

nymi przez zbiór parametrów ®„, = (zob. [6]).

Estymatory parametrów ®m w modelu zagregowanym (13) otrzymujemy 

poprzez minimalizację funkcji straty Z(y/(x)) w zbiorze uczącym U:

N f M \
®m = argmin^Z y„X7Xx„®m)

}«=()....,w z=l \ m=Q y
(M)

Zagadnienie minimalizacji funkcji straty Z(y/(x)) jest złożone oblicze­
niowo, dlatego do jego rozwiązania wykorzystuje się najczęściej strategię wspi­
naczki (zob. [6]), polegającą na wyznaczeniu w każdym kroku algorytmu roz­
wiązania optymalnego jedynie w sensie lokalnym. Szczegółowo omówione eta­
py metody MART przedstawiono w pracy [3].

W każdej iteracji algorytmu MART do modelu zostaje dołączona kolejna 
funkcja — drzewo regresyjne . Wszystkie funkcje składowe są również

systematycznie poprawiane, przez co uzyskujemy model bardzo dobrze dopaso­
wany do danych ze zbioru uczącego.
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Im większa liczba iteracji w algorytmie MART, tym więcej funkcji skła­
dowych wchodzi do modelu regresyjnego. Uzyskujemy więc model nadmierne 
dopasowany do zbioru uczącego oraz charakteryzujący się dużą złożonością. 
Jednym ze sposobów rozwiązania zagadnienia regularyzacji jest w tym przypad­
ku ograniczenie wartości parametru M, czyli liczby funkcji składowych.

Optymalną liczbę funkcji składowych można wyznaczyć w sposób symu­
lacyjny, przeszukując pewien zakres parametru M i wyznaczając błędy predykcji 
modelu na zbiorze testowym.

3.1. Przykład

Zbiór Boston został losowo podzielony na zbiór uczący (zawierający 80% 
obserwacji) oraz zbiór testowy. Na zbiorze uczącym, za pomocą metody MART, 
zbudowano modele regresji o różnej liczbie funkcji składowych. Do każdego 
modelu wprowadzono 13 zmiennych objaśniających. Zmienną zależną jest me­
diana wartości domu (w tys. dolarów). Maksymalna wartość parametru M jest 
równa 10 000, zatem najbardziej złożony model składa się z 10 000 drzew re- 
gresyjnych.

Do oszacowania parametrów modeli wykorzystano funkcję straty Hubera

gdy |y-/(x)|<^ 

gdy |y - /(x)| > s
(15)

Poniższy wykres (rys. 3.) przedstawia zależność błędu absolutnego obli­
czonego na zbiorze uczącym (niższa krzywa) oraz testowym (wyższa krzywa) 
w zależności od liczby funkcji składowych.

Z wykresu możemy odczytać, iż błąd absolutny obliczony na zbiorze te­
stowym stabilizuje się na poziomie 2. Zatem dokładanie do modelu kolejnych 
funkcji składowych i tym samym zwiększanie złożoności modelu nie doprowa­
dzi do obniżenia wartości błędu predykcji. Rozwiązaniem zadania regularyzacji 
w tym przykładzie będzie model zawierający około 1000 drzew składowych.
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Training and test absolute error

Itérations

Rys. 3. Wykres zależności błędu absolutnego obliczonego na zbiorze uczącym (niższa 
krzywa) oraz testowym (wyższa krzywa) w zależności od liczby funkcji skła­
dowych
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VARIOUS REGULARIZATION ISSUES OF REGRESSION

Summa ry

It is well known in statistics, that fitting the training data too well can increase prédiction 
risk on the future prédictions. In other words too large flexibility of the régression function would 
cause a leamer to overfit the data, i.e. the leamer would be able to model the noise in the data as 
well as the generating process and it leads to poor generalization. The process of finding the ba­
lance between minimizing the training error and controlling capacity is called regularization. The 
paper présents the issue and gives two examples of regularization technique in case of MARS and 
MART.
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EMPIRYCZNA OCENA WRAŻLIWOŚCI 
METODY WEKTORÓW NOŚNYCH 
NA WYSTĘPOWANIE OBIEKTÓW BŁĘDNIE 

SKLASYFIKOWANYCH 
W ZBIORZE UCZĄCYM

Wprowadzenie

Empiryczne badania porównawcze wskazują, że metoda wektorów no­
śnych (ang. Support Vector Machines — SVM) jest, obok metody zagregowanych 
drzew klasyfikacyjnych Breimana, najefektywniejszą metodą dyskryminacji [4]. 
Przez efektywność rozumiemy tu przede wszystkim małe błędy klasyfikacji dla 
obiektów ze zbioru rozpoznawanego, ale także możliwość stosowania metody 
dla różnych typów danych.

Funkcja klasyfikująca, otrzymywana metodą wektorów nośnych, jest nie­
liniowa i wybierana z przestrzeni hipotez zawierającej wiele bardzo zróżnicowa­
nych funkcji. Powoduje to zagrożenie wystąpienia zjawiska nadmiernego dopa­
sowania funkcji klasyfikującej do danych ze zbioru uczącego (ang. overfitting), 
na których model został zbudowany. Otrzymany model będzie wtedy opisywał 
badane zjawisko zbyt szczegółowo, rygorystycznie, opierając się na zbiorze 
uczącym, w którym, jak wiadomo, wartości cech diagnostycznych są realiza­
cjami zmiennych losowych i są obarczone błędami. Problem ten został rozwią­
zany przez zaimplementowanie w algorytmie metody wektorów nośnych zasady 
minimalizacji ryzyka strukturalnego [6; 5], Najogólniej rzecz biorąc, zasada 
minimalizacji ryzyka strukturalnego polega na poszukiwaniu funkcji dyskrymi­
nującej jak najlepiej klasyfikującej obserwacje ze zbioru uczącego, jednocześnie 
na kontrolowaniu stopnia złożoności wyznaczanej funkcji.
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W rzeczywistych zbiorach danych podlegających dyskryminacji bardzo czę­
sto występują obiekty błędnie sklasyfikowane. W takim przypadku wymaganie 
zerowego lub bliskiego zeru błędu klasyfikacji na zbiorze uczącym jest niezasadne, 
gdyż osłabia zdolność modelu do poprawnego klasyfikowania nowych obiektów ze 
zbioru rozpoznawanego. Wszystkie metody, które za podstawowe i jedyne kryte­
rium wyboru funkcji dyskryminującej biorą minimalizowanie błędu klasyfikacji na 
zbiorze uczącym, są więc uważane za mało elastyczne i nieodporne.

Metoda wektorów nośnych jest uważana za metodę odporną. W dalszej 
części artykułu przedstawiono pokrótce algorytm metody SVM, ze szczególnym 
uwzględnieniem elementów czyniących ją odporną na błędy występujące 
w zbiorze uczącym, a następnie empirycznie sprawdzono na zbiorze danych 
standardowo wykorzystywanym do badania własności metod wielowymiarowej 
analizy statystycznej, w jakim stopniu metoda jest odporna. Dla porównania 
zbadano również konkurencyjne metody dyskryminacji.

1. Metoda wektorów nośnych
Dany jest zbiór uczący D = {(x*, y1),...,(xN,yA,)}) gdzie x* gR<; oraz 

ý - wartości zmiennej opisującej klasę obiektu. Metoda wektorów nośnych, reali­
zując nieliniową klasyfikację, w pierwszej kolejności transformuje obserwacje 
z oryginalnej przestrzeni danych w przestrzeń o dużo większym wymiarze, w któ­
rej obiekty są rozdzielane hiperpłaszczyznami. Ze względu na nieliniowość prze­
kształcenia przestrzeni danych, liniowemu rozdzieleniu danych w nowej przestrze­
ni cech odpowiada nieliniowa ich dyskryminacja w przestrzeni pierwotnej.

Jeżeli przez <p oznaczymy nieliniową transformację przestrzeni danych, to 
w przypadku dwóch klas zadanie dyskryminacji polega na wyznaczeniu opty­
malnej hiperpłaszczyzny:

ß-0>(x) + /7o=O (1)

rozdzielającej klasy zbioru uczącego ’J'77)}, gdzie

x‘ eRd, ç’(x') eZ oraz {-1,1} dla i = 1,...,7V. W przypadku większej liczby 
klas można wyznaczyć wiele funkcji dyskryminujących klasy parami i skonstru­
ować funkcję dyskryminującą, korzystając z reguły majoryzacji (głosowania 
modeli cząstkowych).

Jak pokazano m.in. w pracy [1], rozważane zagadnienie można zapisać 
w postaci zadania optymalizacji wypukłej z kwadratową funkcją celu oraz li­
niowymi ograniczeniami:
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mm
■ ß.Ä í=i

i,>o, y(ßp(x') + A)>l-i,, 1=1, N.

(2)

Nierównościowe ograniczenia w (1) w postaci y \P ■^(X ) + Aj>l 
z geometrycznego punktu widzenia stanowią warunki separowalności, tzn. wy­
muszają, aby wyznaczona hiperpłaszczyzna rozdzielała klasy. Wprowadzone zaś 
zmienne £i,... £n>0 są realizacją postulatu uelastycznienia metody, gdyż osła­
biają wymaganie, aby wszystkie obserwacje ze zbioru uczącego były poprawnie 
klasyfikowane (rozdzielone) przez hiperpłaszczyznę.

Rozwiązanie zadania (2) znajdujemy metodą mnożników Lagrange’a. 
Funkcję dyskryminującą otrzymujemy wykorzystując formułę definiującą opty­
malną hiperpłaszczyznę rozdzielającą klasy:

/(x) = sign
íe/JT

(3)

i jest ona opisana wyłącznie przez te wektory x' ze zbioru uczącego, którym 
odpowiadają niezerowe współczynniki Lagrange’a w rozwiązaniu zadania 
optymalizacyjnego (2). Obserwacje te nazywamy wektorami nośnymi. Ponadto 
w metodzie wektorów nośnych wykorzystuje się funkcje z rodziny funkcji ją­
drowych, definiujące iloczyn skalamy w pewnej przestrzeni cech. Tym samym 
postać funkcji transformującej <p nie musi być znana. Wystarczy bowiem postać 
iloczynu skalarnego K(u,v) = ę>(u) • ę>(v) w przestrzeni Z. Własność ta ma istotne 
znaczenie dla wyeliminowania wielu numerycznych problemów metody [3],

2. Analiza wrażliwości metod na występowanie 
obserwacji błędnie sklasyfikowanych w zbiorze 
uczącym

2.1. Zbiory danych poddane analizie

W dalszych rozważaniach przedstawiono porównanie jakości modeli 
otrzymanych za pomocą różnych metod dyskryminacji w przypadku zbiorów 
uczących, w których z góry zadana część obiektów została błędnie sklasyfiko­
wana. Tak postawiony problem w zasadzie wyklucza możliwość wykorzystania 
zbiorów danych rzeczywistych, gdyż w ich przypadku nie jest znana poprawna 
przynależność do klas badanych obiektów. Do analizy wykorzystano zbiór da­
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nych Spirals - zbiór sztuczny, wygenerowany za pomocą funkcji z biblioteki 
mlbench pakietu statystycznego R [2], Zbiór Spirals tworzą punkty dwóch spiral 
o wspólnym początku, z których drugą otrzymano z pierwszej przez obrót 
o 180°, przy czym punkty obu spiral wygenerowano z uwzględnieniem zaburze­
nia - zmiennej o rozkładzie N(0; 0,05). Należy zauważyć, że klasy tworzące ten 
zbiór są liniowo nieseparowalne, o wysokim „stopniu nieliniowości” funkcji 
rozdzielającej badane klasy. Zbiór uczący, zawierający 600 obiektów, został 
wygenerowany w czterech wariantach:
a) niezawierającym obserwacji błędnie sklasyfikowanych,
b) zawierającym 10% losowo wybranych obserwacji błędnie sklasyfikowanych,
c) zawierającym 20% losowo wybranych obserwacji błędnie sklasyfikowanych,
d) zawierającym 30% losowo wybranych obserwacji błędnie sklasyfikowanych.

Ilustrację zbiorów uczących poddanych dyskryminacji przedstawia rys. 1.

-15 -1.0 -O.5 0.0 05 1.0 1.5 -1.5 -1.0 -0 5 0.0 0.5 1.0 15

Rys. 1. Cztery warianty zbioru uczącego Spirals, zawierające po 600 obiektów każdy. 
Zbiór tworzą dwie klasy - spirale - oznaczone na rysunku kółkami oraz trójką­
tami. W lewym górnym rogu — zbiór, w którym wszystkie obserwacje są po­
prawnie sklasyfikowane. W prawym górnym rogu zbiór, w którym 10% losowo 
wybranych obserwacji jest błędnie sklasyfikowanych. W lewym dolnym - 20% 
błędnie sklasyfikowanych, zaś w prawym dolnym - aż 30%
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2.2. Porównywane metody dyskryminacji oraz kryterium 
porównawcze

Ponieważ podstawowym celem badania jest sprawdzenie, czy metoda po­
trafi zbudować model, który będzie poprawnie klasyfikował nowe obiekty ze 
zbioru rozpoznawanego, więc jako kryterium porównywania modeli przyjęto 
błąd klasyfikacji liczony na zbiorze testowym, zawierającym 400 obserwacji, 
które nie były wykorzystywane w procesie wyznaczania funkcji dyskryminują­
cej (modelu).

Wprawdzie nadrzędnym celem było zbadanie wrażliwości metody wekto­
rów nośnych na występowanie obserwacji błędnie sklasyfikowanych w zbiorze 
uczącym, jednak, aby mieć pewien punkt odniesienia, te same zbiory poddano 
dyskryminacji również konkurencyjnymi metodami. W analizie uwzględniono:
1) SVM - metodę wektorów nośnych,
2) LDA - liniową analizę dyskryminacyjną,
3) KNN - metodę ^-najbliższych sąsiadów,
4) RPART - drzewa klasyfikacyjne,
5) RFOREST - zagregowane drzewa klasyfikacyjne Breimana.

Symbole, którymi oznaczono poszczególne metody, zostały zaczerpnięte 
z nazw odpowiadających im funkcji z pakietu statystycznego R, który wraz 
z dodatkowymi bibliotekami został wykorzystany do przeprowadzenia analizy.

Prawie wszystkie badane metody wymagają ustalenia wartości pewnych 
parametrów. Z reguły jakość otrzymanego modelu silnie zależy od odpowied­
niego doboru wartości parametrów. W przeprowadzonej procedurze badawczej 
wybierano taki układ wartości parametrów, przeszukując odpowiednio duży ich 
zakres, który dawał najmniejszy błąd klasyfikacji liczony metodą sprawdzania 
krzyżowego z podziałem zbioru uczącego na 10 części.

W metodzie wektorów nośnych wykorzystano funkcję jądrową Gaussa, 
zmieniając wartość parametru gamma w zakresie {1, 10, 20} oraz parametru C 
od 10-2 do 10 . W metodzie ^-najbliższych sąsiadów wartość parametru k dobie­
rano z zakresu od 1 do 10. W przypadku drzew klasyfikacyjnych wymaganą 
minimalną liczbę obserwacji w węźle, aby nastąpił dalszy podział, ustalano na 
poziomie od 3 do 10, zaś kryterium minimalnej poprawy jakości modelu na po­
ziomie od 1% do 3%. W metodzie zagregowanych drzew klasyfikacyjnych Brei­
mana liczbę zmiennych losowanych przy każdym podziale ustalano na poziomie 

-Jd oraz 2-Jd , gdzie d — liczba zmiennych Ustalono również liczbę drzew 

równą 100 oraz 200, a także minimalną liczbę obserwacji w liściu: 1, 5,10.
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3. Wyniki analizy
Jak już zostało wspomniane, dla każdego z czterech wariantów zbioru 

uczącego skonstruowano różnymi metodami modele z optymalnym, ze względu 
na błąd klasyfikacji liczony metodą sprawdzania krzyżowego, układem wartości 
parametrów. Następnie każdy z tak otrzymanych modeli wykorzystano do klasy­
fikacji obiektów ze zbioru testowego i obliczono błąd klasyfikacji. Wyniki anali­
zy przedstawia tabela 1.

Tabela 1

Błąd klasyfikacji w % liczony na zbiorze testowym dla różnych metod dyskryminacji 
i zbiorów uczących Spirals zawierających odpowiednio 0%, 10%, 20% i 30% 

obserwacji błędnie sklasyfikowanych

0% błędnych 10% błędnych 20% błędnych 30% błędnych

SVM 0,0 0,0 45 11,3
LDA 49,8 50,0 49,8 48,3
KNN 0,3 9,3 19,8 30,3
RPART 6,5 10,0 22,3 31,5
RFOREST 2,8 4,8 12,3 21,3

W pierwszej kolejności można zauważyć, że mimo nieliniowej postaci 
funkcji rozdzielających klasy, metoda wektorów nośnych wyznaczyła model, 
który bezbłędnie sklasyfikował obiekty ze zbioru testowego zarówno w przy­
padku zbioru pozbawionego obserwacji błędnie sklasyfikowanych, jak i w przy­
padku zbioru uczącego zawierającego ich 10%. Ponadto nawet gdy w zbiorze 
uczącym znajdowało się aż 20% błędnie sklasyfikowanych obiektów, metoda 
SVM nie poddała się zjawisku nadmiernego dopasowania do zbioru uczącego 
i wygenerowała reguły klasyfikacji w bardzo dużym stopniu odzwierciedlające 
reguły leżące u podstaw wygenerowanego zbioru, co potwierdza zaledwie 4,5% 
błąd klasyfikacji na zbiorze testowym. Oznacza to, że jakość predykcji modelu 
SVM może być o wiele wyższa niż jakość danych, które stanowiły podstawę 
budowy modelu. Wniosek ten potwierdził się nawet w przypadku zbioru uczą­
cego o bardzo niskiej jakości danych, w którym aż 30% obserwacji zostało błęd­
nie sklasyfikowanych. Model otrzymany metodą wektorów nośnych na tym 
zbiorze charakteryzuje się już 11,3% błędem w zbiorze testowym, lecz nadal jest 
to błąd znacznie niższy ruz błąd samych danych zbioru uczącego.

Na rys. 2 przedstawiono dla czterech wariantów zbioru uczącego nieli­
niowe funkcje dyskryminujące otrzymane metodą SVM, odpowiadające linio­
wym hiperplaszczyznom rozdzielającym klasy w przestrzeni cech o większym 
wymiarze.
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Rys. 2. Nieliniowe funkcje dyskryminujące dla czterech wariantów zbioru uczącego 
Spirals. Zbiór tworzą dwie klasy — spirale — oznaczone na rysunku kółkami oraz 
trójkątami. W lewym górnym rogu zbiór, w którym wszystkie obserwacje ze 
zbioru uczącego są poprawnie sklasyfikowane. W prawym górnym rogu zbiór, 
w którym 10% losowo wybranych obserwacji ze zbioru uczącego jest błędnie 
sklasyfikowanych. W lewym dolnym — 20% błędnie sklasyfikowanych, zaś 
w prawym dolnym — 30%

Poddając dalszej analizie wyniki zebrane w tabeli 1, można zauważyć, że 
w każdym przypadku metoda wektorów nośnych dała najmniejszy błąd klasyfi­
kacji na zbiorze testowym. Potwierdza to wyniki otrzymane wcześniej w pracy 
[4], Nie są zaskakujące duże błędy klasyfikacji dla liniowej analizy dyskrymina­
cyjnej ze względu na ewidentną nieliniowość postaci reguł klasyfikacyjnych.

Metoda ^-najbliższych sąsiadów, której algorytm określa przynależność 
danego obiektu do klasy lokalnie, biorąc pod uwagę tylko ustaloną z góry liczbę 
obserwacji najbliższych, sprawdzała się jedynie w przypadku zbiorów separo- 
walnych (niekoniecznie liniowo separowalnych), tzn. algorytm dobrze radzi 
sobie z nieliniowością, lecz wyniki znacznie pogarszają się w przypadku, gdy 
klasy częściowo się pokrywają.
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Podsumowanie

Wyniki badania empirycznego potwierdziły, że metoda wektorów nośnych 
należy do grupy metod odpornych w tym sensie, że dopuszcza, aby w zbiorze 
uczącym znajdowały się obserwacje błędnie sklasyfikowane. Nawet przy sto­
sunkowo dużej liczbie takich obserwacji metoda SVM buduje reguły poprawnie 
klasyfikujące obiekty ze zbioru rozpoznawanego. Bardzo często w przypadku 
metod dopuszczających złożone, nieliniowe postaci funkcji dyskryminujących 
występuje problem nadmiernego dopasowania modelu do zbioru uczącego. Me­
toda SVM poprzez zaimplementowaną zasadę minimalizacji ryzyka struktural­
nego umożliwia nieliniową dyskryminację, zachowując zdolność do poprawne­
go klasyfikowania obserwacji ze zbioru rozpoznawanego.

Porównanie błędów klasyfikacji na badanym zbiorze wskazuje, że metoda 
SVM najlepiej spośród porównywanych metod dyskryminacji nadaje się do 
klasyfikacji zbiorów obarczonych błędami. Niezależnie też od wariantu zbioru, 
metoda wektorów nośnych wyznaczała funkcję dyskryminującą, charakteryzują­
cą się najmniejszymi błędami klasyfikacji.
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SUPPORT VECTOR CLASSIFICATION AND ITS SENSITIVITY TO THE PRESENCE 
OF NOISE IN THE TRAINING DATA

Summary

The Support Vector Machines hâve been developed as a robust tool for classification in 
noisy, complex domains. The paper présents a comparison of some selected classification methods 
by the means of classification test set error depending on the presence of noise in the training data.
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OBLICZENIOWE ASPEKTY WYZNACZANIA 
WEWNĘTRZNEJ STOPY ZWROTU 
DLA INWESTYCJI Z GĘSTYMI NOŚNIKAMI 
PRZEPŁYWÓW FINANSOWYCH

Wstęp

Wewnętrzna stopa zwrotu inwestycji (IRR), mimo wad, nadal jest jednym 
z podstawowych kryteriów stosowanych w finansowych (dynamicznych) meto­
dach oceny projektów inwestycyjnych . W przypadku gdy przepływy finansowe 
mają miejsce w skończonej liczbie momentów czasowych (dla uproszczenia 
załóżmy, że momentami tymi są t = 0, 1, 2, .... n), wyznaczenie IRR sprowadza 
się do znalezienia dodatniego pierwiastka r równania: 

NPV(r) = CIF, 
(b^)

n

/=0

COF, 
(1 + ď

= 0 (1)

w którym CIFt i COFt oznaczają odpowiednio wpływy i wypływy pieniężne 
(przychody lub wydatki) w momencie t, natomiast n oznacza zakładany okres 
eksploatacji inwestycji. Rozwiązywanie równań postaci (1) stało się proste, gdy 
pojawiły się programy zwane systemami algebry komputerowej (Computer Al­
gebra Systems, CAS), m.in. takie jak Derive, Maple, Mathcad, Matlab, czy Ma- 
thematica. Za pomocą tych programów można bez trudu znaleźć dokładne lub 
przybliżone wartości wszystkich pierwiastków tych równań, nawet dla dużych 
wartości n [9; 10].

Zob. np. [2; 4,7].
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Gdy mamy do czynienia z inwestycjami o gęstych nośnikach przepływów 
finansowych, a dokładniej, gdy zbiór momentów czasowych, w których mają 
miejsce niezerowe przepływy finansowe, jest zbiorem w sobie gęstym , stopa 
zwrotu IRR z inwestycji Aj est równa:

IRR = l/(l + £) (2)

gdzie oznacza jedyny pierwiastek równania:

T T
\cifx (fi? di = - \c°fx (3)
o o

należący do przedziału (0, 1)**. W powyższym wzorze T> 0 jest okresem eksplo­
atacji inwestycji (projektu), a funkcje cif x ■' [0, T] —>R+ oraz cof x ■' [0, T]—>R~ 
oznaczają odpowiednio intensywność przychodów i wydatków .

Okazuje się, że nawet w prostych przypadkach, całki występujące w rów­
naniu (3) mogą być całkami nieelementamymi, a samo równanie równaniem 
przestępnym, niekiedy tak złożonym, że jego rozwiązanie jest możliwe wyłącz­
nie za pomocą wyżej wspomnianych programów.

W artykule rozważono przypadki, w których intensywności przepływów 
pieniężnych są funkcjami wykładniczymi i potęgowymi oraz przedstawiono 
otrzymane za pomocą programu Mathematica® rozwiązania równania (3) oraz 
wartości IRR dla obu tych przypadków.

1. Równania przestępne a Mathematik

Niech funkcja y -f(x) (f : R—>R) będzie określona w pewnym otwartym 
zbiorze DęR. Funkcję/nazywamy analityczną, jeżeli każdy punkt x0 e D ma 
otoczenie U(x0) cD takie, że/w tym otoczeniu daje się przedstawić w postaci 
szeregu potęgowego o środku xfl. Funkcję / nazywamy funkcją algebraiczną 
zmiennej x wtedy i tylko wtedy, gdy x i y spełniają równanie uwikłane postaci 
F(x, y) = 0, w którym F jest wielomianem zmiennych x i y. Funkcją przestępną 
nazywamy każdą funkcję analityczną, która nie jest algebraiczna. Najprostszymi

Zbiorem w sobie gęstym nazywamy zbiór A c X ( X - przestrzeń topologiczna), którego każdy punkt jest 
jego punktem skupienia [3]. W artykule rozważa się wyłącznie przypadek, gdy nośniki przepływów finan­
sowych są przedziałami domkniętymi.

" Zob. [5],
R+ i R* oznaczają odpowiednio zbiór liczb rzeczywistych nieujemnych i zbiór liczb rzeczywistych niedo- 
datnich. 
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przykładami funkcji przestępnych są funkcje trygonometryczne, funkcja wy­
kładnicza i funkcja logarytmiczna.

Równaniami przestępnymi nazywamy równania, w których występują 
funkcje przestępne. Przykładami równań przestępnych są więc równania trygo­
nometryczne, wykładnicze, logarytmiczne oraz m.in. takie równania, jak:

sin x + 2 In x - x = 0 (4)

Ogólne metody rozwiązywania równań przestępnych są znane jedynie dla 
niektórych typów tych równań. Równanie (4) oraz równania przestępne wystę­
pujące w dalszej części artykułu można rozwiązać jedynie w sposób przybliżo­
ny, wykorzystując metodę połowienia przedziału, metodę siecznych, metodę 
Newtona (zwaną również metodą stycznych), metodę punktu stałego lub też ich 
modyfikacje [6],

Mathematica® jest programem komputerowym, umożliwiającym wyko­
nywanie złożonych obliczeń numerycznych i symbolicznych oraz tworzenie 
dwu- i trójwymiarowej grafiki. Za tym lakonicznym określeniem kryje się pro­
gram albo, jak piszą niektórzy, „zintegrowane środowisko” o olbrzymich moż­
liwościach, które użytkownik może jeszcze poszerzyć i dostosować do własnych 
potrzeb, pisząc własne aplikacje w oferowanym przez program Mathematica® 
języku programowania wysokiego poziomu. Najnowsze wersje programu mogą 
ponadto pełnić rolę edytora tekstów (w tym naukowych, a w szczególności ma­
tematycznych) oraz umożliwiają m.in. eksport utworzonych dokumentów 
w formatach HTML, TEX oraz LATEX. Twórcą programu Mathematica®, 
a dokładniej jego pierwszej wersji, która ukazała się 23 kwietnia 1988 roku, jest 
Stephen Wolfram. Kolejne, udoskonalone wersje programu, pisane już przy 
współudziale coraz liczniejszego grona programistów oraz naukowców różnych 
specjalności i sprzedawane jako produkt firmy Wolfram Research Inc. z siedzibą 
w Champaign, IL, USA, stały się światowym standardem w dziedzinie obliczeń 
naukowych. Najnowszą wersją programu jest obecnie Mathematica® 6.0. Ob­
szerną informację na jego temat można znaleźć w pozycjach [1; 8] oraz w Inter­
necie na stronie www.wolfram.com.

W programie Mathematica® za pomocą instrukcji:

FindRoot[f[x]==0,{x, x0}]

wykorzystującej metodę Newtona, można wyznaczyć numeryczne rozwiązanie 
równania f(x) — 0, biorąc punkt x0 jako pierwsze przybliżenie. W doborze punk­

http://www.wolfram.com
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tu xo, czyli wstępnej lokalizacji pierwiastka równania, pomaga narysowanie wy­
kresu funkcji/ który można sporządzić za pomocą instrukcji:

Plot[f[x],{x, a, b}]

Instrukcja ta (mająca wiele wariantów i opcji) rysuje wykres funkcji f 
w przedziale [a, b]. Przykładowo, dla równania (4) instrukcja:

Plot[Sin[x]+2*Log[x]-x,(x,0,10}»AxesLabel—>{ "x", "f (x) "} ]

rysuje wykres funkcji stanowiącej lewą stronę równania (4) dla x e (0,10] (rys. 1).

Rys. 1. Wykres funkcji/*) = sinx + 2 lnx -x w przedziale (0, 10]

Na rys. 1 widać, że pierwiastki równania (4) znajdują się w pobliżu liczb 
1 i 2. Instrukcje:

FindRoot[Sin[x]+2*Log[x]-x==0,{x,1}]
oraz:

FindRoot[Sin[x]+2*Log[x]-x==0,{x,2}]

wyznaczają przybliżone wartości jedynych pierwiastków x ~ 1.1145 oraz x ~ 
» 2.42874 równania (4). Stosując odpowiednie opcje, możemy zwiększyć do­
kładność otrzymanych wyników.

Wszystkie obliczenia (całkowanie, rozwiązywanie równań przestępnych) 
oraz rysunki w tym artykule zostały wykonane przez Autora za pomocą progra­
mu Mathematica® (wersja 5.2).
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2. IRR jako pierwiastek równania przestępnego

Rozważmy najpierw przypadek, w którym intensywności przychodów 
i wydatków są funkcjami wykładniczymi:

cifx (t) = OX^, cofx (ť) = yea (5)

gdzie a, ß, y, 5 > 0. Całki występujące po obu stronach równania (3) są wtedy 
łatwymi do obliczenia całkami elementarnymi, natomiast równanie (3) jest ze 
względu na £ równaniem przestępnym w postaci:

<D(£) =
a\e(fi+'n^T - i) 

/7 + ln£ - £ + In £
= 0 (6)

Na istnienie i położenie pierwiastka £ tego równania w przedziale (0, oo) 
ma istotny wpływ każdy z parametrów a, ß, y, ßiT.

Dla wartości a = 2, ß= 0.5, y= 10, ß = 0.5 i T = 7 [5] równanie (6) ma 
pierwiastek £ ~ 0.522797, dla którego z równania (2) otrzymujemy IRR ~ 
« 0.912788. Na rys. 2 pokazano wykres funkcji <Z> (lewej strony równania (6)) 
dla podanych wyżej wartości parametrów (linia ciągła pogrubiona).

Rys. 2. Wykresy funkcji 0>dla różnych wartości parametrów a, ß, y i S

Gdy zmniejszymy wartość parametru ß do 0.05 (ceteris paribus), równa­
nie (6) nie będzie miało pierwiastka w przedziale (0, 1). Pierwiastkiem jest wte­



166
Henryk Zawadzki

dy £ ~ 1.07661, co daje IRR ~ -0.0711562. Wykres funkcji z równania (6) 
pokazano na rys. 2 (linia przerywana).

W przypadku gdy parametry przyj mą wartości a - 10, ß= 0.5, y =2, 5 = 
= 0.5 i T = 7, równanie przestępne (6) w ogóle nie będzie miało dodatniego 
pierwiastka (rys. 2, linia ciągła).

Niech teraz intensywności przychodów i wydatków będą funkcjami potę­
gowymi w postaci:

+1, co/x(í) = Vř-3

a czas życia ekonomicznego projektu wynosi T = 5. W tym przypadku każda 
z całek występujących w równaniu (3) jest całką nie elementarną, a równanie (3) 
jest równaniem przestępnym:

$(£) =
(i+Všx5 -i 

ln£ 

1
3(— ln£)4'3

3£5 (VŠ - 3)V-ln< + rí I ,-5 In + 9^-ln^ - 3f|

(7)

W powyższym równaniu F(z) jest funkcją gamma Eulera: 
OO

r(z)= Re(z)>0
o

funkcja F(a,z) jest niepełną funkcją gamma Eulera:
OO

F(«,z) = $e 't“ ‘(/t, Re(a) > 0 
Z 

a funkcja erfi (z) jest zespoloną funkcją błędu:

erfi{z} = -ierf{iz)
gdzie erf(z) jest funkcją błędu:

erf{z) = -i\e~tldt
o

Mimo bardzo skomplikowanej postaci równania (7), za pomocą programu 
Mathematica® można w analogiczny sposób narysować wykres funkcji (rys. 3) 
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i wyznaczyć pierwiastek równania (7) £ » 0.500451, a następnie IRR » 
-0.998199.

Podsumowanie

Przytoczone przykłady pokazują, że przy wyznaczaniu IRR dla inwestycji 
z gęstymi nośnikami przepływów finansowych mogą się pojawić całki nieele- 
mentame i równania przestępne. Pokazują również, że za pomocą systemów 
algebry komputerowej (np. Mathematica® można bez większych trudności roz­
wiązać te równania i wyznaczyć IRR przy każdych ustalonych wartościach pa­
rametrów, które występują w funkcjach intensywności przychodów i wydatków. 
Wydaj e się, że wspomniane programy mogą się również okazać pomocne 
w rozwiązaniu problemu, polegającego na sformułowaniu warunków wystarcza­
jących na to, by równanie (3) posiadało jeden tylko pierwiastek £,, i to pierwia­
stek znajdujący się w przedziale (0, 1).

Literatura

1. Drwal G., Grzymkowski R., Kapusta A., Słota D.: Mathematica 5. Wydaw­
nictwo Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2004.

2. Jajuga K.: Zarządzanie kapitałem. Wydawnictwo AE im. Oskara Langego we 
Wrocławiu, Wrocław 1993.



168
Henryk Zawadzki

3. Kuratowski K.: Wstęp do teorii mnogości i topologii. Państwowe Wydaw­
nictwo Naukowe, Warszawa 1966.

4. Manikowski A., Tarapata Z.: Ocena projektów gospodarczych. Difin, War­
szawa 2002.

5. Piasecki K.: Od arytmetyki handlowej do inżynierii finansowej. Wydawnic­
two Akademii Ekonomicznej w Poznaniu, Poznań 2005.

6. Ralston A.: Wstęp do analizy numerycznej. Państwowe Wydawnictwo Na­
ukowe, Warszawa 1971.

7. Tarczyński W., Mojsiewicz M.: Zarządzanie Ryzykiem. Polskie Wydawnic­
two Ekonomiczne, Warszawa 2001.

8. Wolfram S.: The „Mathematica" Book (5th ed.). Wolfram Media, Inc., 
Champaign, IL., 2003.

9. Zawadzki H.: ,^athematica®” w matematyce finansowej. Obliczanie we­
wnętrznej stopy zwrotu inwestycji. Zeszyty Naukowe AE, nr 31, Katowice 
2004, s.121-133.

10. Zawadzki H. (2004): Matematyczne aspekty obliczania wewnętrznej stopy 
zwrotu. Zeszyty Naukowe Uniwersytetu Szczecińskiego, nr 389 (Finanse- 
-Rynki finansowe-Ubezpieczenia, nr 2), Szczecin 2004, s. 257-266.

COMPUTATIONAL ASPECTS OF CALCULATING THE INTERNAL RATE 
OF RETURN FOR INVESTMENTS WITH DENSE SUPPORT OF CASH FLOWS

Summary

In order to find an internal rate of retum of Investment (IRR) in case of the dense supports of 
cash flows, we hâve to solve for an équation:

T T
\dfx W& = -fcofx
0 0

where T > 0 dénotés the time of living of the project (Investment) and functions cif x : [0, T] —> 
—> łf and cof x : [0, T]-+R~ dénoté intensities of cash inflows and outflows respectively 1t 
tums out that even in simple cases, intégrais that occur in this équation are non elementary inté­
grais and the équation alone is a transcendental équation, in this article we look more dosely at 
two of such cases when intensities of cash flows are exponential or power functions.
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UWAGI O STATYSTYCE BDS
I WYKŁADNIKU HURSTA W ODNIESIENIU 
DO DANYCH GIEŁDOWYCH

Wprowadzenie

W ostatnich czasach coraz częściej pojawiają się nowe metody służące do 
analizy finansowych szeregów czasowych. Niewątpliwie przyczyną wzrostu 
zainteresowania tymi metodami jest pogoń za stworzeniem „doskonałej” metody 
prognozowania cen finansowych, a co za tym idzie - chęć zdobycia ponadprze­
ciętnego dochodu.

Jedną z grup metod należących do tego nurtu jest teoria chaosu. Ważnym jq 
dokonaniem jest wykazanie istnienia układów deterministycznych, które 
w pewnych warunkach zachowują się chaotycznie, nieregularnie. Wynika stąd, że 
możliwe jest odróżnienie deterministycznych szeregów czasowych od losowych.

Celem artykułu jest próba odróżnienia deterministycznych szeregów cza­
sowych od losowych za pomocą dwóch metod - statystyki BDS i analizy R/S. 
Dane wykorzystane w opracowaniu pochodzą z GPW w Warszawie z okresu od 
stycznia 2000 roku. Obliczenia przeprowadzono z użyciem programów napisa­
nych przez autorkę w języku programowania Visual Basic oraz pakietu Micro­
soft Excel.

1. Statystyka BDS

Statystyka BDS została wprowadzona w 1987 roku przez W. Brocka, 
W. Decherta i J. Scheinkmana [1], Opiera się ona na pojęciu całki korelacyjnej 
i testuje hipotezę, że zbiór danych jest iid (independent, identically distributed, 
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czyli jest to zbiór niezależnych zmiennych losowych o jednakowym rozkładzie). 
Jest zatem jedną z metod odróżniania deterministycznych szeregów czasowych 
od losowych.

Zanim rozwiniemy pojęcie statystyki BDS, określimy najpierw całkę ko­
relacyjną (C (d, r)[8]). C (d, r) jest zdefiniowana jako prawdopodobieństwo 
znalezienia pary wektorów, których odległość od siebie w zrekonstruowanej 
d-wymiarowej przestrzeni nie jest większa od r:

C(d,N,r,t) = r > 0 (1)

gdzie I(x) jest funkcją wskaźnikową (funkcja Heaviside) w postaci:

/(«) =
0

<
1

dla a < 0

dla a > 0
(2)

n - N-t(d - 1) jest liczbą wektorów w d-wymiarowej przestrzeni, TVJest liczbą 
danych, t jest wskaźnikiem opóźnienia, a rÿ = I xř - xj I.

Rozwińmy teraz pojęcie testu BDS. Niech F będzie rozkładem (wielo­
wymiarowej) zmiennej Xw przestrzeni stanów, a całka korelacyjna ma postać:

C(J, r) = j|7(r - ||x - y||)ňřF(x)í/F(y), r > 0 (3)

Jeśli zmienna Xjest iid, to dla:

4- - II* - jí)=n T(r - h - ^*1)
*=1

otrzymujemy:
C(d,r) = ďílz)

gdzie:

C(l, r) = J[f(x + r) - F(x — r)J/F(x) = C

Denker i Keller pokazali, że C(d,N,r) jest estymatorem statystyki U. Na­
tomiast Bock i in., korzystając z teorii statystyki U dla regularnych procesów, 
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udowodnili, że jeśli N-> oo, to 4ň[c(j, N, r) - Cd (1, r)j ma rozkład normalny

ze średnią zero i wariancją:

<T2(j,r) = 4 Kd —C2d (4)

gdzie:
K = J[F(x + r ) - F{x - r )f dF(x)

(zakładamy, że K > Č2). Zatem statystyka BDS będzie zdefiniowana wzorem:

BDS(d,N,r) =
cr(d, r)

[c(j,7V,r)-Crf(l,r)] (5)

z rozkładem normalnym. Jeśli rozkład F jest nieznany, to nie możemy wyzna­
czyć wartości C i K oraz wariancji W takim przypadku C(l,r) i cř(d,r) 
muszą być oszacowane przez C(l,N,r,ť) i: 

? =4L(<í-l)č*-"(ř-Č2)+^ -Č“
l 1=1

gdzie C = C(d, N, r, t) i:

Zatem statystyka BDS przyjmuje postać:

BDS(d,N,r) = [C(J, N, r, t) - Cd (1, N, r, /)] (6)

2. Analiza R/S

Wykładnik Hursta [5] jest miarą statystyczną, która pozwala na klasyfika­
cję szeregów czasowych, tj. odróżnienie deterministycznych szeregów czaso­
wych od losowych. Jedną z metod obliczania wykładnika Hursta jest metoda 
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analizy R/S. Dla szeregu obserwacji {xi,X2,...,xw} przebiega ona w następują­
cych etapach:
1. Korzystając z wzoru (7), przekształcamy powyższy szereg w ciąg m = N - 1 

logarytmicznych stóp zwrotu:

yk = log— , k=l,2, 
l xt J

(7)

t

2. Następnie dzielimy otrzymany ciąg (szereg logarytmicznych stóp zwrotu) na 
T podciągów złożonych z t elementów (T, t - liczby naturalne, takie że T-1 = 
= m, gdy m nie ma dzielników, to bierzemy m ’< m, który ma dzielniki, od­
rzucając m-m’ początkowych wyrazów ciągu). Każdy element podciągu 
oznaczamy przez «îÿ dla z = = Średnia wartość dla j-tego pod­
ciągu wynosi:

3. Kolejnym krokiem jest scentrowanie każdego podciągu poprzez odjęcie śred­
niej arytmetycznej:

zij=mij-ÿj (8)

i zdefiniowanie ciągu sum częściowych zff.

t

Qu = 1^zij , i = 1,2,..., t, j = 1, 2,..., T (9)

Zauważmy, że <7, jest skumulowanym odchyleniem od wartości 
średniej dla pierwszych j wartości w przedziale i.

4. Następnie obliczamy rozstępy skumulowanych szeregów czasowych według 
wzoru:

Rj = max(çÿ) - min(Çÿ) (10)

5. Ostatnim krokiem jest obliczenie dla każdego skumulowanego szeregu cza­
sowego rozstępu przeskalowanego, tzn. podzielenie rozstępu przez odchyle­
nie standardowe tego szeregu:

Ojt^Rj/Sj (U)
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gdzie:

V 1 i=i

6. Powyższą procedurę przeprowadza się dla różnych długości szeregu czaso­
wego t. W ten sposób otrzymujemy zależność wielkości R/S od długości sze­
regu t.

Aby wyznaczyć wykładnik Hursta, należy zlogarytmować następującą 
zależność:

E(R/S) = cf (12)

gdzie Hjest wykładnikiem Hursta, c jest stałą, a E(R/S) jest wartością oczekiwa­
ną przeskalowanego zakresu:

In E(R/S) - In c + 7/In t (13)

Wykładnik Hursta jest współczynnikiem kierunkowym regresji liniowej.
Ponieważ wykładnik Hursta służy do odróżniania deterministycznych 

szeregów czasowych od losowych, zostaną omówione teraz zasady klasyfikacji. 
Szeregi czasowe można podzielić na trzy klasy w zależności od ich wartości. 
Jeśli szereg jest szeregiem losowym, to wartość wykładnika Hursta jest równa 
0,5, czyli w takim szeregu elementy występujące po sobie są niezależne i war­
tość teraźniejsza nie ma wpływu na wartość przyszłą.

Wartość wykładnika Hursta z przedziału (0,5; 1) wskazuje nam szeregi 
persystentne, czyli takie szeregi losowe, w których obserwujemy trend (ciągle 
wzmacniający się). Szeregi takie zachowują pamięć nie tylko krótkookresową, 
ale i sięgającą daleko wstecz, jednak zbyt odległe elementy mają niewielki 
wpływ na teraźniejszość.

Do ostatniej klasy należą wartości wykładnika Hursta z przedziału (0;0,5). 
Wartości takie wskazują nam szeregi antypersystentne. Współczynnik korelacji 
ma w takim przypadku wartość ujemną. Jeśli wykładnik H jest bliski zeru, to 
współczynnik korelacji zmniejsza swoją wartość i obserwuje się w szeregu 
wzrost szumu.

3. Wyniki analizy empirycznej

Przeprowadzone badania pozwoliły za pomocą statystyki BDS i analizy 
R/S, zweryfikować hipotezę o deterministycznym charakterze badanego szeregu 
czasowego.
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Pod uwagę wzięto indeks WIG i siedem spółek, których akcje były noto­
wane na Giełdzie Papierów Wartościowych w Warszawie co najmniej od stycz­
nia 2000 roku. Razem przeanalizowano 1480 obserwacji, którymi były dzienne 
stopy zwrotu:

R,= lnPz - lnPz_!

Obliczając statystykę BDS, przyjmowano różne wymiary zanurzenia (d - 
= 2, 3, 4, 5) oraz różne wartości r (0.25<t,0.5 <t,0.75o)[5], gdzie <tjest odchyle­
niem standardowym z próby. Otrzymane wyniki przedstawia tabela 1.

Tabela 1

Zestawienie wartości statystyki BDS dla szeregów czasowych utworzonych 
z notowań wybranych spółek

Spółka d
r

0,25 o- 0,5 a 0,75 a CT
1 2 3 4 5 6

BPHPBK

2 4,1223 3,2331 2,7364 2,4522
3 6,3243 5,7865 5,5564 4,2343
4 7,9876 5,6453 4,02343 3,8976
5 9,0032 8,9987 8,0324 7,6754

BZWBK

2 2,3426 2,4532 1,8976 1,0987
3 3,2673 3,0324 2,7654 2,4352
4 5,8763 5,0982 4,6547 4,0478
5 7,8395 7,0326 7,1234 6,9328

DĘBICA

2 2,3454 1,9876 1,4673 1,8761
3 2,7865 2,6753 2,8975 1,9871
4 3,0123 2,9876 2,5674 1,8765
5 3,9876 3,7865 3,9876 3,0126

INGBSK

2 5,2963 4,4352 4,0987 3,7654
3 6,7895 6,1278 5,7589 5,1098
4 7,3426 7.0023 6,6784 6,0987
5 8,6543 7,9876 7,1987 6,9804

JUTRZENKA

2 4,3784 3,47865 3,8765 3,0002
3 6,8976 5,7856 3,8987 2,7466
4 9,6488 9,0987 6,7466 4,7489
5 11,9773 10,3643 9,8889 8,4648

OPTIMUS

2 3,4785 2,4751 1,9478 1,0674
3 5,7321 4,8335 4,2382 3,1231
4 7,7384 6,7368 6,7822 5,8722
5 8,8432 7,8732 6,7389 6,1231
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cd. tabeli 1

1 2 3 4 5 6

RAFAKO

2 7,3454 6,3729 8,7249 5,8232
3 9,2398 8,3793 7,8723 6,9121
4 11,8923 9,9823 9,0281 8,9841
5 13,7841 11,8273 10,7823 9,8191

WIG

2 7,2419 6,1883 5,9821 5,0184
3 8,7893 6,9148 6,1913 4,8778
4 10,8231 8,1431 7,1831 5,8392
5 12,7821 9,3144 8,9713 8,4189

Analizując otrzymane wyniki, odrzucamy hipotezę, że badane szeregi są 
ciągami wartości niezależnych zmiennych losowych o jednakowym rozkładzie, 
czyli badane szeregi czasowe nie są czysto losowe. Jednakże odrzucenie przez 
test BDS tej hipotezy nie jest równoznaczne z założeniem, że badany szereg jest 
deterministyczny. Informację tę należy przyjąć jako wstęp do dalszych badań.

W drugiej części badań empirycznych zastosowano analizę R/S. Tak jak 
w poprzednim przypadku dysponowano 1480 obserwacjami. Pod uwagę wzięto 
różne długości podszeregów czasowych. Po obliczeniu wartości R/S ustalono 
wartość wykładnika Hursta poprzez wyznaczenie współczynnika kierunkowego 
prostej regresji (In R/S względem In f). Wyniki obliczeń przedstawia tabela 2.

Tabela 2

Wartość wykładnika Hursta dla szeregów czasowych utworzonych z notowań 
wybranych spółek

SPÓŁKA WYKŁADNIK
HURSTA

BPHPBK 0,4491
BZWBK 0,511
DĘBICA 0,5876
INGBSK 0,5163
JUTRZENKA 0,5381
OPTIMUS 0,4806
RAFAKO 0,5271
WIG 0,4958
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Na podstawie otrzymanych wyników można wnioskować, że szeregi cza­
sowe utworzone z cen akcji BZWBK, Dębica, INGBSK, Jutrzenka i Rafako 
charakteryzują się pamięcią krótkookresową (wartość wykładnika Hursta jest 
większa od 0,5). Zatem w ich szeregach czasowych utworzonych ze stóp zwrotu 
jest możliwe istnienie pewnej deterministycznej struktury.

Podsumowanie

W opracowaniu podjęto próbę odróżnienia deterministycznych szeregów 
czasowych od losowych, korzystając z dwóch metod: statystyki BDS i analizy 
R/S. Badania zostały przeprowadzone dla indeksu WIG i siedmiu spółek 
(BPHPBK, BZWBK, Dębica, INGBSK, Jutrzenka, Optimus, Rafako) notowa­
nych na GPW w Warszawie. Rozważane szeregi składały się z cen zamknięcia 
i pochodziły z okresu od stycznia 2000 roku. Badania przeprowadzono korzysta­
jąc z programu napisanego przez autorkę w języku programowania Visual Basic 
oraz z pakietu Excel.

Na podstawie przeprowadzonych badań można zauważyć, że bardzo trud­
no jest jednoznacznie określić, czy szeregi finansowe są deterministyczne, czy 
losowe. Możliwość istnienia pewnej chaotycznej, deterministycznej struktury 
należy traktować z ostrożnością, gdyż długość rozpatrywanych szeregów obser­
wacji może być zbyt krótka. Informację taką należy potraktować jako zachętę do 
dalszych badań z wykorzystaniem innych metod odróżniania deterministycznych 
szeregów czasowych od losowych. Być może potwierdzą one lub też zaprzeczą 
istnieniu chaosu na giełdzie.
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BDS STATISTIC AND R/S ANALYSIS - THE METHOD DISTINGUISHING 
RANDOM AND DETERMINISTIC SYSTEMS

Summary

In this paper we discuss some recent techniques used in distinguishing between probabilis- 
tic and deterministic behavior in stock price: the BDS statistic and R/S analysis. Our data set is 
composed of daily data obtained from GPW in Warsaw for index WIG and seven company.
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