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Abstract. In the paper the thermal processes proceeding in a superficial layer of metal sub-
jected to a strong external heat flux are analyzed. The different mathematical models of heat 
conduction in domain considered are taken into account. The first bases on the dual-phase-lag-
equation describing a micro-scale heat transfer. DPLE contains the parameters corresponding 
to relaxation time τq and the normalization time τT . The second model considered here results 
from the assumption that τT  = 0 and then DPLE reduces to the Cattaneo equation. The last one 
(τq  = τT  = 0) corresponds to the well known Fourier equation. Using the implicit scheme of 
FDM algorithm the numerical simulations have been done and the conclusions resulting from 
the results obtained have been formulated. 

Introduction 

Thermal processes proceeding close to the surface of metal domain can be 
treated as the phenomena described by the energy equations corresponding to mi-
cro-scale heat conduction. This approach should be used in the case of small geo-
metrical dimensions, strong thermal interactions between domain and external heat 
source, very big temperature gradients [1, 2]. The micro-scale heat transfer can be 
described in different ways [1-6]. In this paper the dual-phase-lag-model has been 
taken into account. The energy equation contains two positive constants corre-
sponding to the relaxation time τq and the normalization time τT. The interpretation 
of τq and τT and the formulas determining above parameters will be presented in 
the next chapter. The characteristic feature of DPLE is a presence of second de-
rivative of temperature with respect to time and the higher order derivative both in 
time and space. 

The dual-phase-lag-equation can be reduced to the Cattaneo hyperbolic partial 
differential equation under the assumption that τT  = 0. Application of this type of 
heat transfer equation corresponds to the model in which the finite value of ther-
mal wave velocity is taken into account. 
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If both relaxation time τq = 0 and normalization time τT = 0 then the DPLE is 
the same as the well known parabolic Fourier equation describing a heat conduc-
tion in a macro-scale. 

In the paper we consider the superficial layer L which thermophysical parame-
ters correspond to nickel (Ni). Taking into account the geometrical features of 
domain, the 1D solution is sufficiently exact. The thickness L of layer considered 
should secure the possibility of assumption of non-flux boundary condition for  
x = L (it is the value of order 1 µm). The intensity of external heat flux and its du-
ration have been assumed on the level assuring the values of local and temporary 
temperatures below a solidification point. 

The numerical algorithm and computer program base on the implicit scheme of 
FDM [7]. The system of equations corresponding to transition from time t to time 
t + ∆t was solved using the Thomas algorithm [8]. 

1. Governing equations 

The microscopic two-step model presented among others in [1, 2, 6] is dis-
cussed. The model involves two energy equations determining the heat exchange 
in the electron gas and the metal lattice. The equations creating the model dis-
cussed can be written in the form 

 ( ) ( ) ( )λe
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where Te = Te (x, t), Tl  = Tl (x, t) are the temperatures of electrons and lattice, re-
spectively, ce (Te), cl (Tl) are the volumetric specific heats, λe (Te ), λl (Tl ) are the 
thermal conductivities, G is the coupling factor which characterizes the energy 
exchange between phonon and electrons and is given as [6] 
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and ne is the electron number density per unit volume, k [J/K] is the Boltzmann 
constant, vs [m/s] is the speed of sound, h [J s] is the Planck constant, na is the 
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atomic density per unit volume. For the material considered (Ni) and the mean 
value of thermal conductivity for the temperature interval analyzed, the coupling 
factor G equals 3.6 ⋅1017 W/m3 K [6]. 

In the case of pure metals the system of equations (1), (2) under the assumption 
that volumetric specific heats ce and cl are the constant values is reduced to 

 ( ) ( )λe
e e e e l

T
c T G T T

t

∂ = ∇ ∇ − −
∂

 (5) 

and 

 ( )l
l e l

T
c G T T

t

∂ = −
∂

 (6) 

This simplification, according to [1], results from the fact that the incident ra-
diation and conductional heat flux are absorbed and diffused mainly by electrons. 
The equations (5), (6) using a certain elimination technique can be substituted 
by a single equation containing a higher-order mixed derivative in both time and 
space. From equation (6) results that 

 l l
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Putting (7) into (5) one has 
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this means 
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finally one obtains 
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where T (x, t) = Tl (x, t) is the macroscopic lattice temperature [1], c = cl + ce is 
the effective volumetric specific heat resulting from the serial assembly of elec-
trons and phonons and λ = λe [6]. 

The positive constants τq, τT correspond to relaxation time and thermalization 
time, respectively and they are characteristic for the so-called dual-phase-lag mod-
el. The relaxation time τq is the mean time for electrons to change their energy 
states, while the thermalization time τT is the mean time required for electrons and 
lattice to reach equilibrium. 

This general form of energy equation can be simplified and then one obtains 
well known heat conduction model basing on the Cattaneo equation and the Fou-
rier one. In particular, assuming τT  = 0 one obtains the Cattaneo model 
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while for τT  = τq = 0 one obtains the Fourier model 
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The solution of problem describing by Equations (12) or (13) requires the for-
mulation of two initial conditions, namely 

 ( ) ( )00 : , 0t T x T x= =  (15) 

and 
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while in a case of equation (14) only knowledge of initial temperature distribution 
(15) is required. 

In a general case the dependence between heat flux q [W/m2 ] and the tempera-
ture gradient ∇T [K/m]  results from the formula 

 ( ) ( ), τ λ , τq Tx t T x t+ = − ∇ +q  (17) 

Using the Taylor series expansions the following first-order approximation of Eq-
uation (17) can be taken into account 
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In special cases for τT  = 0 one has 
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and for τT  = τq  = 0 

 ( ) ( ), λ ,x t T x t= − ∇q  (20) 

Taking into account the geometrical features of metal superficial layer, the  
heat transfer processes proceeding in the domain considered can be described  
by 1D task (Fig. 1) and then the following boundary-initial problem can be formu-
lated 
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Let us assume that the surface Γ0 is subjected to the external heat flux qb (x, t)  
and then 
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On the conventionally assumed boundary Γ∞ limiting the superficial layer the no-
flux condition can be taken into account 
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Additionally 
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where T0 is the constant initial temperature of layer. 
The assumption of constant values λ, c, τT, τq results from the input data quoted 

and approachable in literature. 
On a stage of numerical modelling both the dual-phase-lag model and the others 

above discussed models have been taken into account and the aim of our research 
is to compare the results obtained by means of these models. 
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Fig. 1. Domain considered 

3. Results of computations 

The superficial layer of thickness L = 1 µm is considered. Thermophysical 
parameter of material (nickel) are the following: λ = λe = 90.8 W/(mK), 
c = cl + ce = 0.32 ⋅106 + 3.68 ⋅106 = 4 ⋅106 J/(m3 K). Because G =  3.6 ⋅1017

 W/(m 3 K) 
therefore (c.f. equations (11)) τq = 0.82 ps (1ps = 10−12 s), τT = 10 ps. For x = 0 
and t ≥ 100 ps (exposure time) qb = 1012 W/m2, while for t > 100 ps: qb = 0. Initial 
temperature T0 = 20°C. The computations have been realized by means of the finite 
difference method under the assumption that h  = 0.002 µm and ∆t  = 0.05 ps. 

In Figure 2 the temperature profiles for time t = 0.5 ps at the region close to 
the external boundary obtained using the different models are shown. 
The differences between temperature profiles are visible but only for the first stag-
es of the process and points close to the boundary Γ0. 

 

 
Fig. 2. Comparison of temperature profiles for time t = 0.5 ps 
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Fig. 3. Heating-cooling curves (1 - x = 0, 2 - x = 1/5 L, 3 - x = 2/5 L) 

The next Figure shows the heating (cooling) curves at the points x = 0, x = 1/5L 
and x = 2/5L. For the assumed axes intervals the differences between successive 
solutions are not visible. 

3. Final remarks 

From the theoretical point of view the process analyzed should be described by 
the micro-scale heat conduction equation. In practice, it turned out, that the nu-
merical solution obtained using the Cattaneo model and even the Fourier one are 
sufficiently exact. It results from the small values of τq and τT for material consid-
ered and the boundary condition assumed on Γ0. According to our experience, the 
more visible differences appear in the case of thermal interaction between ultra-
short laser pulse and the metal surface. 
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