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Abstract. In the paper the thermal processes proceedingsuperficial layer of metal sub-
jected to a strong external heat flux are analyZée. different mathematical models of heat
conduction in domain considered are taken into @uticd he first bases on the dual-phase-lag-
equation describing a micro-scale heat transfet. ED&ontains the parameters corresponding
to relaxation time, and the normalization timg . The second model considered here results
from the assumption that = 0 and then DPLE reduces to the Cattaneo equdtienlast one

(tq = T+ = 0) corresponds to the well known Fourier equatigsing the implicit scheme of
FDM algorithm the numerical simulations have beenedand the conclusions resulting from
the results obtained have been formulated.

I ntroduction

Thermal processes proceeding close to the surfageetal domain can be
treated as the phenomena described by the eneogi@as corresponding to mi-
cro-scale heat conduction. This approach shouldsee in the case of small geo-
metrical dimensions, strong thermal interactionsveen domain and external heat
source, very big temperature gradients [1, 2]. Miwro-scale heat transfer can be
described in different ways [1-6]. In this papee ttual-phase-lag-model has been
taken into account. The energy equation contains pasitive constants corre-
sponding to the relaxation tintg and the normalization timg. The interpretation
of 14 andtr and the formulas determining above parametersheilpresented in
the next chapter. The characteristic feature of Bd_a presence of second de-
rivative of temperature with respect to time anel tigher order derivative both in
time and space.

The dual-phase-lag-equation can be reduced to d@tari2o hyperbolic partial
differential equation under the assumption that 0. Application of this type of
heat transfer equation corresponds to the modeiich the finite value of ther-
mal wave velocity is taken into account.
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If both relaxation timer; = 0 and normalization timer = O then the DPLE is
the same as the well known parabolic Fourier eqoadiescribing a heat conduc-
tion in a macro-scale.

In the paper we consider the superficial lalyavhich thermophysical parame-
ters correspond to nickel (Ni). Taking into accotim geometrical features of
domain, the 1D solution is sufficiently exact. TimcknessL of layer considered
should secure the possibility of assumption of flor-boundary condition for
x =L (it is the value of order im). The intensity of external heat flux and its du-
ration have been assumed on the level assuringatlbes of local and temporary
temperatures below a solidification point.

The numerical algorithm and computer program basthe implicit scheme of
FDM [7]. The system of equations correspondingémgition from time to time
t+ At was solved using the Thomas algorithm [8].

1. Governing equations

The microscopic two-step model presented amongrotime[1, 2, 6] is dis-
cussed. The model involves two energy equationsriahting the heat exchange
in the electron gas and the metal lattice. The ®ops creating the model dis-
cussed can be written in the form

0T,

c. (Te)W =0[4(T,)0T, |- G(T. - T) (1)
and
6 (1) 5 = 0 (7)0T ]+ 6(T, - T) @

whereT.=Te (X, t), T =T, (X, t) are the temperatures of electrons and lattice, re
spectively,c. (Te), ¢ (T)) are the volumetric specific heaig,(T.), A, (T, ) are the
thermal conductivitiesG is the coupling factor which characterizes thergye
exchange between phonon and electrons and is gs/6]

: n’ (nevs k)2
G = — 3)

e

where

k _
= lorn) 2

andn, is the electron number density per unit volukéJ/K] is the Boltzmann
constant,vs [m/s] is the speed of sound,[J s] is the Planck constant, is the
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atomic density per unit volume. For the materiahsidered (Ni) and the mean
value of thermal conductivity for the temperatunéerval analyzed, the coupling
factorG equals 3.610"" W/m°K [6].

In the case of pure metals the system of equafibng2) under the assumption
that volumetric specific heats andc, are the constant values is reduced to

ceaalte :D(}“eDTe)_G(Te_TI) (5)
and
oT,
—L = G(T. -1 6
“ ot ( ° ') (©)

This simplification, according to [1], results frotime fact that the incident ra-
diation and conductional heat flux are absorbeddiffidsed mainly by electrons.
The equations (5), (6) using a certain eliminattenhnique can be substituted
by a single equation containing a higher-order ohigerivative in both time and
space. From equation (6) results that

T =T+ 7
e I+G at ()
Putting (7) into (5) one has
0T, , G 0°T ) _ q 0 oT,
—L+ 2= _L1=0(0T)+20/r—(0T)|-c—- 8
C‘*(at+G ot’ (- ')+G eat( ) ot ®)
this means
0T, . cG 07T, _ G 0
(Ce+Q)a—t'+FW2'—D(XeDTu)’fga[D(’veDﬂ)] ©)
or
aT, cc  0°T | _ G 0
—L d =0 0T)+ 2L —| 0, (0T, 10
(c.+5) 0t+G(ce+c|)0t2 (. ')+G6t[ (0m)] (0
Denoting
-1
11 1
Tt :%' Tq :E£C—e+a) (11)

finally one obtains
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07T (x, 1)
ot 9 9t?

=0[A0T(xt)]+ TTD|:}» GD'I‘;—ﬂx,t)} (12)

whereT (x, t) = T, (%, t) is the macroscopic lattice temperature ¥ ¢ + ce is
the effective volumetric specific heat resultingrfr the serial assembly of elec-
trons and phonons angk A [6].

The positive constants, tr correspond to relaxation time and thermalization
time, respectively and they are characteristidtierso-called dual-phase-lag mod-
el. The relaxation time, is the mean time for electrons to change theirgne
states, while the thermalization tiragis the mean time required for electrons and
lattice to reach equilibrium.

This general form of energy equation can be singgliand then one obtains
well known heat conduction model basing on the &b equation and the Fou-
rier one. In particular, assuming= 0 one obtains the Cattaneo model

T (x, t 0°T (x, t
c (g)t( )+rq a(tf ) =00 0T(x )] (13)

while for 11 = 1;= 0 one obtains the Fourier model

. 0T (x t)

o O[AOT(xt)] (14)

The solution of problem describing by Equations) (@2(13) requires the for-
mulation of two initial conditions, namely

t=0: T(x,0)=T,(X) (15)
and
0T(x 0
t=0: ((;E ) = U, (x) (16)

while in a case of equation (14) only knowledgénitial temperature distribution
(15) is required.

In a general case the dependence between heaj fltém?®] and the tempera-
ture gradient]T [K/m] results from the formula

q(x t+1,) = 20T (x t+1,) (17)

Using the Taylor series expansions the followingtforder approximation of Eg-
uation (17) can be taken into account
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a(x ) + 7, 2908 - -x[m(x, )+ ama—(t“)} 18)

In special cases far = 0 one has

q(x,t)+rqw:—XDT(x, t) (19)

and fortr =143, =0
q(xt) =-A0T(xt) (20)

Taking into account the geometrical features ofainstperficial layer, the
heat transfer processes proceeding in the domaisidered can be described
by 1D task (Fig. 1) and then the following boundanitial problem can be formu-
lated

2
. 0T (x, t) ‘e 07T (x, 1) :Xaz'l'(x,t) _”LTTOCT(x,t)

q 2 5 ~(21)
ot ot 0 X 0tox

xOdQ:

Let us assume that the surfdcgis subjected to the external heat flux(g, t)
and then

t T(xt T(x,t
x0Ty qb(x,t)+rq%:_x%_xn%[—a 5))(( )} (22)

On the conventionally assumed boundBgylimiting the superficial layer the no-
flux condition can be taken into account

X|:|I_‘°°: O:_XM—}LTTi[M} (23)
dX ot 0 X
Additionally
t=0: T(x,0 =T, w =0 (24)
t=0

whereT is the constant initial temperature of layer.

The assumption of constant values, tr, 14 results from the input data quoted
and approachable in literature.

On a stage of numerical modelling both the dualspHag model and the others
above discussed models have been taken into acandrthe aim of our research
is to compare the results obtained by means oéthexlels.
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Fig. 1. Domain considered

3. Results of computations

The superficial layer of thickneds = 1 um is considered. Thermophysical
parameter of material (nickel) are the following: = e = 90.8 W/(mK),
C=q+C=0.32000°+ 3.6800°= 4110 J/(nT K). Becauses = 3.6 10" W/(m*K)
therefore (c.f. equations (113} = 0.82ps (lps= 10**s), 17 = 10ps. Forx= 0
andt > 100ps (exposure time), = 10 W/m?, while fort > 100ps: g, = 0. Initial
temperaturd,= 20°C. The computations have been realized by sefthne finite
difference method under the assumption that0.002um andAt =0.05ps.

In Figure 2 the temperature profiles for time 0.5ps at the region close to
the external boundary obtained using the differenbdels are shown.
The differences between temperature profiles asible but only for the first stag-
es of the process and points close to the bourd@ary
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Fig. 2. Comparison of temperature profiles for tirse0.5 ps
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Fig. 3. Heating-cooling curves (k= 0, 2 -x = 1/5L, 3 -x = 2/5L)

The next Figure shows the heating (cooling) cuatesie pointx= 0,x= 1/9_
andx = 2/9.. For the assumed axes intervals the differencesdem successive
solutions are not visible.

3. Final remarks

From the theoretical point of view the process yred should be described by
the micro-scale heat conduction equation. In peagtit turned out, that the nu-
merical solution obtained using the Cattaneo meael even the Fourier one are
sufficiently exact. It results from the small vaduef t, andtr for material consid-
ered and the boundary condition assumed@mccording to our experience, the
more visible differences appear in the case ofnthéinteraction between ultra-
short laser pulse and the metal surface.
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