p-ISSN 2299-9965 e-ISSN 2353-0588

O-SPECIES AND TENSOR ALGEBRAS

Nadiya Gubareni

Institute of Mathematics, Czestochowa University of Technology Czestochowa, Poland nadiya.gubareni@yahoo.com

Abstract. In this paper we consider O-species and their representations. These O-species are a type of a generalization of a species introduced by Gabriel. We also consider the tensor algebras of such O-species. It is proved that the category of all representations of an O-species and the category of all right modules over the corresponding tensor algebra are naturally equivalent.

Keywords: species, O-species, representations of O-species, tensor algebra, O-species of bounded representation type, diagram of O-species

1. Introduction

In this paper we consider O-species, which generalize the notion of species introduced by Gabriel in [1]. Recall this definition:

Definition 1.1. (Gabriel [1]). Let *I* be a finite index set. A species $L = (F_i, iM_j)_{i,j \in I}$ is a finite family $(F_i)_{i \in I}$ of division rings together with a family $(iM_i)_{i,j \in I}$ of (F_i, F_i) -bimodules.

We say that $(F_i, iM_i)_{i,j \in I}$ is a **K-species** if all F_i are finite dimensional and central over the common commutative subfield K which acts centrally on iM_i , i.e. $\lambda m = m\lambda$ for all $\lambda \in K$ and all $m \in {}_{i}M_{i}$. We also assume that each bimodule ${}_{i}M_{i}$ is a finite dimensional vector space over K. K-species is a K-quiver if $F_i = K$ for each i.

Definition 1.2. A representation (V_i, φ_i) of a species $L = (F_i, M_i)_{i,i \in I}$ (or an **L-representation**) is a family of right F_i -modules V_i and F_i -linear mappings:

$$_{i}\varphi_{i}:V_{i}\otimes_{E_{i}}M_{i}\to V_{i}$$
 (1.3)

for each $i, j \in I$. Such a representation is called **finite dimensional**, provided all the spaces V_i are finite dimensional vector spaces.

Let $V = (V_i, j\varphi_i)$ and $W = (W_i, j\psi_i)$ be two *L*-representations. An *L*-morphism Ψ : $V \to W$ is a set of F_i -linear maps $\alpha_i : V_i \to W_i$ such that

$$_{i}\psi_{i}(\alpha_{i}\otimes 1) = \alpha_{i}\cdot_{i}\varphi_{i}$$
 (1.4)

Two representations $(V_i, {}_j\varphi_i)$ and $W = (W_i, {}_j\psi_i)$ are called **equivalent** if there is a set of isomorphisms α_i from the F_i -module V_i to the F_i -module W_i such that the (1.4) holds for all $i,j \in I$.

A representation $(V_i, j\varphi_i)$ is called **indecomposable**, if there are no non-zero sets of subspaces (U_i) and (W_i) such that $V_i = U_i \oplus W_i$ and $_i\varphi_i = _j\psi_i \oplus _j\tau_i$, where

$$_{i}\psi_{i}:U_{i}\otimes_{F_{i}}M_{i}\rightarrow U_{i}$$
 (1.5)

$$_{j}\tau_{i}:W_{i}\otimes_{F_{i}}{_{i}M_{j}}\rightarrow W_{j}$$
 (1.6)

One defines the direct sum of two L-representations in the obvious way.

Denote by Rep(L) the category of all L-representations, and by rep(L) the category of finite dimensional L-representations, whose objects are L-representations and whose morphisms are as defined above.

Definition 1.7. [2] A species $L = (F_i, {}_iM_j)_{i,j \in I}$ is said to be of **finite type**, if the number of indecomposable non-isomorphic finite dimensional representations is finite.

A species $L = (F_i, iM_j)_{i,j \in I}$ is said to be of **strongly unbounded type** if it possesses the following three properties:

- 1. L has indecomposable objects of arbitrary large finite dimension.
- 2. If L contains a finite dimensional object with an infinite endomorphism ring, then there is an infinite number of (finite) dimensions d such that, for each d, the species L has infinitely many (non-isomorphic) indecomposable objects of dimension d.
- 3. L has indecomposable objects of infinite dimension.

Dlab and Ringel proved in [2, Theorem E] that any *K*-species is either of finite or of strongly unbounded type.

With any species $L = (F_i, {}_iM_j)_{i,j \in I}$ one can define the tensor algebra in the following way. Let $B = \prod_{i \in I} F_i$, and let $M = \bigoplus_{i,j \in I} M_j$. Then B is a ring and M naturally

becomes a (B, B)-bimodule. The **tensor algebra** of the (B, B)-bimodule M is the graded ring

$$T(L) = T_B(M) = \bigoplus_{n=0}^{\infty} M^{\otimes n}$$
 (1.8)

with component-wise addition and the multiplication induced by taking tensor products.

If L is a K-species, then T(L) is a finite dimensional K-algebra.

Theorem 1.9. (Dlab, Ringel [2, Proposition 10.1]). Let L be a K-species. Then the category Rep(L) of all representations of L and the category $\text{Mod}_r(T(L))$ of all right T(L)-modules are equivalent.

2. O-species and their representations

In this section we consider the notion of *O*-species, which generalizes the notion of species considered in [1].

Let $\{O_i\}$ be a family of discrete valuation rings (not necessarily commutative) O_i with radicals R_i and skew fields of fractions D_i , for i = 1, 2, ..., k, and let $\{D_j\}$, for j = k + 1, ..., n, be a family of skew fields. Let $(n_1, n_2, ..., n_k)$ be a set of natural numbers. Write

$$H_{n_i}(O_i) = \begin{pmatrix} O_i & O_i & \cdots & O_i \\ R_i & O_i & \cdots & O_i \\ \vdots & \vdots & \ddots & \vdots \\ R_i & R_i & \cdots & O_i \end{pmatrix},$$

which is a subring in the matrix ring $M_{n_i}(D_i)$. It is easy to see that each $H_{n_i}(O_i)$ is a Noetherian serial prime hereditary ring. Write $F_i = H_{n_i}(O_i)$ for i = 1, 2, ..., k, and $F_j = D_j$ for j = k + 1, ..., n. Then, by the Goldie theorem, there exists a classical ring of fractions \widetilde{F}_i for i = 1, 2, ..., n.

Consider the following generalization of a species.

Definition 2.1. An **O-species** is a set $\Omega = (F_i, {}_iM_j)_{i,j \in I}$, where $F_i = H_{n_i}(O_i)$ for i = 1, 2, ..., k, and $F_j = D_j$ for j = k + 1, ..., n, and moreover ${}_iM_j$ is an $(\widetilde{F}_i, \widetilde{F}_j)$ -bimodule, which is finite dimensional as a right D_j -vector space and as a left D_i -vector space.

An O-species Ω is called a (**D**, **O**)-species if all O_i have a common skew field of fractions D, i.e. all D_i are equal to a fixed skew field D and

$$_{D}(_{i}M_{i})_{D} \cong (_{D}D_{D})^{n_{ij}} \tag{2.2}$$

for some natural number n_{ij} (i = 1, 2, ..., n).

An *O*-species Ω is called a (K, O)-species, if all D_i (i = 1, 2, ..., n) contain a common central subfield K of finite index in such a way that $\lambda m = m\lambda$ for all $\lambda \in K$ and all $m \in {}_iM_j$ (moreover, each bimodule ${}_iM_j$ is a finite dimensional vector space over K). It is a (K, O)-quiver if moreover $D_i = D$ for each i.

Everywhere in this paper we will consider *O*-species without oriented cycles and loops, i.e. we will assume that ${}_{i}M_{i} = 0$, and if ${}_{i}M_{j} \neq 0$, then ${}_{j}M_{i} = 0$. A vertex *i* is said to be **marked** if $F_{i} = H_{n_{i}}(O_{i})$.

We will also assume that all marked vertices are minimal, i.e. $_{j}M_{i} = 0$ if $F_{i} = H_{n_{i}}(O_{i})$, and that $_{i}M_{j} = _{j}M_{i} = 0$ if i, j are marked vertices.

Definition 2.3. The **diagram** of an *O*-species $\Omega = \{F_i, {}_iM_j\}_{i,j\in I}$ is defined in the following way:

- 1. The set of vertices is a finite set $I = \{1, 2, ..., n\}$.
- 2. The finite subset $I_0 = \{1, 2, ..., k\}$ of I is a set of marked points.
- 3. The vertex *i* connects with the vertex *j* by t_{ij} arrows, where

$$t_{ij} = \frac{1}{n_i} \dim_D({}_i M_j) \times \dim({}_i M_j)_D + \frac{1}{n_j} \dim_D({}_j M_i) \times \dim({}_j M_i)_D$$

moreover, we assume that $n_i = 1$ if $F_i = D_i$.

Similar to species we can define representations of *O*-species in the following way.

Definition 2.4. A **representation** $(M_i, V_r, j\varphi_i, j\psi_r)$ of an *O*-species $\Omega = \{F_i, iM_j\}_{i,j \in I}$ is a family of right F_i -modules M_i (i = 1, 2, ..., k), a set of right vector spaces V_r over D_r (r = k + 1, k + 1, ..., n) and D_r -linear maps:

$$_{i}\varphi_{i}:M_{i}\otimes_{F_{i}}M_{j}\rightarrow V_{j}$$

for each i = 1, 2, ..., k; j = k + 1, k + 2, ..., n; and

$$_{j}\psi_{r}:V_{r}\otimes_{D_{r}}{_{r}M_{j}}\rightarrow V_{j}$$

for each r, j = k+1, k+2, ..., n.

Definition 2.5. Two representations $M = (M_i, V_r, {}_j\varphi_i, {}_j\psi_r)$ and $M' = (M'_i, V'_r, {}_j\varphi'_i, {}_j\psi'_r)$ are called **equivalent** if there is a set of isomorphisms α_i of F_i -modules from M_i to

 M'_i and a set of isomorphisms β_r of D_r -vector spaces from V_r to V'_r such that for each i = 1, 2, ..., k; r, j = k + 1, k + 2, ..., n the following equalities hold:

$$_{i}\varphi_{i}'(\alpha_{i}\otimes 1) = \beta_{i}\cdot_{i}\varphi_{i}$$
 (2.6)

$$_{i}\psi_{r}'(\beta_{r}\otimes 1) = \beta_{i}\cdot_{i}\psi_{r}$$
 (2.7)

In a natural way one can define the notions of a direct sum of representations and of an indecomposable representation.

The set of all representations of an O-species $\Omega = (F_i, iM_j)_{i,j \in I}$ can be turned into a category $R(\Omega)$, whose objects are representations $M = (M_i, V_r, j\varphi_i, j\psi_r)$, and a morphism from object $M = (M_i, V_r, j\varphi_i, j\psi_r)$ to object $M' = (M'_i, V'_r, j\varphi'_i, j\psi'_r)$ is a set of homomorphisms α_i of $H_{n_i}(O_i)$ - modules M_i to M'_i , and a set of homomorphisms β_r of D_r - vector spaces from V_r to V'_r such that for each i = 1, 2, ..., k; r, j = k + 1, k + 2, ..., n the equalities (2.6) and (2.7) hold.

3. Tensor algebra of O-species

For any *O*-species $\Omega = (F_i, {}_iM_j)_{i,j \in I}$ one can construct a tensor algebra of bimodules $T(\Omega)$. Let $A = \bigoplus_{i=1}^n F_i$, $B = \bigoplus_{i,j} M_j$. Then *B* is an (A, A) - bimodule and we can define a tensor algebra $T_A(B)$ of the bimodule *B* over the ring *A* in the following way:

$$T_A(B) = A \oplus B \oplus B^2 \oplus \dots \oplus B^n \oplus \dots \tag{3.1}$$

is a graded ring, where $B^n = B \otimes_A B^{n-1}$ for n > 1, and multiplication in $T_A(B)$ is given by the natural A-bilinear map:

$$B^{n} \times B^{m} \to B^{n} \otimes_{A} B^{m} = B^{n+m} \tag{3.2}$$

Then $T(\Omega) = T_A(B)$ is the tensor algebra corresponding to an O-species Ω .

Proposition 3.3. Let Ω be an O-species. Then the category $\Re(\Omega)$ of all representations of Ω and the category $\operatorname{Mod}_r T(\Omega)$ of all right $T(\Omega)$ -modules are naturally equivalent.

Proof. Form two functors $R: \operatorname{Mod}_r T(\Omega) \to \Re(\Omega)$ and $P: \Re(\Omega) \to \operatorname{Mod}_r T(\Omega)$ in the following way. Let $X_{T(\Omega)}$ be a right $T(\Omega)$ -module. Since A is a subring in $T(\Omega)$, X can be considered as a right A-module. Then

$$X = \left(\bigoplus_{i=1}^{k} M_i\right) \oplus \left(\bigoplus_{r=k+1}^{n} V_r\right),\tag{3.4}$$

where M_i is an $H_{n_i}(O_i)$ -module, and V_r is a D_r -vector space; moreover, $M_iH_{n_j}(O_j)=0$ for $i\neq j$, and $V_rD_s=0$ for $r\neq s$. Since B is an (A,A)-bimodule, one can define an A-homomorphism $\varphi:X\otimes_A B\to X_A$. Taking into account that $M_i\otimes_A SM_i=0$ for $i\neq s$, the map φ is defined in the following way:

$$\varphi : \left(\bigoplus_{i=1}^{k} \left(M_{i} \otimes_{A_{i}} M_{j} \right) \right) \oplus \left(\bigoplus_{r=k+1}^{n} \left(V_{r} \otimes_{A_{r}} M_{j} \right) \right) \to \bigoplus_{r=k+1}^{n} V_{r}$$
(3.5)

Since $M_i \otimes_{A_i} M_j$ is mapping into V_j , and $V_r \otimes_{A_r} M_j$ is mapping into V_j , φ defines a set of D_i -homomorphisms:

$$_{j}\varphi_{i}:M_{i}\otimes_{A}{_{i}M_{j}}=M_{i}\otimes_{H_{n_{i}(O_{i})}{_{i}}}M_{j}\rightarrow V_{j}$$
 (3.6)

$$_{i}\psi_{r}:V_{r}\otimes_{A}{_{r}M_{i}}=V_{r}\otimes_{D_{r}r}M_{i}\rightarrow V_{i}$$

$$(3.7)$$

for i = 1, 2, ..., k; r, j = k + 1, ..., n.

Now one can define $R(X_{T(\Omega)}) = (M_i, V_r, j\varphi_i, j\psi_r)$. Let X, Y be two right $T(\Omega)$ -modules, let $\alpha: X \to Y$ be a homomorphism, and let $R(X) = (M_i, V_r, j\varphi_i, j\psi_r)$, $R(Y) = (N_i, W_r, j\widetilde{\varphi}_i, j\widetilde{\psi}_r)$. Let's define a morphism from R(X) to R(Y). Since α is an A-homomorphism, $\alpha(M_i) \subseteq N_i$, $\alpha(V_r) \subseteq W_r$, i.e., α defines a family of $H_{n_i}(O_i)$ -homomorphisms $\alpha_i: M_i \to N_i$ and a family of D_r -homomorphisms $\beta_r: V_r \to W_r$, which are the restrictions of α to M_i and V_r . Therefore one can set $R(\alpha) = \{(\alpha_i), (\beta_r)\}$. Since α is a $T(\Omega)$ -homomorphism,

$$_{i}\widetilde{\varphi}_{i}(\alpha_{i}\otimes 1) = \alpha_{i}\cdot_{i}\varphi_{i}$$
 (3.8)

and

$$_{j}\widetilde{\psi}_{r}(\beta_{r}\otimes 1) = \beta_{j}\cdot_{j}\psi_{r}$$
 (3.9)

for i = 1, 2, ..., k; r, j = k + 1, ..., n. Therefore $R(\alpha)$ is a morphism in the category $R(\Omega)$.

Conversely, let $\Omega = (F_i, {}_iM_j)_{i,j \in I}$ and there is given a representation $M = (M_i, V_r, {}_j\varphi_i, {}_j\psi_r)$. Then one can define P(M) in the following way:

$$P(M) = X = \left(\bigoplus_{i=1}^{k} M_i\right) \oplus \left(\bigoplus_{r=k+1}^{n} V_r\right). \tag{3.10}$$

We define an action of

$$A = \left(\bigoplus_{i=1}^{k} H_{n_i}(O_i)\right) \oplus \left(\bigoplus_{r=k+1}^{n} D_r\right)$$
(3.11)

on M_i by means of the projection $A \to H_{n_i}(O_i)$ and an action of A on V_r by means of the projection $A \to D_r$. We define an action of B^n on X by induction of $\varphi^{(n)}: X \otimes_A B^n \to X$ as follows:

$$\varphi^{(1)} = \bigoplus_{i,j} {}_{j} \varphi_{i} \bigoplus_{j,r} {}_{j} \psi_{r} : X \otimes_{A} B = \left(\bigoplus_{i=1}^{k} \left(M_{i} \otimes_{A} {}_{i} M_{j} \right) \right) \oplus \left(\bigoplus_{r=k+1}^{n} \left(V_{r} \otimes_{A} {}_{r} M_{j} \right) \right) =$$

$$= \left(\bigoplus_{i=1}^{k} \left(M_{i} \otimes_{H_{n_{i}(O_{i})}} {}_{i} M_{j} \right) \right) \oplus \left(\bigoplus_{r=k+1}^{n} \left(V_{r} \otimes_{D_{r}} {}_{r} M_{j} \right) \right) \rightarrow \bigoplus_{r=k+1}^{n} V_{r} \subseteq X.$$

$$\varphi^{(n+1)} = \varphi(\varphi^{(n)} \otimes 1) : X \otimes_A B^{(n+1)} = (X \otimes_A B) \otimes_A B^n \xrightarrow{\varphi^{(n)} \otimes 1} X \otimes_A B \xrightarrow{\varphi} X$$

If $\alpha = \{\{\alpha_i\}, \{\beta_r\}\}\$ is a morphism of a representation $M = (M_i, V_r, j\varphi_i, j\psi_r)$ to a representation $M' = (M'_i, V'_r, j\varphi'_i, j\psi'_r), X = P(M), Y = P(M'),$ then

$$\varphi = \bigoplus_{i} \alpha_{i} \bigoplus_{r} \beta_{r} : X = \bigoplus_{i} M_{i} \bigoplus_{r} V_{r} \to \bigoplus_{i} M'_{i} \bigoplus_{r} V'_{r}$$
(3.12)

is a $T(\Omega)$ -homomorphism and therefore $P(\alpha) = \varphi$.

It is not difficult to show that R, P are mutually inverse functors and they give an equivalence of categories $\operatorname{Mod}_{r} T(\Omega)$ and $\Re(\Omega)$.

Recall that an Artinian ring A is of **finite representation type** if A has only a finite number of indecomposable finitely generated right A-modules up to isomorphism.

A ring A is of (right) **bounded representation type** (see [3, 4]) if there is an upper bound on the number of generators required for indecomposable finitely presented right A-modules.

Denote by $\mu(M_i)$ the minimal number of generators of an $H_{n_i}(O_i)$ -module M_i , and denote by $d_r = \dim_{D_r}(V_r)$ the dimension of vector space V_r over D_r . The dimension of a representation $M = (M_i, V_r, {}_j \varphi_i, {}_j \psi_r)$ is the number

$$d = \dim M = \sum_{i=1}^{n} \mu(M_i) + \sum_{r=k+1}^{n} d_r$$
 (3.13)

Definition 3.14. An O-species Ω is said to be of **bounded representation type** if the dimensions of its indecomposable finite dimensional representations have an upper bound.

Corollary 3.15. An *O*-species Ω is of bounded representation type if and only if the tensor algebra $T(\Omega)$ is of bounded representation type.

Proof. If Ω is an O-species of bounded representation type, then there exists N > 0 such that $\dim M < N$ for any indecomposable finite dimensional representation M. Then for any finitely generated $T(\Omega)$ -module X we have $\mu(X) < N_1$, where N_1 is some fixed number depending on N, i.e. $T(\Omega)$ is a ring of bounded representation type. The converse also holds: if $T(\Omega)$ is a ring of bounded representation type, then Ω is an O-species of bounded representation type.

Corollary 3.16. Let Ω_1 be a *D*-species, which is a subspecies of a (D, O)-species Ω . If Ω is of bounded representation type, then Ω_1 is of finite type.

Proof. Since Ω is of bounded representation type, each of its subspecies is of bounded representation type as well. So Ω_1 is of bounded representation type, and, by corollary 3.15, its tensor algebra is of bounded representation type, as well. Since Ω_1 is a *D*-species, its tensor algebra is an Artinian ring. So it is of finite representation type, by [5]. Therefore, Ω_1 is also of finite representation type.

3. Conclusion

In this paper we introduced O-species and the tensor algebras corresponding to them. These O-species are some generalizations of species first introduced by Gabriel in [1]. We consider the notion of a representation of an O-species. In this paper we prove that the category of all representations of O-species Ω and the category of all right modules over a tensor algebra $T(\Omega)$ are naturally equivalent.

References

- [1] Gabriel P., Indecomposable representations I, Manuscripta Math. 1972, 6, 71-103.
- [2] Dlab V., Ringel C.M., On algebras of finite representation type, Journal of Algebra 1975, 33, 306-394.
- [3] Warfield R.B., Serial rings and finitely presented modules, Journal of Algebra 1975, 37, 2, 187-222.
- [4] Gubareni N., On right hereditary SPSD-rings of bounded representation type I, Scientific Research of the Institute of Mathematics and Computer Science 2012, 3(11), 57-70.
- [5] Auslander M., Representation theory of Artin algebras II, Comm. Algebra 1974, 1, 269-310.